魯 陳,李呂木,李 姍,衛(wèi)愛(ài)蓮,代張超,閆一博
(安徽農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,安徽合肥 230036)
犢牛腹瀉又稱犢牛拉稀,一年四季均可發(fā)生,是犢牛常發(fā)的一種胃腸疾病。根據(jù)美國(guó)農(nóng)業(yè)部2007年國(guó)家動(dòng)物健康監(jiān)測(cè)系統(tǒng)——美國(guó)乳制品的報(bào)道,斷奶犢牛死亡率57%是由于腹瀉造成(Thomsen等,2012)。犢牛常在出生后2~3 d開(kāi)始發(fā)病,這對(duì)犢牛的發(fā)育、生長(zhǎng)、成活等有很大影響。在挪威每年產(chǎn)犢牛280000頭,但由于犢牛腹瀉死亡導(dǎo)致的經(jīng)濟(jì)損失高達(dá)1000萬(wàn)美元(o/ster。a s等,2007)。目前在國(guó)內(nèi)外,臨床上多采用抗生素治療,常用的抗生素有β-內(nèi)酰胺類(lèi)青霉素類(lèi)和頭孢菌素類(lèi)、氨基糖甙類(lèi)、四環(huán)素類(lèi)、氯霉素類(lèi)和大環(huán)內(nèi)脂類(lèi)等。在科索沃病牛的治療主要是應(yīng)用β-內(nèi)酰胺類(lèi)抗生素和磺胺類(lèi)藥物,但抗生素使用規(guī)則和應(yīng)用得不到正確的監(jiān)測(cè)和記錄(I-braimi等,2015)??股氐尼槍?duì)性不強(qiáng),易產(chǎn)生耐藥性和藥物殘留等問(wèn)題。補(bǔ)充益生菌即可以防治抗生素引起的腹瀉,也能改善乳糖不耐癥降低膽固醇水平,治療克羅恩病、潰瘍性結(jié)腸炎和腸易激綜合征(Reiff等,2010;Mcconnell等,2008)。 益生菌以其無(wú)毒副作用、無(wú)耐藥性、無(wú)殘留、成本低、效果顯著等被養(yǎng)殖界所認(rèn)同,飼喂乳酸菌能夠促進(jìn)母豬健康,并能保護(hù)斷奶仔豬的胃腸道菌群,減少致病菌的危害,促進(jìn)健康 (Kenny等,2011)。研究發(fā)現(xiàn),益生菌(主要包括嗜酸乳桿菌、雙歧桿菌、干酪乳桿菌和L.乳酸菌)可以減少人腹瀉的發(fā)生率,乳糖不耐受性,降低血清膽固醇,刺激免疫系統(tǒng),控制感染(Sharma等,2014)。乳酸菌能有效的對(duì)抗大腸桿菌和沙門(mén)氏菌,是腸道健康的微生物學(xué)指標(biāo),健康的犢牛乳酸桿菌/大腸菌群比例比腹瀉犢牛高。試驗(yàn)發(fā)現(xiàn),母乳中的一些益生菌具有較好的抑菌能力,對(duì)幼兒的健康具有促進(jìn)作用(Jara等,2011)。因此,研究乳酸菌對(duì)養(yǎng)牛業(yè)具有重要的意義。
在正常飼養(yǎng)條件下,犢牛腸道內(nèi)微生物菌群的平衡容易受到破壞而產(chǎn)生腹瀉。剛出生的牛犢,腸道菌群不穩(wěn)定,容易受病原微生物感染引發(fā)腸道疾病,特別是腹瀉,會(huì)降低犢牛消化率,減少對(duì)養(yǎng)分的消化吸收 (Signorini等,2012;Lucas等,2007)。用益生菌飼喂?fàn)倥#貏e是乳酸菌 (Corcionivoschi 等 ,2010;Morrison 等 ,2010;Riddell等,2008)能改善腸道健康,提高消化利用率,提高生產(chǎn)性能(Frizzo 等,2012;Frizzo 等,2011)。
2.1 乳酸菌對(duì)病原菌的抑制作用 益生菌的作用機(jī)制目前雖然存有爭(zhēng)議,但一般來(lái)說(shuō),通過(guò)競(jìng)爭(zhēng)排斥腸道中黏附的病原微生物而發(fā)揮作用(Corcionivoschi 等 ,2010;Morrison 等 ,2010;Riddell等,2008)。通過(guò)調(diào)控腸道菌群的平衡,降低pH,然后經(jīng)乳酸發(fā)酵、產(chǎn)生細(xì)菌素和刺激免疫系統(tǒng)、提高養(yǎng)分利用率,從而影響宿主健康(Salim等,2013)。
乳酸菌發(fā)酵可產(chǎn)生大量的酸性代謝產(chǎn)物,如揮發(fā)性脂肪酸和乳酸等,使腸道內(nèi)pH不斷下降,形成酸性環(huán)境,抑制大腸桿菌和沙門(mén)氏菌的增殖,從而達(dá)到對(duì)有害菌的抑制作用 (Isolauri等,2004)。其中乳酸主要是降低pH來(lái)增強(qiáng)其他酸的活性,乙酸有較強(qiáng)的抑菌范圍,能夠抑制真菌、細(xì)菌以及其他一些有害菌,丙酸對(duì)真菌有很強(qiáng)的抑制作用,乳酸和乙酸的混合物比其單一酸能更好地降低鼠沙門(mén)氏菌的活率(孟祥晨等,2009)。
胞外多糖能夠發(fā)揮抑菌作用,乳酸菌能產(chǎn)生結(jié)構(gòu)復(fù)雜的胞外多糖,構(gòu)成乳酸菌特有的細(xì)胞結(jié)構(gòu)(Buchovec等,2010)。目前發(fā)現(xiàn)產(chǎn)胞外多糖的乳酸菌有嗜酸乳桿菌、嗜熱鏈球菌和德氏乳桿菌保加利亞亞種等。雙歧桿菌和植物乳桿菌產(chǎn)生的胞外多糖在300 μg/mL時(shí)對(duì)大腸桿菌、阪崎腸桿菌、單核細(xì)胞增生李斯特菌、金黃色葡萄球菌、白色念珠菌、枯草芽孢桿菌、沙門(mén)氏菌和志賀氏菌具有抗菌活性(Li等,2014)。胞外多糖對(duì)于益生菌與致病菌的競(jìng)爭(zhēng)性黏附也可起到調(diào)控作用,同時(shí)也能減弱真核細(xì)胞細(xì)菌毒素 (Luksiene等,2011;Luksiene等,2010)。通過(guò)黏附和定植在小腸的結(jié)合位點(diǎn),對(duì)病原菌產(chǎn)生競(jìng)爭(zhēng)性抑制作用(Collado等,2007;Lund 等,2002)。
嗜酸乳桿菌是一個(gè)非常重要的益生菌(Sanders等,2001)。其通過(guò)黏附和定植腸道黏膜而對(duì)健康產(chǎn)生重要作用(Buck等,2005),具有顯著的抗腫瘤活性,降低膽固醇,抑制有害菌,調(diào)節(jié)菌群,維持腸道微生態(tài)平衡和調(diào)節(jié)免疫反應(yīng)的能力(Medellinpena等,2009)。嗜酸乳桿菌可以產(chǎn)生一些代謝產(chǎn)物,具有非特異性抗菌和止瀉作用。此外,嗜酸乳桿菌還能顯著增加細(xì)胞因子、趨化因子和炎癥介質(zhì);能作為益生菌廣泛應(yīng)用于食品和飼料加工業(yè)、醫(yī)藥等領(lǐng)域;并且作為免疫疫苗的載體而具有潛在的應(yīng)用價(jià)值 (Peterson等,2007;Seegers等,2003)。
2.2 乳酸菌對(duì)胃腸道菌群平衡以及糞便菌群的影響 益生菌是活的微生物,試驗(yàn)證明補(bǔ)充天然的胃腸道菌可以促進(jìn)機(jī)體的健康 (Bosch等,2012)。年幼動(dòng)物腸道微生物的平衡是影響健康狀況的重要因素之一,尤其是對(duì)于犢牛,在免疫系統(tǒng)未發(fā)育成熟之前很容易引發(fā)腹瀉和呼吸道疾?。═akeshi等,2009)。越來(lái)越多的研究報(bào)道表明,飼喂動(dòng)物過(guò)程中增加益生菌的數(shù)量,能夠降低病原微生物的危害,從而保護(hù)動(dòng)物腸道的健康,降低腸道疾病和呼吸道疾病的發(fā)生率 (Gaggia等,2010;Corcinivoschi等,2010;Lallès等,2007)。 在集約化的養(yǎng)牛場(chǎng),剛出生的犢??赡苡捎谖改c道中原有的微生物量較少和生長(zhǎng)較弱,腸道微生物的菌群平衡很容易遭到破壞(Frizzo等,2010)。腹瀉會(huì)導(dǎo)致腸道內(nèi)大腸菌群數(shù)的增加,降低乳酸菌和雙歧桿菌數(shù)(Krehbiel等,2003)。在腸道中大腸菌群的增加可能會(huì)產(chǎn)生腐敗物質(zhì)來(lái)傷害機(jī)體(Fujisawa等,2010)。因此,腸道菌群對(duì)宿主的健康和發(fā)育具有非常重要的作用(Ng等,2009)。而哺乳期犢牛飼喂益生菌可以改善腸道健康和促進(jìn)消化,降低腹瀉和呼吸問(wèn)題對(duì)犢牛造成的影響(Timmerman等,2005)。
抗生素已被證明能夠干擾腸道菌群平衡,通過(guò)殺死敏感的腸道菌群來(lái)治療疾病,在抗生素治療后,補(bǔ)充益生菌能夠有效恢復(fù)胃腸道菌群的平衡。多年來(lái),益生菌已被作為一種有效的抗生素替代品來(lái)飼喂動(dòng)物,通過(guò)影響腸道菌群來(lái)對(duì)宿主動(dòng)物產(chǎn)生有利影響 (Kenny等,2011;Gaggia等,2010)。許多研究表明,益生菌對(duì)犢牛生長(zhǎng)性能、營(yíng)養(yǎng)物質(zhì)代謝、腹瀉和腸道菌群都有有利影響(Kawakami等,2012;Aldana 等,2009)。 常用的益生菌有嗜酸乳桿菌和雙歧桿菌,試驗(yàn)證明這些益生菌能增加抗生素治療后腸道有益菌群的菌落(Madden等,2005)。乳酸桿菌對(duì)腸道中的厭氧菌群有扶植作用,對(duì)需氧菌群的生長(zhǎng)則起限制作用,有助于調(diào)整腸道正常菌群之間的相互關(guān)系,維持胃腸道微生態(tài)環(huán)境平衡。對(duì)斷奶前犢牛飼喂含益生元(含有乳酸菌的發(fā)酵產(chǎn)物)日糧發(fā)現(xiàn)糞便中乳酸桿菌和雙歧桿菌的數(shù)量增加,犢牛腹瀉降低(Quezada-Mendoza等,2011)。在犢牛腹瀉期進(jìn)行試驗(yàn)發(fā)現(xiàn),周期性飼喂乳酸菌和乳糖,可以建立一個(gè)更加穩(wěn)定和平衡的胃腸道菌群,降低腹瀉發(fā)病率(Frizzo 等,2011)。
研究用復(fù)合益生菌(乳酸桿菌、枯草芽孢桿菌和釀酒酵母菌等)發(fā)酵無(wú)抗飼料,菌液、水和無(wú)抗全價(jià)飼料按質(zhì)量的5%、33%和60%進(jìn)行混合發(fā)酵,試驗(yàn)結(jié)果發(fā)現(xiàn)在生長(zhǎng)育肥豬日糧中添加20%的無(wú)抗飼料,能顯著提高末重、平均日增重和平均日采食量(P<0.05),顯著增加腸道中乳酸菌的數(shù)量,降低大腸桿菌和沙門(mén)氏菌的數(shù)量(P<0.05),提高生長(zhǎng)育肥豬的生長(zhǎng)性能,改善腸道微生物平衡,增強(qiáng)消化能力(周映華等,2015)。斷奶后仔豬直接飼喂0.1%羅伊氏乳桿菌和植物乳桿菌復(fù)合體能提高氮和總能消化率,增加糞便中乳酸菌的濃度,降低腹瀉評(píng)分、糞便中的有害氣體排放與仔豬大腸桿菌濃度(Zhao等,2015)。封裝的益生菌(乳酸菌)和龍眼汁一起口服,能夠增加人腸道中的雙歧桿菌數(shù)和減少糞大腸菌和梭狀芽孢桿菌數(shù)(Chaikham等,2012)。對(duì)大鼠飼喂乳酸菌和雙歧桿菌,可促進(jìn)甘油三酯(TG)、總膽固醇(TC)和總膽汁酸(TBA)的代謝,降低糞腸桿菌科、腸球菌和大腸桿菌數(shù)(Zhi等,2015)。
3.1 乳酸菌在防治犢牛腹瀉中的應(yīng)用 在犢牛腹瀉導(dǎo)致的高死亡率的農(nóng)場(chǎng)飼喂109cfu/kg的益生菌35 d,能顯著體現(xiàn)出益生菌的優(yōu)勢(shì),提高小牛的生長(zhǎng)、改善小牛的健康和提高存活率(Frizzo等,2008)。犢牛出生后馬上投喂糞鏈球菌和嗜酸乳桿菌,可使其腹瀉發(fā)病率由82%降至35%,病死率由10.2% 降至2.8%(Kim等,2007)。給新生犢??诜匍L(zhǎng)形雙歧桿菌和嗜酸乳桿菌,均可提高增重和飼料轉(zhuǎn)化率,如果將兩者同時(shí)飼喂,可以減少腹瀉的發(fā)生。對(duì)比抗生素治療,飼喂益生菌具有明顯的優(yōu)勢(shì),益生菌具有不損壞有益菌,增強(qiáng)腸道內(nèi)菌群平衡能力,無(wú)耐藥菌的產(chǎn)生等優(yōu)勢(shì)。研究表明直接飼喂益生菌 (包括乳酸菌、芽孢桿菌酵母、釀酒酵母菌和非致病性大腸桿菌)(Nissle 1917)混合產(chǎn)品代替抗生素預(yù)防犢牛腹瀉,能更好的降低腹瀉發(fā)病率,對(duì)群體間的生長(zhǎng)性能不產(chǎn)生明顯的差異,顯示出益生菌能很好的代替抗生素進(jìn)行使用(Kim 等,2011)。
對(duì)168頭新生健康犢牛每天飼喂30 g乳酸菌制劑 (干酪乳桿菌HM-09、植物乳桿菌HM-10)15 d發(fā)現(xiàn),試驗(yàn)組發(fā)生腹瀉的犢牛,用乳酸菌制劑進(jìn)行治療,100 g/(次·頭),2 次/d,腹瀉犢牛無(wú)死亡現(xiàn)象,但對(duì)照組死亡率為3.57%;其中27頭腹瀉犢牛飼喂乳酸菌制劑治療5 d后腹瀉率由100%下降為3.70%,腹瀉治愈率達(dá)到85.19%,表明雙歧桿菌和乳酸桿菌等益生菌能刺激反芻動(dòng)物瘤胃發(fā)育并促進(jìn)瘤胃微生物的生長(zhǎng)和活性,維持瘤胃液pH正?;ㄒ?guó)強(qiáng)等,2014)。對(duì)432頭初生犢牛灌服復(fù)合活菌制劑,試驗(yàn)3個(gè)月發(fā)現(xiàn)試驗(yàn)組犢牛飼喂微生態(tài)制劑腹瀉率為4.8%,成活率為96.4%,試驗(yàn)組腹瀉率比對(duì)照組低6%,成活率提高8.1%。試驗(yàn)發(fā)現(xiàn)在初生犢牛腸道菌群未形成之前飼喂益生菌能夠調(diào)節(jié)腸道菌群平衡,可以促進(jìn)犢牛腸道正常菌群形成,發(fā)揮生物屏障的作用,有效預(yù)防腹瀉的發(fā)生(李春生等,2010)。聯(lián)合飼喂植物乳桿菌和枯草芽孢桿菌能夠降低犢牛的腹瀉持續(xù)時(shí)間,增加糞便中乳酸菌和腸桿菌數(shù)量,試驗(yàn)結(jié)果表明枯草芽孢桿菌可用于調(diào)節(jié)腸道菌群的平衡和預(yù)防小牛腹瀉(Lee等,2012)。
對(duì)12頭犢牛進(jìn)行5個(gè)月的飼喂試驗(yàn),試驗(yàn)發(fā)現(xiàn)乳酸菌(包括嗜酸乳桿菌CBT,乳酸菌素和假鏈狀雙歧桿菌204)能顯著增加犢牛體重,調(diào)節(jié)胃腸道菌群的平衡,對(duì)糞便樣品進(jìn)行檢測(cè)發(fā)現(xiàn)糞便中的致病菌數(shù)降低,體外共培養(yǎng)也發(fā)現(xiàn)能夠抑制病原菌的生長(zhǎng),試驗(yàn)結(jié)果表明乳酸菌能改善犢牛健康降低腹瀉(An等,2011)。試驗(yàn)發(fā)現(xiàn)飼喂含乳酸菌和酵母菌的代乳粉能顯著增加日增重、飼料轉(zhuǎn)化和減少糞便評(píng)分,促進(jìn)生長(zhǎng)和抑制黑白花奶牛的腹瀉(Kawakami等,2012)。
3.2 乳酸菌在抗牛病毒性腹瀉/黏膜病中的應(yīng)用 牛病毒性腹瀉/黏膜?。˙VD/MD)是一種世界性分布的牛傳染病,對(duì)牛肉和奶制品行業(yè)造成巨大的經(jīng)濟(jì)影響(Cowley等,2012)。其是由牛病毒性腹瀉病毒(BVDV)引起的(Wei等,2014)。EO基因是一個(gè)重要的保護(hù)性抗原基因型,其產(chǎn)生的包膜糖蛋白能誘發(fā)抗體發(fā)生中和反應(yīng)。BVDV主要抗原決定簇是包膜蛋白EO,可誘導(dǎo)發(fā)生保護(hù)性免疫應(yīng)答。其基因序列高度穩(wěn)定,這使得其可以成為BVDV的合適抗原來(lái)產(chǎn)生基因工程疫苗和進(jìn)行免疫診斷(Zimmerman等2006;Seegers等,2003)。嗜酸乳桿菌作為一種佐劑具有雙重作用,能顯著增強(qiáng)外源性抗原的免疫原性和作為重組疫苗的細(xì)菌載體 (Peterson等,2007;Zimmerman等,2006)。試驗(yàn)發(fā)現(xiàn),通過(guò)把E0基因連接到pMG36e載體中構(gòu)建重組質(zhì)粒pmg36e-e0,然后通過(guò)電轉(zhuǎn)化改變嗜酸乳桿菌LA-5,SDS-PAGE(十二烷基硫酸鈉聚丙烯酰胺凝膠電泳)結(jié)果表明目的基因通過(guò)pMG36e載體在嗜酸乳桿菌LA-5中能夠高效表達(dá)。蛋白質(zhì)印跡分析發(fā)現(xiàn),利用多克隆抗體對(duì) BVDV和HRP標(biāo)記的抗小鼠IgG試驗(yàn)發(fā)現(xiàn)表達(dá)產(chǎn)物可對(duì)BVDV產(chǎn)生抗體反應(yīng),表明E0基因可作為候選基因在活載體產(chǎn)生疫苗來(lái)發(fā)揮免疫作用(Zhao等,2015)。
重組嗜酸乳桿菌能促進(jìn)腸黏膜下細(xì)胞增殖,巨噬細(xì)胞和漿細(xì)胞浸潤(rùn),增強(qiáng)巨噬細(xì)胞的吞噬能力(Zhang等,2008)。其可以激活單核細(xì)胞并促進(jìn)單核細(xì)胞增殖,刺激T細(xì)胞和NK細(xì)胞增殖、活性和細(xì)胞毒性,產(chǎn)生大量的IL-12和IFN-γ(抗菌免疫的重要細(xì)胞因子)(Shida 等,2011)。腸上皮是腸黏膜屏障的重要組成部分,可參與黏膜免疫。正常菌群定植在腸道黏膜表面,并調(diào)節(jié)腸上皮細(xì)胞的生理功能。研究表明,補(bǔ)充益生菌可以恢復(fù)和維持腸道正常菌群的生理功能,促進(jìn)菌群吸附和調(diào)節(jié)腸上皮細(xì)胞,抑制腸內(nèi)異常的免疫反應(yīng),促進(jìn)腸上皮細(xì)胞分泌促炎性細(xì)胞因子調(diào)節(jié)炎癥反應(yīng)(Dimitonova等,2007)。重組嗜酸乳桿菌可誘導(dǎo)腸黏膜免疫反應(yīng),促進(jìn)腸黏膜分泌SIgA,增強(qiáng)腸黏膜免疫功能(Perdigón等,2001)。
血清IgG是體液免疫的初級(jí)抗體,在動(dòng)物抗感染免疫中起重要作用。E0蛋白是牛病毒性腹瀉病毒的主要結(jié)構(gòu)蛋白,可誘導(dǎo)免疫球蛋白發(fā)生抗體反應(yīng),在誘導(dǎo)抗牛病毒性腹瀉病毒產(chǎn)生免疫反應(yīng)的過(guò)程中發(fā)揮關(guān)鍵作用(Seegers等,2003)。含 BVDV的小鼠接種pmg36e-e0-la-5疫苗,試驗(yàn)發(fā)現(xiàn)接種疫苗的小鼠,成活率達(dá)90%。說(shuō)明pmg36e-e0-la-5疫苗能有效提高小鼠的免疫反應(yīng),降低BVDV對(duì)小鼠的致病性,為后續(xù)重組乳酸菌在牛體內(nèi)試驗(yàn)奠定基礎(chǔ)(Zhao等,2008)。
目前乳酸菌應(yīng)用研究最廣泛,但其他益生菌在犢牛腹瀉的應(yīng)用中也越來(lái)越受到重視。因此,在未來(lái)養(yǎng)牛業(yè)生產(chǎn)上研究開(kāi)發(fā)新品種益生菌制劑是很有必要的,同時(shí)開(kāi)發(fā)益生菌混合菌劑也具有很好的發(fā)展前途,另外,需要對(duì)益生菌抗?fàn)倥8篂a的機(jī)理和代謝途徑進(jìn)一步進(jìn)行研究,同時(shí)對(duì)益生菌的飼喂方式和方法也要進(jìn)行研究開(kāi)發(fā),以保證能最大程度的發(fā)揮益生菌的優(yōu)勢(shì)作用。
[1]李春生.微生態(tài)活菌制劑防治初生犢牛腹瀉的效果試驗(yàn)[J].黑龍江畜牧獸醫(yī),2010,22:109 ~ 110.
[2]孟祥晨,杜鵬,李艾黎.乳酸菌與乳品發(fā)酵劑[M].科學(xué)出版社,2009:138.
[3]姚國(guó)強(qiáng),趙樹(shù)平,高鵬飛,等.乳酸菌微生態(tài)制劑防治犢牛腹瀉應(yīng)用研究[J].中國(guó)奶牛,2014,17:55 ~ 58.
[4]周映華,胡新旭,卞巧,等.無(wú)抗發(fā)酵飼料對(duì)生長(zhǎng)育肥豬生長(zhǎng)性能、腸道菌群和養(yǎng)分表觀消化率的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2015,27(3):870 ~ 877.
[5]Altermann E,Russell W M,Azcarate-Peril M A,et al.Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(11):3906.
[6]Aldana C,Cabra S,Ospina C A,et al.Effect of a Probiotic Com-pound in Rumen Development,Diarrhea Incidence and Weight Gain in Young Holstein Calves[A].World Academy of Science Engineering&Technology[C],2009,57.
[7]An H M,Lee D K,Cha M K,et al.Effects of Lactic Acid Bacteria(LAB)supplement on the growth rate and elimination of enteropathgenic bacteria in calves[J].Biotechnogy&Biotechno-Logical Equipment,2011,25(4):2597 ~ 2603.
[8]Buchovec I,Paskeviciute E,Luksiene Z.Photosensitization-based inactivation of food pathogen Listeria monocytogenes in vitro and on the surface of packaging material[J].Journal of Photochemistry&Photobiology B Biology,2010,99(1):9 ~ 14.
[9]Buck B L,Altermann E,Svingerud T,et al.Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM[J].Applied&Environmental Microbiology,2005,71(12):8344 ~ 8351.
[10]Bosch M,Nart J,Audivert S,et al.Isolation and characterization of probiotic strains for improving oral health[J].Archives of Oral Biology,2012,57(5):539 ~ 549.
[11]Corcionivoschi N,Drinceanu D,Pop I M,et al.The effect of probiotics on animal health [A].Lucrari Stiintifice Zootehnie Si Biotehnologii[C],2010.43.
[12]Collado M C,Meriluoto J,Salminen S.In vitro analysis of probiotic strain combinations to inhibit pathogen adhesion to human intestinal mucus[J].Food Research International,2007,40(5):629 ~ 636.
[13]Chaikham P,Apichartsrangkoon A,Jirarattanarangsri W,et al.Influence of encapsulated probiotics combined with pressurized longan juice on colon microflora and their metabolic activities on the exposure to simulated dynamic gastrointestinal tract[J].Food Research International,2012,49(1):133 ~ 142.
[14]Cowley D J B,Clegg T A,Doherty M L,et al.Bovine viral diarrhoea virus seroprevalence and vaccination usage in dairy and beef herds in the Republic of Ireland[J].Irish Veterinary Journal,2012,65(1):16.
[15]Dimitonova S P,Danova S T,Serkedjieva J P,et al.Antimicrobial activity and protective properties of vaginal lactobacilli from healthy Bulgarian women[J].Anaerobe,2007,13(5 ~ 6):178 ~ 184.
[16]Frizzo L S,Soto L P,Bertozzi E,et al.Intestinal populations of Lactobacilli and coliforms after in vivo Salmonella dublin challenge and their relationship with microbial translocation in calves supplemented with lactic acid bacteria and lactose[J].Fuel&Energy Abstracts,2011,170(1):12 ~ 20.
[17]Frizzo L S,Bertozzi E,Soto L P,et al.The Effect of Supplementation with Three Lactic Acid Bacteria from Bovine Origin on Growth Performance and Health Status of Young Calves[J].Journal of Animal&Veterinary Advances,2012,7(4):400 ~ 408.
[18]Frizzo L S,Soto L P,Zbrun M V,et al.Lactic acid bacteria to improve growth performance in young calves fed milk replacer and spray-dried whey powder[J].Animal Feed Science&Technology,2010,157(3 ~ 4):159 ~ 167.
[19]Fujisawa T,Sadatoshi A,Ohashi Y,et al.Influences of Prebio SupportTM (mixture of fermented products of Lactobacillus gasseri OLL2716 and Propionibacterium freudenreichii ET-3)on the composition and metabolic activity of fecal microbiota in calves[J].Bioscience&Microflora,2010,29(1):41 ~ 45.
[20]Frizzo L S,Soto L P,Bertozzi E,et al.Intestinal populations of Lactobacilli and coliforms after in vivo Salmonella dublin challenge and their relationship with microbial translocation in calves supplemented with lactic acid bacteria and lactose[J].Fuel&Energy Abstracts,2011,170(1):12 ~ 20.
[21]Frizzo LS,Bertozzi E,Soto LP,et al.The Effect of Supplementation with Three Lactic Acid Bacteria from Bovine Origin on Growth Performance and Health Status of Young Calves[J].Journal of Animal and Veterinary Advances,2008,7(4):400 ~ 408.
[22]Gaggìa F,Mattarelli P,Biavati B.Probiotics and prebiotics in animal feeding for safe food production[J].International Journal of Food Microbiology,2010,141(Suppl 1):S15 ~ S28.
[23]Ibraimi Z,Shehi A,Murtezani A,et al.Kosovo’s Public Health Damage from Abusive Use of Antibiotics in Dairy Cattle[J].Materia Socio Medica,2015,27(3):149 ~ 153.
[24]Isolauri E,Salminen S,Ouwehand A C.Microbial-gut interactions in health and disease.Probiotics[J].Best Practice&Research Clinical Gastroenterology,2004,18(2):299 ~ 313.
[25]Jara S,Sánchez M,Vera R,et al.The inhibitory activity of Lactobacillus spp.isolated from breast milk on gastrointestinal pathogenic bacteria of nosocomial origin[J].Anaerobe,2011,17(6):474 ~ 477.
[26]Kenny M,Smidt H,Mengheri E,et al.Probiotics-do they have a role in the pig industry[J].animal,2011,5(3):462.
[27]Krehbiel C R,Rust S R,Zhang G,et al.Bacterial direct-fed microbials in ruminant diets:Performance response and mode of action[J],2003,81(14 suppl 2).
[28]Kawakami S I,Yamada T,Nakanishi N,et al.Feeding of Lactic Acid Bacteria and Yeast Affects Fecal Flora of Holstein Calves[J].Journal of Animal&Veterinary Advances,2012,10(3):269 ~ 271.
[29]Kim P I,Jung M Y,Chang Y H,et al.Probiotic properties of Lactobacillus and Bifidobacterium strains isolated from porcine gastrointestinaltract[J].Applied Microbiologyand Biotechnology,2007,74(5):1103 ~ 1111.
[30]Kim M K,Lee H G,Park J A,et al.Effect of Feeding Directfed Microbial as an Alternative to Antibiotics for the Prophylaxis of Calf Diarrhea in Holstein Calves[J].Asian Australasian Journal of Animal Sciences,2011,24(5):643 ~ 649.
[31]Kawakami S I,Yamada T,Nakanishi N,et al.Feeding of lactic acid bacteria and yeast on growth and diarrhea of Holstein calves[J].Journal of Animal&Veterinary Advances,2012,9 (7):1112~1114.
[32]Lucas A S,Swecker W S,Lindsay D S,et al.The effect of weaning method on coccidial infections in beef calves[J].Veterinary Parasitology,2007,145(3 ~ 4):228 ~ 233.
[33]Li S,Huang R,Shah N P,et al.Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315[J].Journal of Dairy Science,2014,97(12):7334 ~ 7343.
[34]Luksiene Z,Paskeviciute E.Reprint of:Novel approach to decontaminate food-packaging from pathogens in non-thermal and not chemical way:Chlorophyllin-based photosensitization[J].Journal of Food Engineering,2011,106(2):152 ~ 158.
[35]Luksiene Z,Buchovec I,Paskeviciute E.Inactivation of several strains of Listeria monocytogenes attached to the surface of packaging material by Na-Chlorophyllin-based photosensitization[J].Journal of Photochemistry&Photobiology B Biology,2010,101(3):326.
[36]Lund B,Adamsson I,Edlund C.Gastrointestinal transit survival of an Enterococcus faecium probiotic strain administered with or without vancomycin [J].International Journal of Food Microbiology,2002,77(1 ~ 2):109.
[37]Lallès J P,Bosi P,Smidt H,et al.Nutritional management of gut health in pigs around weaning[J].Proceedings of the Nutrition Society,2007,66(2):260.
[38]Lee Y E,Kang I J,Yu E A,et al.Effect of feeding the combination with Lactobacillus plantarum and Bacillus subtilis on fecal microflora and diarrhea incidence of Korean native calves[J].Korean Journal of Veterinary Service,2012,35(4).
[39]Mcconnell E L,F(xiàn)adda H M,Basit A W.Gut instincts:Explorations in intestinal physiology and drug delivery[J].International Journal of Pharmaceutics,2008,364(2):213 ~ 226.
[40]Morrison S J,Dawson S,Carson A F.The effects of mannan oligosaccharide and Streptococcus faecium addition to milk replacer on calf health and performance[J].Livestock Science,2010,131(2 ~3):292 ~ 296.
[41]Medellinpen~a M J,Griffiths M W.Effect of Molecules Secreted by Lactobacillus acidophilus Strain La-5 on Escherichia coli O157:H7 Colonization[J].Applied&Environmental Microbiology,2009,75(4):1165.
[42]Madden J A,Plummer S F,Tang J,et al.Effect of probiotics on preventing disruption of the intestinal microflora following antibiotic therapy:a double-blind,placebo-controlled pilot study[J].International Immunopharmacology,2005,5(6):1091.
[43]Ng S C,Hart A L,Kamm M A,et al.Mechanisms of action of probiotics:recent advances[J].Inflammatory Bowel Diseases,2009,15(2):300 ~ 310.
[44]o/ster。as O,Gjestvang M S,Vatn S,et al.Perinatal death in production animals in the Nordic countries-incidence and costs[J].Acta Veterinaria Scandinavica,2007,49(1):1 ~ 4.
[45]Peterson R E,Klopfenstein T J,Erickson G E,et al.Effect of Lactobacillus acidophilus strain NP51 on Escherichia coil O157:H7 fecal shedding and finishing performance in beef feedlot cattle[J].J Food Prot,2007,70(2):287 ~ 291.
[46]Peterson R E,Klopfenstein T J,Erickson G E,et al.Effect of Lactobacillus acidophilus strain NP51 on Escherichia coil O157:H7 fecal shedding and finishing performance in beef feedlot cattle[J].Journal Food Prot,2007,70(2):287 ~ 291.
[47]Perdigón G,F(xiàn)uller R,Raya R.Lactic acid bacteria and their effect on the immune system.[J].Curr Issues Intest Microbiol,2001,2(1):27 ~ 42.
[48]Quezada-Mendoza V C,Heinrichs A J,Jones C M.The effects of a prebiotic supplement(Prebio Support)on fecal and salivary I-gA in neonatal dairy calves[J].Livestock Science,2011,142(1 ~ 3):222~228.
[49]Reiff C,Kelly D.Inflammatory bowel disease,gut bacteria and probiotic therapy[J].International Journal of Medical Microbiology I-jmm.2010,300(1):25.
[50]Riddell J B,Gallegos A J,Harmon D L,et al.Addition of a Bacillus based probiotic to the diet of preruminant calves:influence on growth,health,and blood parameters[J].Journal of Applied Research in Veterinary Medicine,2008,8(1):78 ~ 85.
[51]Sharma M,Devi M.Probiotics:a comprehensive approach toward health foods[J].Critical Reviews in Food Science and Nutrition,2014,54(4):537 ~ 552.
[52]Signorini M L,Soto L P,Zbrun M V,et al.Impact of probiotic administration on the health and fecal microbiota of young calves:a meta-analysis of randomized controlled trials of lactic acid bacteria.[J].Research in Veterinary Science,2012,93(1):250 ~ 258.
[53]Salim H M,Kang H K,Akter N,et al.Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance,immune response,cecal microbial population,and ileal morphology of broiler chickens[J].Poultry Science,2013,92(8):2084 ~2090.
[54]Sanders M E,Klaenhammer T R.Invited Review:The Scientific Basis of Lactobacillus acidophilus,NCFM Functionality as a Probiotic[J].Journal of Dairy Science,2001,84(2):319.
[55]Seegers J F.Lactobacilli as live vaccine delivery vectors:progress and prospects[J].Trends in Biotechnology,2003,20(12):508 ~ 515.
[56]Shida K,Nanno M,Nagata S.Flexible cytokine production by macrophages and T cells in response to probiotic bacteria:a possible mechanism by which probiotics exert multifunctional immune regulatory activities[J].Gut Microbes,2011,2(2):109 ~ 114.
[57]Thomsen P T,Dahl-Pedersen K,Jensen H E.Necropsy as a means to gain additional information about causes of dairy cow deaths.[J].Journal of Dairy Science,2012,95(10):5798 ~ 5803.
[58]Takeshi T,Ryo I,Takamitsu T,et al.A cell preparation of Enterococcus faecalis strain EC-12 stimulates the luminal immunoglobulin A secretion in juvenile calves[J].Animal Science Journal,2009,80(2):206 ~ 211.
[59]Timmerman H M,Mulder L,Everts H,et al.Health and growth of veal calves fed milk replacers with or without probiotics[J].Journal of Dairy Science,2005,88(6):2154 ~ 2165.
[60]Wei W,Shi X,Wu Y,et al.Immunogenicity of an inactivated Chinese bovine viral diarrhea virus 1a (BVDV 1a)vaccine cross protects from BVDV 1b infection in young calves[J].Veterinary Immunology&Immunopathology,2014,160(3 ~ 4):288 ~ 292.
[61]Zhao P Y,Kim I H.Effect of direct-fed microbial on growth performance,nutrient digestibility,fecal noxious gas emission,fecal microbial flora and diarrhea score in weanling pigs[J].Animal Feed Science&Technology,2015,200(1):86 ~ 92.
[62]Zhi-Min J,Hong-Bo Z,Xue-Hui J,et al.Effects of supplementing lactic acid bacteria on fecalmicrobiota,total cholesterol,triglycerides and bile acids in rats[J].African Journal of Traditional Complementary&Alternative Medicines,2015,12(4):41.
[63]Zimmerman A D,Boots R E,Valli J L,et al.Evaluation of protection against virulent bovine viral diarrhea virus type 2 in calves that had maternal antibodies and were vaccinated with a modifiedlive vaccine[J].Journal of the American Veterinary Medical Association,2006,228(11):1757 ~ 1761.
[64]Zhao Y,Jiang L,Liu T,et al.Construction and immunogenicity of the recombinant Lactobacillus acidophilus pMG36e-E0-LA-5 of bovine viral diarrhea virus[J].Journal of Virological Methods,2015,225:70 ~ 75.
[65]Zhang W,Azevedo M S P,Wen K,et al.Probiotic Lactobacillus acidophilus,enhances the immunogenicity of an oral rotavirus vaccine in gnotobiotic pigs[J].Vaccine,2008,26(29):3655 ~ 3661.