郭成 吉武龍 李娜 付子琳 張力莉 徐曉鋒
摘?要:【目的】闡釋日糧添加玉米粉與油脂誘導(dǎo)奶牛低乳脂情況下,奶牛瘤胃細菌菌群的變化情況。【方法】采用自身對照試驗設(shè)計,選取4頭體況相近、健康的泌乳期中國荷斯坦奶牛。試驗開始前先以基礎(chǔ)日糧預(yù)飼并以自身作對照。試驗期奶牛日糧中添加玉米粉1.5 kg·頭-1·d-1,添加胡麻油150 mL·頭-1·d-1。預(yù)飼期為7 d,試驗期為15 d,分析奶牛乳脂率及瘤胃細菌菌群變化情況?!窘Y(jié)果】在飼料淀粉營養(yǎng)水平達到27%左右水平上額外添加胡麻油150 mL·頭-1·d-1,連續(xù)添加15 d使奶牛的乳脂率極顯著降低(P<0.01),乳糖顯著升高(P<0.05),成功誘導(dǎo)奶牛乳脂降低。瘤胃細菌研究表明,在門水平上共檢測到29個菌門,與對照組相比,玉米粉和油脂誘導(dǎo)乳脂降低后奶牛瘤胃導(dǎo)軟壁菌門豐度顯著降低(P<0.05),放線菌門與浮霉菌門豐度極顯著增加(P<0.01);螺旋菌門豐度顯著增加(P<0.05)。在屬水平上檢測到389個菌屬,其中110個菌屬有顯著差異(P<0.05)。與對照組相比,試驗組奶牛瘤胃乳酸菌桿菌屬豐度極顯著增加(P<0.01),腸球菌屬豐度極顯著降低(P<0.01),克里斯滕森菌屬顯著降低(P<0.05),普雷沃菌屬豐度顯著增加(P<0.05),毛螺旋菌極顯著降低(P<0.01),未注釋毛螺旋菌屬豐度顯著增加,丁酸弧菌屬-2(Butyrivibrio-2)豐度顯著降低(P<0.05),瘤胃球菌屬-1豐度顯著提高。【結(jié)論】日糧添加玉米粉與油脂誘導(dǎo)奶牛乳脂降低,瘤胃細菌菌群多樣性未產(chǎn)生顯著影響,但菌群結(jié)構(gòu)及豐度發(fā)生了較大改變,產(chǎn)酸菌屬與淀粉利用菌屬增加顯著。
關(guān)鍵詞:奶牛;乳脂降低;16S rDNA;高通量測序技術(shù);瘤胃細菌
中圖分類號:S 823文獻標識碼:A文章編號:1008-0384(2019)08-939-08
Abstract:【Objective】Changes on the fat content of milk from and rumen microbial flora in dairy cows fed with corn meal and flaxseed oil supplemented forage were studied. 【Method】 In a self-control experimentation, 4 Chinese Holstein cows of similar physical conditions and normal lactation were fed on a daily diet added with 1.5 kg of corn meal and 150 mL per animal of flaxseed oil for 7 pre-trial days followed by 15 days for the test. 【Result】In the feed containing approximately 27% starch, the dietary supplements significantly lowered the fat content (P<0.01) with a significantly higher lactose content (P<0.05) in the milk produced by the cows. There were 29 microbial phyla found in the rumen. The flora of Tenericutes significantly decreased (P<0.05), Actinobacteria and Planctomycetes significantly increased (P<0.01), and Spirochaetae significantly increased (P<0.05) over control. Among the 389 genera of microbes in the rumen, 110 were significantly different (P<0.05). Comparing to control, Lactobacillus increased significantly (P<0.01), Enterococcus decreased significantly (P<0.01), Christensenellaceae R-7-group decreased significantly (P<0.05), Prevotellaceae-UCG-001 increased significantly (P<0.05), Lachnospiraceae-UCG-006 decreased significantly (P<0.01), Lachnospiraceae-NA increased significantly, Butyrivibrio-2 decreased significantly (P<0.05), and Ruminococcus-1 increased significantly. 【Conclusion】Under the experimental conditions, the dietary supplementation of corn meal and flaxseed oil significantly reduced the fat content in milk of the dairy cows. It did not significantly alter the diversity but significantly changed the structure and abundance of the microbial flora in the cow rumen. The acidogenic as well as starch-utilizing bacteria significantly increased.
Key words:dairy cow; milk fat reduction; 16S rDNA;high-throughput sequencing; rumen microbes
0?引言
【研究意義】乳脂降低綜合征是指由營養(yǎng)因素引起的牛奶乳脂率降低的一種現(xiàn)象,降低幅度有時可達50%,但是乳蛋白、乳糖含量以及產(chǎn)奶量等并未受到顯著影響[1]。乳脂降低綜合征的奶牛日糧大多都有纖維素含量低、瘤胃易發(fā)酵碳水化合物含量高的特點[2]。利用高精高脂肪酸日糧連續(xù)飼喂奶牛,研究其對奶牛瘤胃中細菌菌群以及乳品質(zhì)的影響,對進一步闡明乳脂下降機制、指導(dǎo)生產(chǎn)中日糧調(diào)控具有重要參考價值。【前人研究進展】王建平等[3]研究表明,飼喂高精料日糧雖然可以提高產(chǎn)奶量,但是乳脂率顯著降低。國外研究發(fā)現(xiàn),在日糧中添加大量快速發(fā)酵碳水化合物,或者添加植物油或魚油均可誘導(dǎo)奶牛甚至奶山羊的乳脂明顯降低,即誘導(dǎo)產(chǎn)生乳脂降低綜合征[4-5]。高淀粉和高脂肪是有風險的添加劑,不僅會導(dǎo)致乳脂下降[6],還會對瘤胃菌群產(chǎn)生影響。Belanche等[7]對比了粗飼和高精飼喂的羔羊,結(jié)果發(fā)現(xiàn)粗飼羔羊瘤胃中有更多的產(chǎn)琥珀酸絲狀桿菌,瘤胃厭氧真菌和瘤胃細菌菌群的多樣性也更高。國外研究表明[8],隨著日糧精粗比的增加,瘤胃纖維降解菌的生長會受到抑制。Huws等[9]在反芻動物飼料中添加魚油,通過QPCR技術(shù),發(fā)現(xiàn)瘤胃解脂厭氧弧菌、丁酸弧菌屬、產(chǎn)琥珀酸絲狀桿菌等的DNA發(fā)生改變,表明魚油改變了反芻動物瘤胃的生物氫化。Neto等[10]對比了在放牧水平下,是否添加全大豆添加劑(油源)條件對閹牛的影響,結(jié)果表明添加油脂抑制了瘤胃纖維溶解菌的數(shù)量。Wanapat等[11]研究表明,隨著日糧植物油的添加,水牛瘤胃微生物種群隨之降低。研究表明,乳脂降低綜合征與瘤胃中微生物群落的大規(guī)模轉(zhuǎn)變之間存在關(guān)聯(lián)[12]?!颈狙芯壳腥朦c】研究發(fā)現(xiàn)在誘導(dǎo)奶牛乳脂降低綜合征期間,奶牛瘤胃淀粉菌Prevotella bryantii、產(chǎn)琥珀酸絲狀桿菌、溶纖維丁酸弧菌會減少,表明瘤胃微生物種群變化與乳脂降低綜合征之間存在很強的相關(guān)性[13]。雖然前人了解奶牛乳脂降低與瘤胃微生物有關(guān),但鮮少對比奶牛乳脂降低前后瘤胃菌群的變化。【擬解決的關(guān)鍵問題】本試驗利用16S高通量測序技術(shù)分析玉米粉與油脂混合誘導(dǎo)奶牛乳脂下降情況下,奶牛瘤胃細菌菌群結(jié)構(gòu)的變化,為探明二者的作用機制提供理論參考。
1?試驗材料與方法
1.1?試驗動物
試驗動物由寧夏回族自治區(qū)某牧場提供。試驗用玉米粉由寧夏某牧場提供,胡麻油為內(nèi)蒙古賽星食品有限公司生產(chǎn)。
1.2?試驗動物預(yù)處理
本試驗采用自身對照試驗設(shè)計,參考朱河水等[14]的試驗方法。試驗動物為泌乳期荷斯坦奶牛。在同一個圈舍,根據(jù)體況良好、體重相近、胎次相同、產(chǎn)奶量接近的原則,選取4頭泌乳期中國荷斯坦奶牛。試驗開始以基礎(chǔ)日糧進行預(yù)飼,預(yù)飼期為7 d,以減少奶牛應(yīng)激。預(yù)飼期后3 d開始采集瘤胃液并混合均勻,作為對照組(CK)。根據(jù) NRC (2001) 奶牛飼養(yǎng)標準配制基礎(chǔ)日糧,基礎(chǔ)干物質(zhì)日糧組成和營養(yǎng)成分見表1。采用TMR飼喂方式,全天自由飲水。試驗預(yù)飼喂期為7 d。
1.3?淀粉與油脂添加方式
玉米粉和油脂奶牛組(CO)日糧中額外添加玉米粉(200目),含量為1.5 kg·頭-1·d-1,參考Weimer等[12],使飼料淀粉營養(yǎng)水平達到27%左右;額外添加胡麻油150 mL·頭-1·d-1。玉米粉每日添加兩次,每次添加750 g;油脂每日添加兩次,每次添加75 mL,油脂和玉米粉均以灌服方式一同添加,保證奶牛每日添加的油脂和玉米粉完全采食,試驗為期15 d。
1.4?試驗樣品的采集和處理
1.4.1?瘤胃液的采集方式
使用負壓吸取裝置(自行設(shè)計),通過奶??谇会娂鑫敢骸2杉瘯r間分別為飼喂前(0 h)及飼喂后2、4,6 h取樣,每次取瘤胃液50 mL。分別在預(yù)飼期和試驗期的后3 d采集瘤胃液,采集后立即放入凍存管放液氮臨時保存,并轉(zhuǎn)移到試驗室放-80℃冰箱保存。為獲得具有代表性的樣品,化凍后將每天4個時間點所取的瘤胃內(nèi)容物樣品各取5 mL,充分混勻后備用。
1.4.2?牛奶的采集
試驗牛每日清晨7∶30采奶,每次擠奶取兩個奶樣,每個牛奶樣品采50 mL,分別在棄去頭3把乳后,手工擠奶的方法采奶。奶樣來自4個乳區(qū),4個乳區(qū)的奶樣混合后直接測定牛奶成分。
1.4.3?瘤胃液DNA的提取
取2 mL瘤胃液提取瘤胃微生物DNA,采用試劑盒法,試劑盒購于南京建成生物研究所。每頭牛每個時間段瘤胃液取3管樣品,即3個重復(fù)。
1.4.4?PCR擴增
PCR 擴增前用瓊脂糖凝膠電泳檢測 DNA 樣品的純度和濃度,于離心管中取適量的樣品進行稀釋。將稀釋后的基因組 DNA 作為模板。瘤胃液DNA擴增目的片段為V3+V4區(qū),引物序列為:V3+V4:341F-806R[15]。
341F:CCTACGGGNGGCWGCAG;
806R:GGACTACHVGGGTATCTAAT
1.4.5?PCR產(chǎn)物的混樣與純化
PCR產(chǎn)物使用2%的瓊脂糖凝膠進行電泳檢測;依照 PCR 產(chǎn)物濃度的檢測結(jié)果進行等濃度混樣,充分混勻后使用2%的瓊脂糖凝膠電泳檢測PCR產(chǎn)物,使用南京建成生物研究所提供的回收試劑盒回收產(chǎn)物。
1.4.6?Hiseq測序
將樣品送至廣州基迪奧生物科技有限公司進行Hiseq測序,其測序采用Hiseq2500 PE 250平臺。
1.5?數(shù)據(jù)統(tǒng)計分析
數(shù)據(jù)采用Excel 2016進行初步處理,采用SAS 8.2統(tǒng)計軟件中的隨機區(qū)組設(shè)計進行數(shù)據(jù)處理。數(shù)據(jù)由平均值±標準誤表示,P<0.05為差異顯著,P<0.01為差異極顯著。
2?結(jié)果與分析
2.1?奶牛乳品質(zhì)變化
圖1為日糧添加玉米粉和油脂后,牛奶乳脂變化曲線。表2為添加玉米粉和油脂對牛奶乳成分的影響。在添加玉米粉和油脂后,乳糖有顯著提高(P<0.05),而乳脂率極顯著降低;乳脂開始2 d有小幅度的上升,從第4 d開始迅速降低。約1周后,乳脂率開始穩(wěn)定。可以發(fā)現(xiàn)乳脂穩(wěn)定階段與開始飼喂階段,乳脂率降低超過48%,表明乳脂降低綜合征誘導(dǎo)成功。
2.2?奶牛瘤胃細菌菌群序列及多樣性分析
2.2.1?樣品測序深度分析
本試驗的瘤胃液樣品的Shannon曲線見圖2。當測序深度超過10 000 reads時,曲線趨于平緩,各樣品達到飽和狀態(tài),表明本試驗的測序深度足以覆蓋各樣品中大多數(shù)細菌。
2.2.2?瘤胃細菌菌群 OTUs 比較
經(jīng)Illumina Hiseq測序結(jié)束后,除去低質(zhì)量序列,通過序列拼接,應(yīng)用Mothur根據(jù)97%的序列相似度,對序列進行OTU聚類,對樣品進行OTU的統(tǒng)計,剔除稀有OTU后對照組CK樣品獲得2 900個,試驗組CO樣品獲得2 779個。樣品間差異不顯著(P>0.05),兩個樣品共享OTU為2 344個。
2.2.3?瘤胃細菌alpha多樣性分析
基于OTU的結(jié)果,計算了Alpha多樣性。由表3可知飼喂玉米粉與胡麻油對奶牛瘤胃細菌菌群的Chao1值和Ace值與對照組比較,均有所減少,微生物數(shù)量有所減少,但差異不顯著(P>0.05),說明飼喂乳脂下降后瘤胃細菌多樣性無顯著影響。與對照組比較瘤胃細菌菌群,試驗組Shannon指數(shù)比對照組低,Simpson指數(shù)比對照組高,說明奶牛瘤胃菌群種類分布均勻度有降低,但是差異并不顯著(P>0.05)。與對照組比較瘤胃細菌菌群的Shannon指數(shù)和Simpson指數(shù)均差異不顯著。本試驗覆蓋率均大于99%,說明樣品的采集足以反映瘤胃細菌菌群情況。
2.2.4?玉米粉與油脂處理奶牛瘤胃細菌在門水平上的變化
表4為在玉米粉和油脂誘導(dǎo)乳脂降低后部分細菌在門水平上的菌群變化。本試驗共涉及29個門,包括芽單胞菌門Gemmatimonadetes、軟壁菌門Tenericutes、裝甲菌門Armatimonadetes、厚壁菌門Firmicutes、廣古菌門Euryarchaeota、擬桿菌門Bacteroidetes、變形桿菌門Proteobacteria,迷蹤菌門Elusimicrobia,浮霉菌門Planctomycetes,未注釋菌門Bacteria-NA等。奶牛瘤胃厚壁菌門、擬桿菌門、變形桿菌門占總菌群比例的90%。與對照組相比,玉米粉和油脂誘導(dǎo)乳脂降低后奶牛瘤胃導(dǎo)軟壁菌門豐度顯著降低(P<0.05),放線菌門、浮霉菌門豐度極顯著增加(P<0.01);螺旋菌門豐度顯著增加(P<0.05)。
2.2.5?玉米粉與油脂處理奶牛瘤胃細菌屬水平上的變化
進一步細化分類到屬,本試驗?zāi)膛A鑫敢壕汗采婕?89個屬種,其中110個菌屬差異顯著(P<0.05)。表5只列出了占總菌群0.1%以上且差異顯著的菌屬。分析結(jié)果可知,10個菌屬豐度較高,包括鏈球菌屬Streptococcus、克里斯滕森菌屬Christensenellaceae、腸球菌屬Enterococcus、魏斯氏菌屬Weissella、乳酸桿菌屬Lactobacillus、普雷沃氏菌屬-1Prevotella-1、瘤胃球菌屬Ruminococcus等。由表5可以看出,與對照組相比,試驗組奶牛瘤胃乳酸菌桿菌屬豐度極顯著增加(P<0.01);腸球菌屬豐度極顯著降低(P<0.01),克里斯滕森菌屬顯著降低(P<0.05),其他優(yōu)勢菌屬變化不顯著。除優(yōu)勢菌屬外,其他菌屬如普雷沃菌屬豐度顯著增加(P<0.05);毛螺旋菌屬豐度極顯著降低(P<0.01),未注釋毛螺旋菌屬豐度顯著增加;丁酸弧菌屬-2Butyrivibrio-2豐度顯著降低(P<0.05);瘤胃球菌屬-1豐度顯著提高。
3?討?論
3.1?玉米粉與油脂添加對奶牛乳脂含量的影響
試驗結(jié)果表明,在飼料淀粉營養(yǎng)水平達27%左右的水平上額外添加胡麻油150 mL·頭-1·d-1,連續(xù)添加15 d可以極顯著降低奶牛的乳脂率,顯著提高乳糖率。乳糖含量與飼料中淀粉和糖的含量有關(guān)[16]。劉峰等[17]研究表明,隨著精料比例的增加,乳糖含量呈上升趨勢,而乳脂率呈下降趨勢,飼料的精粗飼料比對產(chǎn)奶量有顯著影響。Rico等[18]對奶牛使用低纖維高脂肪日糧,結(jié)果成功誘導(dǎo)出乳脂下降綜合癥。國外研究表明,在日糧中添加植物油與魚油混合,乳脂率會出現(xiàn)下降情況[19]。這都與本試驗研究結(jié)果相似。研究表明當對奶牛添加含有大量精料或不飽和脂肪酸日糧后,瘤胃液和牛奶中的反-10-十八碳脂肪酸(trans-10 C18)含量增加[20]。Gaynor等[21]通過高精日糧誘導(dǎo)奶牛乳脂下降,證實了乳脂中的反式脂肪酸的增加與乳脂下降綜合癥存在聯(lián)系。本試驗中高精高脂肪酸的日糧條件可能是乳脂率降低的原因。
3.2?玉米粉與油脂添加對瘤胃菌群的影響
飼料中的不飽和脂肪酸對瘤胃的發(fā)酵有著明顯的抑制作用,能夠顯著降低反芻動物對纖維素的消化率[22]。由表3可知,本試驗導(dǎo)致瘤胃菌群種類分布均勻度有降低,瘤胃菌群種類與豐度減少。研究表明油脂會抑制瘤胃細菌的生長,甚至對瘤胃微生物的生長有毒性[23]。瘤胃內(nèi)細菌有大部分黏附在飼料顆粒,飼料中添加油脂會使飼料顆粒表面潤滑,使細菌難以附著也是瘤胃細菌菌群減少的原因之一[24]。還有研究認為脂肪酸可以吸附在細菌的細胞壁上,影響了營養(yǎng)物質(zhì)通過,阻礙了細菌的生長[25]。
本試驗表明,添加油脂并不一定能使瘤胃脂肪分解菌豐度提高。李旦[26]研究表明,日糧中添加豆油或者胡麻油會使瘤胃解脂厭氧弧菌豐度大幅度減少。研究表明,解脂厭氧弧菌的胞外脂肪酶最適pH為7.4[27],在本試驗中產(chǎn)酸菌增多的情況下,脂肪在瘤胃也不能正常消化。丁酸弧菌屬是纖維降解菌,其豐度顯著降低,說明其生長得到抑制,這與李旦等[28]研究結(jié)果一致。
乳脂降低與瘤胃中微生物群落的大規(guī)模轉(zhuǎn)變之間存在關(guān)聯(lián)。乳酸產(chǎn)生菌與乳酸利用菌之間的菌群平衡紊亂,瘤胃內(nèi)乳酸積累,使瘤胃酸度降低\[29-30\]。研究表明,韋榮球菌屬為乳酸利用菌\[31\],本試驗韋榮球菌屬豐度極顯著降低(P<0.01),而乳酸桿菌豐度極顯著增加(P<0.01),表明瘤胃菌群平衡已經(jīng)紊亂。試驗表明,油脂雖然不是瘤胃酸中毒的原因,但是在日糧中隨著與高淀粉日糧一起添加會增加瘤胃酸中毒的風險。由于本試驗瘤胃豐度變化的菌群數(shù)量很多,部分在瘤胃占菌群總比例較少的菌群沒有一一進行分析,但玉米粉和胡麻油誘導(dǎo)奶牛乳脂下降后,瘤胃的菌群的豐度和平衡已經(jīng)發(fā)生了很大變化,細菌之間的協(xié)同作用以及數(shù)據(jù)還有待進一步整理和發(fā)掘。
3.3?玉米粉與油脂添加對瘤胃生物氫化的影響
反芻動物的乳脂及肌肉脂肪中的順-9-反-11-共軛亞油酸(CLA)的來源之一就是在瘤胃細菌的作用下,亞油酸(C18∶2)被異構(gòu)化為CLA[32]。因此,反芻動物食品中的共軛亞油酸與日糧中不飽和脂肪酸在瘤胃中的氫化程度密切相關(guān)。瘤胃的生物氫化作用開始于微生物對?;视偷闹?,然后再釋放出游離脂肪酸以及甘油。游離的脂肪酸吸附在飼料顆粒之上,另外有部分脂肪酸被吸附在固相食糜上的細菌所吸收[33]。研究表明,丁酸弧菌屬[34]、韋榮球菌屬[35]等都與瘤胃的生物氫化有關(guān),在本試驗中這些菌屬豐度都顯著降低(P<0.05)。玉米粉與油脂誘導(dǎo)抑制了大量氫化菌的豐度,這與楊舒黎等[36]研究一致。
生物氫化涉及的細菌種類極其復(fù)雜,不同細菌之間的協(xié)同作用,同一微生物不同屬間的相互作用非常復(fù)雜,很難具體說明每種菌在瘤胃中的作用,而且目前鑒定出參與瘤胃生物氫化的細菌還不多[37-38],本試驗的結(jié)果還有待進一步驗證。就本試驗結(jié)果來看,玉米粉與油脂組合抑制了瘤胃細菌的生長,降低了部分生物氫化菌的豐度。
4?結(jié)?論
在基本日糧基礎(chǔ)上,添加玉米粉1.5 kg·頭-1·d-1與油脂150 mL·頭-1·d-1,連續(xù)添加15 d可以極顯著降低奶牛的乳脂率,成功誘導(dǎo)奶牛乳脂降低。本試驗條件下,日糧添加玉米粉與油脂對奶牛瘤胃細菌菌群多樣性未產(chǎn)生顯著影響,但菌群結(jié)構(gòu)及豐度發(fā)生了較大改變,產(chǎn)酸菌屬與淀粉利用菌屬增加顯著,部分瘤胃氫化菌屬顯著降低,瘤胃纖維降解菌屬的影響結(jié)果不一,需要進一步研究。
參考文獻:
[1]趙勐, 卜登攀, 張養(yǎng)東, 等. 奶牛乳脂降低綜合征理論及其分子調(diào)節(jié)機制[J].動物營養(yǎng)學(xué)報,2014,26(2):287-294.
ZHAO M,BU D P,ZHANG Y D, et al.Milk fat depression in dairy cows: Theories and molecular regulation mechanism[J].Chinese Journal of Animal Nutrition, 2014,26(2):287-294.(in Chinese)
[2]邊四輩.奶牛低乳脂率的原因及解決方法探討[J].中國奶牛,2018(6):63-67.
BIAN S B. The reasons and solutions of Low-Fat-Concentration milk[J].China Dairy Cattle,2018(6):63-67.(in Chinese)
[3]王建平, 王加啟, 卜登攀. 精料和飽和脂肪酸對奶牛生產(chǎn)性能和乳中脂肪酸組成的影響[J]. 中國糧油學(xué)報, 2015(1):92-96.
WANG J P,WANG J Q,BU D P.Effects of concentrate and supplemental saturated fatty acid on milk production and milk fatty acid profile of dairy cow[J].Journal of the Chinese Cereals and Oils Association, 2015(1):92-96.(in Chinese)
[4]MA L, COOK K L, BAUMAN D E, et al. Short communication: Milk fat depression induced by conjugated linoleic acid and a high-oil and low-fiber diet occurs equally across the day in Holstein cows[J]. Journal of Dairy Science, 2015, 98(3):1851-1855.
[5]FRUTOS P, TORAL P G, HERVS, G. Individual variation of the extent of milk fat depression in dairy ewes fed fish oil: Milk fatty acid profile and mRNA abundance of candidate genes involved in mammary lipogenesis[J]. Journal of Dairy Science, 2017,100(12):1-12.
[6]RAMIREZ RAMIREZ H A, CASTILLO LOPEZ E, HARVATINE K J, et al. Fat and starch as additive risk factors for milk fat depression in dairy diets containing corn dried distillers grains with soluble[J]. Journal of Dairy Science, 2015, 98(3):1903-1914.
[7]BELANCHE A, FUENTE G D L, PINLOCHE E, et al. Effect of diet and absence of protozoa on the rumen microbial community and on the representativeness of bacterial fractions used in the determination of microbial protein synthesis[J]. Journal of Animal Science, 2012, 90(11):3924-3936.
[8]GRUBB J A. Effects of an abrupt change in ration from all roughage to high concentrate upon rumen microbial numbers in sheep[J]. Appl?Microbiol,1975, 30(3):404-412.
[9]HUWS S A, LEE M R F, MUETZEL S M, et al. Forage type and fish oil cause shifts in rumen bacterial diversity[J]. Fems Microbiology Ecology, 2010, 73(2):396-407.
[10]NETO A J, MESSANA J D, GRANJA-SALCEDO Y T, et al. Effect of starch level in supplement with or without oil source on diet and apparent digestibility, rumen fermentation and microbial population of Nellore steers grazing tropical grass[J]. Livestock Science, 2017, 202:171-179.
[11]WANAPAT M, MAPATO C, PILAJUN R, et al. Effects of vegetable oil supplementation on feed intake, rumen fermentation, growth performance, and carcass characteristic of growing swamp buffaloes[J]. Livestock Science, 2011, 135(1):32-37.
[12]WEIMER P J, STEVENSON D M, MERTENS D R. Shifts in bacterial community composition in the rumen of lactating dairy cows under milk fat-depressing conditions[J]. Journal of Dairy Science, 2010, 93(1):265-278.
[13]RICO D E, PRESTON S H, RISSER J M, et al. Rapid changes in key ruminal microbial populations during the induction of and recovery from diet-induced milk fat depression in dairy cows[J]. British Journal of Nutrition, 2015, 114(3):358-367.
[14]朱河水, 王艷玲, 楊國宇,等. 大豆黃酮對奶牛相關(guān)產(chǎn)奶性能的影響[J]. 華北農(nóng)學(xué)報, 2006, 21(6):127-129.
ZHU H S,WANG Y L,YANG G Y, et al.Effect of daidzein on related lactational performance of dairy cows[J]. Acta Agriculturae Boreali-Sinica, 2006, 21(6):127-129.(in Chinese)
[15]SINGH K M, JISHA T K, REDDY B, et al. Microbial profiles of liquid and solid fraction associated biomaterial in buffalo rumen fed green and dry roughage diets by tagged 16S rRNA gene pyrosequencing[J]. Molecular Biology Reports, 2015, 42(1):95-103.
[16]劉榮昌, 李英, 孫鳳莉, 等. 生鮮乳乳糖含量偏高問題的分析與啟示[J]. 中國奶牛, 2014(Z1):42-44.
LIU R C,LI Y,SUN F L, et al.Analysis and enlightenment of the problem of high lactose content in raw milk[J]. China Dairy Cattle,, 2014(Z1):42-44.(in Chinese)
[17]劉峰, 杜瑞平, 高民. 不同粗飼料品質(zhì)(GI)與不同精料給量水平對奶牛生產(chǎn)性能影響的研究[J]. 畜牧與飼料科學(xué), 2012, 33(5-6):13-16.
LIU F,DU R P,GAO M.Effects of different quality of roughage(GI) and different concentrate supply level on the production performance of dairy cows[J].Animal Husbandry and Feed Science, 2012, 33(5-6):13-16.(in Chinese)
[18]RICO D E, HARVATINE K J. Induction of and recovery from milk fat depression occurs progressively in dairy cows switched between diets that differ in fiber and oil concentration[J]. Journal of Dairy Science, 2013, 96(10):6621-6630.
[19]THANH L P, SUKSOMBAT W. Milk Yield, Composition, and Fatty Acid Profile in Dairy Cows Fed a High-concentrate Diet Blended with Oil Mixtures Rich in Polyunsaturated Fatty Acids[J].Asian-Australasian Journal of Animal Sciences, 2015, 28(6):796-806.
[20]STERK A, JOHANSSON B E O, TAWEEL H Z H, et al. Effects of forage type, forage to concentrate ratio, and crushed linseed supplementation on milk fatty acid profile in lactating dairy cows[J]. Journal of Dairy Science, 2011, 94(12):6078-6091.
[21]GAYNOR P J, WALDO D R, CAPUCO A V, et al. Milk fat depression, the glucogenic theory, and trans-C18:1 fatty acids[J]. Journal of Dairy Science, 1995, 78(9):2008-2015.
[22]DHIMAN T R, NAM S H, URE A L. Factors Affecting Conjugated Linoleic Acid Content in Milk and Meat[J]. Critical Reviews in Food Science and Nutrition, 2005, 45(6):463-482.
[23]MAIA M R G, CHAUDHARY L C, FIGUERES L, et al. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen[J]. Antonie van Leeuwenhoek, 2007, 91(4):303-314.
[24]DEVENDRA C, LEWIS D. The interaction between dietary lipids and fibre in the sheep 2.?Digestibility studies[J]. Animal Production, 1974, 19(1):67-76.
[25]HENDERSON C. The effects of fatty acids on pure cultures of rumen bacteria[J]. The Journal of Agricultural Science, 1973, 81(1):107-112.
[26]李旦. 肉牛瘤胃纖維分解菌Real Time PCR定量方法的建立與應(yīng)用[D].烏魯木齊:新疆農(nóng)業(yè)大學(xué), 2007.
LI D. Development of application of a Real Time PCR approach for quantification of rumen cellulytic bacateria of cattle[D].Urumchi: Xinjiang Agricultural University, 2007.(in Chinese)
[27]HENDERSON C. A Study of the Lipase Produced by Anaerovibrio lipolytica, a Rumen Bacterium[J]. Journal of General Microbiology, 1971, 65(1):81-89.
[28]李旦, 王加啟, 卜登攀, 等. 運用Real-time PCR方法研究日糧添加豆油與胡麻油對肉牛瘤胃纖維分解菌數(shù)量的影響[J]. 動物營養(yǎng)學(xué)報, 2008(3):256-260.
LI D,WANG J Q,BU D P, et al.Determination of the effects of soybean oil and linseed oil in diets on the quantities of rumen cellulytic bacteria in beef cattle by Real-time PCR[J]. Chinese Journal of Animal Nutrition, 2008(3):256-260.(in Chinese)
[29]張迪. 慢性瘤胃酸中毒對瘤胃發(fā)酵功能及乳酸代謝菌的影響[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué), 2008.
ZHANG D. Effect of subacute rumen acidosis on rumen fermentation and populations of lactate metabolism bacteria[D].Hohhot: Inner Mongolia Agricultural University,2008.(in Chinese)
[30]KREHBIEL C R, STOCK R A, HEROLD D W, et al. Feeding wet corn gluten feed to reduce subacute acidosis in cattle[J]. Journal of Animal Science, 1995, 73(10):2931.
[31]LETTAT A, NOZIRE, P, SILBERBERG M, et al. Experimental feed induction of ruminal lactic, propionic, or butyric acidosis in sheep1[J]. Journal of Animal Science, 2010, 88(9):3041-3046.
[32]GRIINARI J M, CORL B A, LACY S H. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by delta(9)-desaturase[J]. Journal of Nutrition, 2000, 130(9):2285.
[33]馬濤, 刁其玉. 瘤胃微生物與飼糧脂肪酸間的相互作用[J]. 動物營養(yǎng)學(xué)報,2018,30(5):1611-1618.
MA T,DIAO Q Y.Interaction between ruminal microbes and dietary fatty acids[J]. Chinese Journal of Animal Nutrition, 2018,30(5):1611-1618.(in Chinese)
[34]HENDERSON G, COX F, GANESH S, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range[J]. Scientific Reports, 2015, 5(1):14567.
[35]TORAL P G, BELENGUER A, SHINGFIELD K J, et al. Fatty acid composition and bacterial community changes in the rumen fluid of lactating sheep fed sunflower oil plus incremental levels of marine algae[J]. Journal of Dairy Science, 2012, 95(2):794-806.
[36]楊舒黎. 日糧添加豆油和胡麻油對奶牛瘤胃細菌及發(fā)酵參數(shù)的影響[D]. 北京:中國農(nóng)業(yè)科學(xué)院, 2007.
YANG S L. Effect of soybean oil and linseed oil supplementation on population of ruminal bacteria and fermentation parameters in dairy cows[D].Beijing: Chinese Academy of Agricultural Sciences, 2007.(in Chinese)
[37]姜雅慧, 卜登攀, 楊紅建, 等. 不飽和脂肪酸在瘤胃氫化的微生物學(xué)機制研究進展[J]. 華北農(nóng)學(xué)報, 2015, 30(S1):376-382.
JIANG Y H,BU D P,YANG H J, et al.The advance research of the microbial biohydrogenation mechanism of unsaturated fatty acid in rumen[J]. ?Acta Agriculturae Boreali-Sinica, 2015, 30(S1):376-382.(in Chinese)
[38]周敏, 葉子弘, 蔣林樹. 瘤胃氫化多不飽和脂肪酸的影響因素[J]. 中國農(nóng)學(xué)通報, 2010, 26(8):38-44.
ZHOU M,YE Z H,JIANG L S.Study of the influencing factor of PUFA living things hydrogenation in rumen[J].Chinese Agricultural Science Bulletin, 2010, 26(8):38-44.(in Chinese)
(責任編輯:張?梅)