洪文杰
摘要:本文探索了在初中數(shù)學的概念教學中經(jīng)常遇到的困難和一種可能的解決方法,綜合考慮了問題的背景與解決的策略,結(jié)合了已有的研究成果,得到了一些解決方法。在現(xiàn)在的初中教學中,存在著數(shù)學與生活脫軌的問題,導致部分學生學習數(shù)學的熱情不夠高漲,常常采取消極應對的態(tài)度。本文認為最大的問題在于“啟發(fā)”和“運用”兩個環(huán)節(jié)的缺失。
關(guān)鍵詞:數(shù)學;初中;教育
數(shù)學概念是數(shù)學基礎(chǔ)教育的重中之重,其一,概念乃是初學者涉足數(shù)學領(lǐng)域的最初鑰匙;其二,概念乃是教授學者幾十年的精血凝結(jié),是智慧的結(jié)晶。通過掌握概念不僅僅可以了解概念本身,更重要的是可以了解到專業(yè)概念語言,通過熟悉這種語言,可以熟悉其背后的思維方式,而思維方式乃是重中之重,乃是初學者了解數(shù)學深奧知識的最快途徑,借由這種思維上的形而上的掌握,在熟練運用數(shù)學思維之后,具體問題的分析與解決將游刃有余。
一、背景
不得不說很多初學者在學習之初頗感流暢,在演算之初不覺得有困難,可是往往再深入運用知識的時候遇到困難,這實際上就是因為尚未能夠進入數(shù)學思維范疇之內(nèi),也就是說尚沒有入門。如果始終以一種門外漢的思路去思考數(shù)學,憑借常規(guī)的思維思考著專業(yè)領(lǐng)域的問題,必將導致困難。初中數(shù)學乃是數(shù)學的重中之重的階段:小學時,學生們心智尚年幼,尚不能夠理論化系統(tǒng)化的理解數(shù)學,而僅僅接觸到簡單的計算問題,誠然,這不可或缺;初中卻是孩子們心智走向成熟的關(guān)鍵階段,在這個時間里,學生們開始將自己的所學聯(lián)系到生活。但是,數(shù)學學習往往與生活脫節(jié),這使得很多學生產(chǎn)生了對于數(shù)學學習敷衍隨便的學習態(tài)度,甚至是厭惡情緒,這樣的負面情緒將不利于學生對于概念的掌握,更不要說長遠發(fā)展起來的負面態(tài)度,這種態(tài)度是根深蒂固的,不僅僅會影響初中的學習,還會發(fā)展壯大。故而,經(jīng)常會聽到這樣一種抱怨:“學數(shù)學有什么用???我買菜要用二次函數(shù)嗎?”。“學數(shù)學無用”的抱怨如今廣泛為學生所持,不僅僅是不擅長數(shù)學的后進生,連一些尖子生也將數(shù)學和生活的領(lǐng)域劃分的很開,可是若無法與生活聯(lián)系要怎樣達到人數(shù)合一的最高境界,怎樣達到與人生哲學合二為一的最高境界呢?
二、問題分析中教師對于概念教育的重視度不夠
許多教師對于概念的重視度不夠,一方面,可能自身對于概念的了解便有所不足;另一方面,可能出于對成績,對考試的要求,也就是對于實練的需要,故而放松了對于概念的傳授;第三,效果不理想,教師與學生之間存在隔膜,教師對于學生的理解能力了解不深入,學生對于教師意圖的把握也不夠。對此我認為可以從以下幾點著手解決:(一)、加深對于學生認知模型的建構(gòu)。(二)、設計出更為有效的教學體系。(三)、與生活相關(guān),使得數(shù)學更加有趣更易于理解。
三、具體方法
(一)“啟、展、內(nèi)、抽、用”五位一體教學方法結(jié)構(gòu)。“啟”主要是指學生參與老師創(chuàng)設的教學情境,學生在適度的操作活動中進行過程性的體驗,在情境中體驗概念的形成和發(fā)展過程,讓學生在外部刺激下與前人產(chǎn)生情感的共鳴,積極主動地去感受概念的形成過程,而并不是被動地直接接受教科書上對概念的文字描述。“啟”是啟動學生情感,探究概念形成,這一環(huán)節(jié)必不可少。過次程中,在老師的指導下,學生會體會到自身原有的認知基礎(chǔ)是正確的,在此基礎(chǔ)上,還可以有更多的認知發(fā)展,對后續(xù)教學過程形成一個基礎(chǔ)和鋪墊。這樣,學生能夠很輕松地參與到教師的數(shù)學概念教學活動中去。
例如在“抽樣”的教學過程中,筆者以雞蛋為例,首先拋出雞蛋的好壞如何辨別這一問題,進而對“抽樣”和“普查”這兩個概念的不同之處進行了對比。
(二)展示感知。學生經(jīng)歷了啟動情感的各種認知體驗及認知沖擊后,頭腦中的認知結(jié)構(gòu)已經(jīng)被打亂,這時就需要學生自我主動地將認知結(jié)構(gòu)中各種“情感”進行梳理。教師更要分層次有結(jié)構(gòu)地創(chuàng)設問題和情境,引導學生一步一步建構(gòu)概念。學生在展示感知階段,會依據(jù)教師的引導實現(xiàn)主動建構(gòu)初步的概念形式,體會概念的基本性質(zhì)和基本屬性。
(三)內(nèi)化認知。學生在數(shù)學概念學習過程中,經(jīng)歷了“啟動情感”和“展示感知”這兩個環(huán)節(jié)后,能夠在教師設計的特定情境中,積極主動地建構(gòu)數(shù)學概念,將“啟動情感”作為一個整體進行操作和轉(zhuǎn)換。
(四)抽象概念。學生經(jīng)歷了前三個環(huán)節(jié)(啟動情感、展示感知、內(nèi)化認知)后,已對新概念有一定的認識,已經(jīng)能對新概念形成一定的形式和定義,即此時的學生已對新概念形成了形式化和抽象化的理解,但是對這一新概念的實質(zhì)和含義并不十分熟悉和了解。
(五)聯(lián)系應用。學習數(shù)學概念過程中,弄清楚概念之間的聯(lián)系與區(qū)別是學生較難掌握的重點問題,應用概念理論解決實際問題也是難點之一。在數(shù)學概念教學中,教師要著重注意學生對數(shù)學概念本質(zhì)的掌握情況,讓學生在問題情境中分析和應用新概念,將新概念與學生頭腦中已有的知識進行類比分析,總結(jié)出新概念和與之相關(guān)的數(shù)學知識的聯(lián)系與區(qū)別,在聯(lián)系與區(qū)別中加深對新概念的認識,同時,也加強了對相關(guān)知識的理解,從而建立概念間的連結(jié)系統(tǒng),培養(yǎng)學生分析問題、解決問題的能力。
例如:(一元一次不等式概念教學)教學中:
題目:①x=4②2x+1/3=x/2③1.5x+12=0.5+1。
師:同學們,這幾個是什么式子?
生:一元一次方程。
師:那么一元一次方程的定義又是什么呢?
生:等號的兩邊都是整式。而且只含有一個未知數(shù),未知數(shù)的最高次數(shù)是一次方,這樣的方程叫做一元―次方程。
師:如果我們將式子中的等號換為不等號,那么同學們感覺應該起個什么名字好?(經(jīng)由老師引導,共同總結(jié)出一元一次不等式的概念)
四、總結(jié):
本文綜合考慮了多方研究成果,得到這篇論文,權(quán)且作為拋磚引玉,取笑于大方之家。但是,這個領(lǐng)域確實是當今初中教育中面臨的亟待解決的難題,需要更多的關(guān)注研究,僅僅從教學本身出發(fā)是遠遠不夠的,需要綜合考慮心理學,哲學等多方面知識。
參考文獻:
[1]蔡華.初中數(shù)學概念教學與APOS理論運用[J].科學大眾(科學教育).2011 (02)
[2]張奠宙.關(guān)于中國數(shù)學教育的特色——與國際上相應概念的對照[J].人民教育.2010 (02)
[3]盧蕊,束永祥,王麗君.數(shù)學問題意識、問題提出能力的調(diào)查研究[J].鎮(zhèn)江高專學報.2007 (01)