任東妮,王 震,2,劉 楠,涂艷陽(yáng)
(1第四軍醫(yī)大學(xué)唐都醫(yī)院實(shí)驗(yàn)外科,陜西西安710038;2西安交通大學(xué)生命科學(xué)院,陜西西安710049)
膠質(zhì)瘤干細(xì)胞表型維持機(jī)制研究進(jìn)展
任東妮1,王 震1,2,劉 楠1,涂艷陽(yáng)1
(1第四軍醫(yī)大學(xué)唐都醫(yī)院實(shí)驗(yàn)外科,陜西西安710038;2西安交通大學(xué)生命科學(xué)院,陜西西安710049)
腦膠質(zhì)瘤(glioma)是最常見(jiàn)的原發(fā)性腦腫瘤,根據(jù)組織學(xué)標(biāo)準(zhǔn)由世界衛(wèi)生組織(World Health Organization,WHO)按惡性程度的增高依次分為四個(gè)等級(jí)[1].膠質(zhì)母細(xì)胞瘤(glioblastoma, GBM, WHO gradeⅣ)是惡性程度最高,死亡率最高的腫瘤[2].近年來(lái)對(duì)惡性膠質(zhì)瘤的發(fā)病機(jī)制和治療研究取得了一定進(jìn)展,制訂了根治性切除術(shù),術(shù)后予以放療同步并序貫替莫唑胺(temozolomide,TMZ)化療的標(biāo)準(zhǔn)治療方案[3-5].盡管采用了嚴(yán)格的手術(shù)和藥物治療方法,患者的中位生存率仍只有 15~19個(gè)月[2,6].研究發(fā)現(xiàn)GBM中存在一個(gè)神經(jīng)膠質(zhì)瘤干細(xì)胞(glioma stem cells,GSCs)亞群,對(duì)化療和放療具有較強(qiáng)的抗性,表明GSCs可能是GBM治療失敗和高復(fù)發(fā)率的原因[7].GSCs被認(rèn)為是膠質(zhì)母細(xì)胞瘤治療的重要靶標(biāo),殺傷GSCs對(duì)于治療膠質(zhì)母細(xì)胞瘤至關(guān)重要.臨床上,靶向GSCs的策略主要是通過(guò)靶向維持GSCs干性所需的細(xì)胞表面標(biāo)志物和特異性途徑來(lái)直接殺傷GSCs.然而,另一種靶向膠質(zhì)母細(xì)胞瘤的方法漸漸得到認(rèn)可,即通過(guò)改變GSCs與其微環(huán)境相互作用的能力來(lái)特異性殺傷 GSCs[8-9].了解維持 GSCs 干性的分子通路以及與微環(huán)境相互作用的機(jī)制可以為膠質(zhì)瘤的治療提供新的思路.
GSCs具有不同的標(biāo)志物(如CD133,nestin)和分子譜,包括配體、受體、細(xì)胞內(nèi)信號(hào)分子、microRNA以及轉(zhuǎn)錄因子和染色質(zhì)修飾蛋白(表1).盡管這些分子不能絕對(duì)的、單獨(dú)的表征干細(xì)胞表型,但它們對(duì)GSCs分離提供了重要篩選標(biāo)志,對(duì)GSCs干細(xì)胞狀態(tài)和特性的維持發(fā)揮著不可或缺的作用.迄今為止,已經(jīng)鑒定了許多標(biāo)記物和分子對(duì)GSCs具有不同程度的特異性,并且對(duì)GSCs表型具有不同程度的影響.
表1 膠質(zhì)瘤干細(xì)胞標(biāo)志物以及GSCs表型維持相關(guān)分子
1.1 GSCs標(biāo)志分子 GSCs和正常的神經(jīng)干細(xì)胞(neural stem cells,NSCs)具有相似的神經(jīng)干細(xì)胞標(biāo)志物,如 CD133/prominin-1, Sox2 和 Nestin[10-11].過(guò)去十幾年的研究發(fā)現(xiàn)了許多其他的備選標(biāo)志分子,包括 CD44[12], CD49f ( integrin a6)[13], Musashi[14],Nestin[15-16], Nanog[17-19], Oct4[20]和 Sox2[21-22].
CD133(prominin-1)是用于鑒定和分離惡性腦腫瘤中的癌干細(xì)胞的最早的干細(xì)胞表面標(biāo)志物之一.然而,GBM分子研究結(jié)果中有許多CD133相關(guān)爭(zhēng)議.例如,有研究[23]認(rèn)為 GSCs中 CD133表達(dá)水平的變化與腫瘤發(fā)生潛力沒(méi)有直接關(guān)系.研究[24-25]表明,從GBMs分離的CD133-腫瘤細(xì)胞在干細(xì)胞培養(yǎng)條件下也可以穩(wěn)定地培養(yǎng),類似于CD133+細(xì)胞,這些細(xì)胞還顯示出“干細(xì)胞”特性,例如體外的自我更新,不同程度的異種移植物模型中形成可移植腫瘤.進(jìn)一步的表型分析顯示,與可以在培養(yǎng)物中形成浮游球體的CD133+細(xì)胞不同,CD133-細(xì)胞傾向于作為粘附球體生長(zhǎng).這一觀察結(jié)果提示CD133+和CD133-細(xì)胞可能源于不同的 GSCs[26].最近有報(bào)道[27]稱,少量的CD133-細(xì)胞可以產(chǎn)生CD133+細(xì)胞,這表明成球培養(yǎng)系統(tǒng)中,干細(xì)胞分級(jí)可能沒(méi)有體內(nèi)相關(guān)性.然而,對(duì)于CD133生物學(xué)研究仍在持續(xù)增多,因?yàn)樗呀?jīng)被重復(fù)證明是GSCs維持和神經(jīng)球形成所必需的[28],是對(duì)常規(guī)療法的抗性的良好指標(biāo).
1.2 microRNAs 已有研究[29-31]表明,microRNA(miRNA)參與膠質(zhì)瘤的起始、發(fā)展、轉(zhuǎn)移,在GSCs的形成和維持中發(fā)揮重要作用.據(jù)報(bào)道許多miRNA在GBM中異常表達(dá),在膠質(zhì)母細(xì)胞瘤干細(xì)胞中起重要作用.
miR-9/9?,miR-17,miR-10b 和 miR-21 在人成膠質(zhì)瘤細(xì)胞和組織中上調(diào).miR-9/9?和miR-17的抑制導(dǎo)致神經(jīng)球形成的減少,并刺激細(xì)胞分化.干細(xì)胞相關(guān)轉(zhuǎn)錄因子基因 SOX2已被證明是 miR-9?的靶點(diǎn)[32].此外,鈣調(diào)蛋白結(jié)合轉(zhuǎn)錄激活因子 1(CAMTA1)是 miR-9/9?和 miR-17 的靶標(biāo),可作為腫瘤抑制因子[33].據(jù)報(bào)道[34],miR-17 通過(guò)靶向 PTEN促進(jìn)膠質(zhì)母細(xì)胞瘤干性細(xì)胞的產(chǎn)生,PTEN調(diào)節(jié)膠質(zhì)母細(xì)胞瘤干性細(xì)胞中的 PI3K/Akt和 STAT3信號(hào)轉(zhuǎn)導(dǎo)[35].
miR-34a,miR-124,miR-125b 和 miR-137 在 GBM中與正常腦組織相比下調(diào).miR-34a的過(guò)表達(dá)導(dǎo)致膠質(zhì)母細(xì)胞瘤干細(xì)胞分化增加,并抑制膠質(zhì)母細(xì)胞瘤干細(xì)胞惡性增殖[36-37].miR-34a 直接抑制膠質(zhì)母細(xì)胞瘤干細(xì)胞中c-Met,CDK,Notch-1和Notch-2的表達(dá);Notch 是干細(xì)胞維持的關(guān)鍵調(diào)節(jié)因子[38-40],抑制Notch途徑可以降低GSCs的干細(xì)胞特性和放療抵抗性[41].細(xì)胞周期蛋白依賴性激酶(cyclin dependent kinases,CDK)對(duì)于調(diào)節(jié)細(xì)胞周期是必不可少的.CDK4/6形成的復(fù)合物對(duì)G1/S相變至關(guān)重要,CDK6的喪失將導(dǎo)致 G1/S轉(zhuǎn)換時(shí)細(xì)胞周期停滯[42].miR-124通過(guò)靶向SNAI2調(diào)節(jié)膠質(zhì)母細(xì)胞瘤細(xì)胞的干性特征和侵襲性,過(guò)表達(dá)miR-124和敲低SNAI2能夠抑制CD133+細(xì)胞亞群神經(jīng)球的形成,并降低干細(xì)胞標(biāo)記物的表達(dá),如 BMI1,Nanog 和 Nestin[43].據(jù)報(bào)道[44],致癌基因NRAS和PIM3都是miR-124的下游靶點(diǎn).miRNA-137在膠質(zhì)母細(xì)胞瘤中下調(diào),通過(guò)靶向CDK6和RTVP-1抑制膠質(zhì)母細(xì)胞瘤干細(xì)胞的干性[45-46].據(jù)報(bào)道[47],RTVP-1 可以降低 CXCR4 的表達(dá),抑制shh-GLI Nang信號(hào)通路,從而抑制GSCs的自我更新.miR-218的過(guò)表達(dá)導(dǎo)致穩(wěn)定表達(dá)miR-218的膠質(zhì)母細(xì)胞瘤神經(jīng)球的體積顯著減少,膠質(zhì)母細(xì)胞瘤干細(xì)胞的自我更新能力降低.作為miR-218過(guò)表達(dá)的結(jié)果,膠質(zhì)母細(xì)胞瘤神經(jīng)球中的干細(xì)胞標(biāo)志物如 CD133,SOX2,Nestin 和 Bmi1 的表達(dá)均降低[48].miR-218部分通過(guò)阻斷Bmi1相關(guān)途徑調(diào)節(jié)膠質(zhì)瘤干細(xì)胞的干性[49].
GSCs中維持NSCs干性所需的許多信號(hào)通路均上調(diào),增強(qiáng)了GSCs的干性以及異常細(xì)胞的存活,從而導(dǎo)致腫瘤發(fā)生[50-52].Notch, SHH (sonic hedgehog),血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF),STAT3,Wnt和 BMP 信號(hào)通路對(duì)于調(diào)節(jié)GSC自我更新和分化非常重要.
2.1 Notch信號(hào)通路 在NSCs中,Notch信號(hào)調(diào)節(jié)細(xì)胞的增殖、分化、凋亡和細(xì)胞譜系決定[53-55].最近的研究[53]發(fā)現(xiàn)Notch信號(hào)傳導(dǎo)在GSCs中高度活躍,能夠制GSCs分化以及維持干細(xì)胞特性.Notch及其配體如Delta-like-1和Jagged-1的下調(diào)導(dǎo)致GSCs的致癌潛力降低,這表明Notch信號(hào)在GSCs的存活和增殖中具有重要作用[56-57].但 Notch信號(hào)通路參與GSCs維持調(diào)控的具體機(jī)制至今仍不清楚.有研究[12]提示Notch-1激活在GSCs的表型維持和增殖中起到重要作用.Notch-1信號(hào)通路激活 ERK,繼而通過(guò)Shh-Gli-Nanog調(diào)控網(wǎng)絡(luò)促進(jìn)GSCs的自我更新.用小干擾RNA阻斷GSCs的Notch-1表達(dá),GSCs增殖能力明顯下降,體外移植瘤明顯減小,動(dòng)物模型的存活時(shí)間明顯延長(zhǎng)[13].這些都說(shuō)明 Notch-1信號(hào)通路的激活在GSCs的維持中起促進(jìn)作用.在研究 GSCs與其周?chē)芪h(huán)境的關(guān)系中,用GSIs阻斷Notch信號(hào)通路后,膠質(zhì)瘤周?chē)难軆?nèi)皮缺失,GSCs神經(jīng)球生長(zhǎng)明顯受抑制,GSCs數(shù)量減少,功能受損[14],提示腫瘤周?chē)軆?nèi)皮在 Notch信號(hào)通路調(diào)節(jié) GSCs自我更新中起重要作用,而其作用的發(fā)揮是通過(guò)提供Notch配體,激活含有Notch受體的GSCs,促進(jìn)腫瘤血管周?chē)h(huán)境形成,進(jìn)而促進(jìn)GSCs的自我更新和維持[15].至于內(nèi)皮細(xì)胞表達(dá)Notch配體的機(jī)制,可能與GSCs分泌的VEGF促進(jìn)內(nèi)皮表達(dá) Notch配體有關(guān)[16].
2.2 BMPs GSCs中的BMPs在引導(dǎo)星形膠質(zhì)細(xì)胞分化從而抑制GSCs的致瘤性中發(fā)揮重要作用[58].具體來(lái)說(shuō),BMP-2通過(guò)引導(dǎo)星形膠質(zhì)細(xì)胞分化減少GSCs增殖,并通過(guò)HIF-1α的不穩(wěn)定使GSC對(duì)TMZ的敏感性增強(qiáng)[59-60].體內(nèi)攝入 BMP-4能夠抑制腦腫瘤生長(zhǎng),導(dǎo)致死亡率降低[58].BMP拮抗劑 Gremlin1通過(guò)調(diào)節(jié)內(nèi)源性BMP水平來(lái)抑制GSCs的分化,以維持GSC的自我更新和致瘤潛力[61].
2.3 Wnt/β-Catenin β-Catenin 是 GSCs 增殖和分化的關(guān)鍵因素[62].GSCs中Wnt信號(hào)傳導(dǎo)的異?;罨瘜?dǎo)致腫瘤生長(zhǎng)[63].FoxM1/β-Catenin 信號(hào)調(diào)節(jié) c-Myc和其他Wnt靶基因的轉(zhuǎn)錄,導(dǎo)致膠質(zhì)瘤的形成[64-65].此外,Wnt/β-Catenin信號(hào)調(diào)節(jié)PLAGL2的表達(dá)從而抑制 GSCs的分化,保持其干性[66].
2.4 EGFR信號(hào)通路 EGFR信號(hào)通路介導(dǎo)NSCs的增殖、遷移、分化和存活[67].EGFR 通過(guò) β-連環(huán)蛋白的反式激活促進(jìn)GSCs的增殖和腫瘤發(fā)生[68].此外,EGFR的過(guò)表達(dá)增加了GSCs的自我更新能力,從而誘導(dǎo)其致瘤潛能[69-70].
2.5 SHH信號(hào)通路 SHH信號(hào)在NSCs增殖、分化和存活中起關(guān)鍵作用[71].近來(lái),有研究[72]表明,SHH途徑在GSCs中具有高度活性,通過(guò)調(diào)節(jié)干細(xì)胞基因來(lái)維持自我更新并誘導(dǎo)腫瘤發(fā)生.SHH配體在膠質(zhì)母細(xì)胞瘤的神經(jīng)球中表達(dá),將SHH抑制劑環(huán)巴胺作用于膠質(zhì)母細(xì)胞瘤衍生的神經(jīng)球,能夠減少新的神經(jīng)球形成,并且在SHH阻斷后,顱內(nèi)注射膠質(zhì)母細(xì)胞瘤不能在免疫缺陷小鼠體內(nèi)形成腫瘤.抑制SHH信號(hào)能夠降低 GSCs自我更新和體內(nèi)致瘤性[72-73].
2.6 STAT3通路 STAT3通路是通過(guò)上調(diào)TLR9表達(dá)來(lái)維持 GSCs 表型[74-75].Herrmann 等[76]報(bào)道了用CpG配體(CpG-ODN)刺激TLR9激活STAT3途徑信號(hào)能夠促進(jìn)GSCs生長(zhǎng),而沉默 TLR9表達(dá)則抑制GSCs發(fā)展[76].
在所有實(shí)體瘤中,高分級(jí)膠質(zhì)瘤是血管化程度最高的一個(gè).事實(shí)上,“微血管增生”是膠質(zhì)母細(xì)胞瘤的一個(gè)特征.血管網(wǎng)絡(luò)的改變導(dǎo)致血流的紊亂,導(dǎo)致腫瘤組織中氧的供應(yīng)無(wú)法滿足腫瘤的擴(kuò)散,形成低氧或缺氧區(qū),大部分的GSCs存在于這個(gè)區(qū)域[77].
膠質(zhì)瘤干細(xì)胞需要特殊的微環(huán)境來(lái)維持“干性”,包括血管周?chē)偷脱鯀^(qū).這些微環(huán)境對(duì)于提高GSCs的干性,促進(jìn)GSCs的侵襲和轉(zhuǎn)移具有重要作用.實(shí)驗(yàn)研究[78-80]證實(shí),GSCs 富集在腫瘤血管周?chē)奶囟▍^(qū)域和壞死區(qū)域,后者與限制性氧水平相關(guān).因此,GSCs與血管周?chē)錾晕h(huán)境以及缺氧/周?chē)鷫乃佬晕h(huán)境相關(guān),表現(xiàn)出共生關(guān)系.這些微環(huán)境在維持未分化的GSCs的干細(xì)胞狀態(tài)及其體內(nèi)平衡方面發(fā)揮了重要作用.GSCs不僅利用微環(huán)境存活,而且通過(guò)與腫瘤的近端和遠(yuǎn)端的各種組織成分的復(fù)雜相互作用積極形成這些微環(huán)境,從而參與復(fù)雜的雙向互作(圖 1).
圖1 血管周?chē)爸車(chē)鷫乃佬晕h(huán)境模擬圖[81]
3.1 血管周?chē)錾晕h(huán)境 在血管周?chē)鷧^(qū)域,GSCs富集,其中發(fā)現(xiàn)了大量區(qū)域性信號(hào)來(lái)促進(jìn)干細(xì)胞表型[82].GSCs通常位于與毛細(xì)血管并行的內(nèi)皮細(xì)胞(endothelial cells,ECs)附近,特別是在室管膜下層和海馬區(qū)[83-84].這些區(qū)域性信號(hào)包括一些分子、細(xì)胞、細(xì)胞外基質(zhì)等的相互作用已有一些相關(guān)研究.
據(jù)報(bào)道[83],GSCs釋放高水平的促血管生成因子,如VEGF,促使新EC遷移到腫瘤并促進(jìn)血管生成.此外,SHH被認(rèn)為是通過(guò)激活HH信號(hào)通路促進(jìn)GSCs特性獲得的ECs分泌的中樞可溶性因子之一.GSCs顯示出活躍的SHH-GLI1信號(hào)并調(diào)節(jié)GSCs自我更新和膠質(zhì)瘤生長(zhǎng)[73,85].成纖維細(xì)胞生長(zhǎng)因子-2(fibroblast growth factor 2, FGF-2)有助于保持 GSCs的干性.當(dāng)從GSCs細(xì)胞系中敲除FGF-2,導(dǎo)致GSCs分化;當(dāng)細(xì)胞中存在這一生長(zhǎng)因子時(shí),則沒(méi)有觀察到這一點(diǎn)[86].FGF-2在C6膠質(zhì)瘤細(xì)胞中能有效誘導(dǎo)巢蛋白(nestin)的表達(dá),證明其對(duì)神經(jīng)膠質(zhì)瘤細(xì)胞的干性維持具有重要作用[87].FGF-2與EGF的自分泌生產(chǎn)也可能是維持GSCs自我更新潛力的原因[88].靶向FGF-2的治療方法可能有效地殺傷GSCs,因?yàn)樯L(zhǎng)因子對(duì)于維持 GSCs的干細(xì)胞特征很重要[89].骨橋蛋白(osteopontin)來(lái)源于血管周?chē)h(huán)境,通過(guò)激活CD44促進(jìn)GSCs表型,CD44是腫瘤干細(xì)胞(cancer stem cells,CSCs)的標(biāo)志之一.CD44蛋白 C端胞內(nèi)結(jié)構(gòu)域通過(guò)提高缺氧誘導(dǎo)因子-2α(hypoxia inducible factor 2α, HIF-2α)的功能,對(duì)誘導(dǎo) GSCs的特性至關(guān)重要[90].
血管微環(huán)境和GSCs之間的相互作用也涉及趨化因子及其受體.CXCR4是GSCs的生物標(biāo)志物[91],其配體是CXCL12,由ECs和腫瘤微環(huán)境中的免疫細(xì)胞分泌[92],這突出了 CXCL12/CXCR4 軸在血管微環(huán)境中對(duì)于GSCs維持的重要性.
除上述分子外,GSCs可以直接刺激內(nèi)皮細(xì)胞(endothelial cells, ECs)上 Notch 配體表達(dá),ECs來(lái)源的一氧化氮(nitric oxide,NO)可以激活 GSCs中Notch信號(hào)通路和NO/cGMP/PKG信號(hào),從而促進(jìn)干細(xì)胞表型[93-94].
綜上所述,GSCs與血管周?chē)h(huán)境之間存在雙向交互性,血管周?chē)h(huán)境增強(qiáng)了GSCs的干細(xì)胞樣特性,促進(jìn)了這些細(xì)胞的侵襲和轉(zhuǎn)移,使GSCs在治療中幸存.
3.2 缺氧及周?chē)鷫乃佬晕h(huán)境 缺氧促進(jìn)GSCs自我更新、增殖以及致瘤性,并誘導(dǎo)非膠質(zhì)瘤干細(xì)胞獲取干細(xì)胞特性[95].缺氧刺激缺氧誘導(dǎo)因子(hypoxiainducible factor,HIF)家族的表達(dá),導(dǎo)致促血管生成生長(zhǎng)因子的產(chǎn)生[83].因此,研究[96]認(rèn)為,缺氧微環(huán)境在GSCs的維持和擴(kuò)增中具有關(guān)鍵作用.Li等[80]首先報(bào)道了HIF通路參與GSCs調(diào)節(jié).使用異種移植膠質(zhì)瘤起始細(xì)胞,通過(guò)體外神經(jīng)球形成測(cè)定和CD133表達(dá),觀察到在缺氧環(huán)境下干細(xì)胞活性的顯著增強(qiáng).當(dāng)HIF-1α或HIF-2α被shRNA沉默時(shí),在正常氧和缺氧環(huán)境下的干細(xì)胞活性降低.考慮到HIF-2α mRNA水平與神經(jīng)膠質(zhì)瘤活動(dòng)、進(jìn)展和預(yù)后相關(guān),強(qiáng)調(diào)HIF-2α對(duì)膠質(zhì)瘤干細(xì)胞活性至關(guān)重要.由于HIF-1α蛋白水平可能受到轉(zhuǎn)錄后調(diào)控,進(jìn)而導(dǎo)致HIF-1α mRNA水平與干細(xì)胞活性之間缺乏相關(guān)性[97].
在人膠質(zhì)母細(xì)胞瘤活檢中發(fā)現(xiàn)GSCs在周?chē)鷫乃绤^(qū)富集.GSCs具有較低的氧氣張力和激活的HIF-1α 和 HIF-2α[98].在體外培養(yǎng)中,缺氧情況下GSCs中的HIF-1α和HIF-2α上調(diào).HIF-2α直接參與促進(jìn)GSCs表型,而HIF-1α似乎在GSCs維持中不是至關(guān)重要的.此外,HIF-1α在GSCs和非GSCs細(xì)胞中均表達(dá),而 HIF-2α 在 GSCs中特異性表達(dá)[80,98].值得注意的是,HIF-2α能夠特異性調(diào)節(jié)干細(xì)胞維持的信號(hào)通路的激活[99].
血管退化加劇了微環(huán)境缺氧,被認(rèn)為是膠質(zhì)瘤侵襲性提高的重要原因[100].此外,缺氧導(dǎo)致GSCs的富集,使其具有更高侵襲性表型.因此,在探索新的抗血管生成策略時(shí),應(yīng)考慮在不加重缺氧前提下如何減少過(guò)量血管.HIF-1α誘導(dǎo)的Notch通路的激活對(duì)缺氧介導(dǎo)的GSCs維持至關(guān)重要.HIF-1α的消耗或Notch信號(hào)的失活部分抑制缺氧介導(dǎo)的GSCs維持[101].
3.3 免疫微環(huán)境 研究[96]表明GSCs與免疫細(xì)胞有直接相互作用.腫瘤相關(guān)巨噬細(xì)胞(tumor-associated macrophages, TAM)主要位于微血管周?chē)?02]和缺氧區(qū)[103]的 CD133+GSC 附近,表明 GSCs和 TAM 之間有直接相互作用.在 GSCs的缺氧微環(huán)境中發(fā)現(xiàn)RAGE,COX2 和 NF-κB 等促炎基因的表達(dá)增強(qiáng)[104].與已分化的腫瘤細(xì)胞相比,GSCs顯示較強(qiáng)的趨化作用活性以及募集TAMs能力,該過(guò)程由趨化因子和生長(zhǎng)因子介導(dǎo),包括VEGF,神經(jīng)絲氨酸,SDF1和可溶性集落刺激因子1(sCSF-1).免疫細(xì)胞產(chǎn)生的分子/細(xì)胞因子如 TGFβ,VEGF,SDF1,bFGF和 NO 已被證明可以維持和促進(jìn)GSCs[95],推測(cè)特異性炎性細(xì)胞的原促癌功能是通過(guò)直接刺激GSCs進(jìn)行調(diào)控的.雖然上述分子證明了GSCs在免疫細(xì)胞調(diào)控中的重要作用,但免疫細(xì)胞對(duì)GSC維持的影響仍知之甚少.
GSCs亞群最初只是構(gòu)成腫瘤的少部分,但這些細(xì)胞自我更新,并對(duì)放療和化療具有抵抗性,使得它們能夠持續(xù)存在,引起治療后復(fù)發(fā).GSCs表達(dá)干性標(biāo)志物CD133、nestin以及受一系列分子如miRNA調(diào)控,激活notch、Wnt、EGFR等信號(hào)通路,并與周?chē)錾?、缺氧周?chē)鷫乃牢h(huán)境相互作用,是其維持干細(xì)胞特性,抑制分化,增強(qiáng)自我更新以及放化療抵抗性和致瘤性的機(jī)制,為靶向GSCs治療膠質(zhì)瘤,減少?gòu)?fù)發(fā)提供新的靶點(diǎn)和思路.新型治療方法應(yīng)該破壞GSCs的保護(hù)性微環(huán)境、血管周?chē)?、缺氧和免疫逃逸,以改善甚至改變目前?duì)膠質(zhì)瘤的診斷和治療.因此,GSCs微環(huán)境的有效控制可作為癌癥傳統(tǒng)治療方法的補(bǔ)充.
[1]Gladson CL, Prayson RA, Liu WM.The pathobiology of glioma tumors[J].Annu Rev Pathol,2010,5:33-50.
[2]Linz U.Commentary on Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phaseⅢ study:5-year analysis of the EORTC-NCIC trial(Lancet Oncol.2009; 10: 459-466)[J].Cancer,2010,116(8):1844-1846.
[3]Walker MD, Green SB, Byar DP, et al.Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery[J].N Engl J Med,1980,303(23):1323-1329.
[4]DeAngelis LM.Brain tumors[J].N Engl J Med,2001,344(2):114-123.
[5]Oike T, Suzuki Y, Sugawara K, et al.Radiotherapy plus concomitant adjuvant temozolomide for glioblastoma:Japanese mono-institutional results[J].PLoS One,2013,8(11):e78943.
[6]Grossman SA,Batara JF.Current management of glioblastoma multiforme[J].Semin Oncol,2004,31(5):635-644.
[7]Bao S, Wu Q, Mclendon RE, et al.Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J].Nature,2006,444(7120):756-760.
[8]Liebelt BD, Shingu T, Zhou X, et al.Glioma stem cells: signaling,microenvironment, and therapy[J].Stem Cells Int,2016,2016(18):7849890.
[9]Codrici E, Enciu AM, Popescu ID, et al.Glioma stem cells and their microenvironments: providers of challenging therapeutic targets[J].Stem Cells International,2016,2016:1-20.
[10]Singh SK, Clarke ID, Hide T, et al.Cancer stem cells in nervous system tumors[J].Oncogene,2004,23(43):7267-7273.
[11]Gangemi RM, Griffero F,Marubbi D,et al.SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity[J].Stem Cells,2009,27(1):40-48.
[12]Anido J, Sáez-Borderías A, Gonzàlez-Juncà A, et al.TGF-β receptor inhibitors target the CD44 high/Id1 high, glioma-initiating cell population in human glioblastoma[J].Cancer Cell,2010,18(6):655-668.
[13]Lathia JD,Gallagher J,Heddleston JM,et al.Integrin alpha 6 regulates glioblastoma stem cells[J].Cell Stem Cell,2010,6(5):421-432.
[14]Thon N, Damianoff K, Hegermann J, et al.Presence of pluripotent CD133+, cells correlates with malignancy of gliomas[J].Mol Cell Neurosci,2010,43(1):51-59.
[15]Bexell D, Gunnarsson S, Siesj? P, et al.CD133+ and nestin+ tumor-initiating cells dominate in N29 and N32 experimental gliomas[J].Inter J Cancer,2009,125(1):15-22.
[16]Zhang M, Song T, Yang L, et al.Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients[J].J Exp Clin Cancer Res,2008,27:85.
[17]Guo Y, Liu S, Wang P, et al.Expression profile of embryonic stem cell-associated genes Oct4, Sox2 and Nanog in human gliomas[J].Histopathology,2011,59(4):763-775.
[18]Mathieu J, Zhang Z, Zhou W, et al.HIF induces human embryonic stem cell markers in cancer cells[J].Cancer Res,2011,71(13):4640-4652.
[19]Niu CS, Li DX, Liu YH, et al.Expression of NANOG in human gliomas and its relationship with undifferentiated glioma cells[J].Oncol Rep,2011,26(3):593-601.
[20]Ikushima H, Todo T, Ino Y, et al.Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein[J].J Biol Chem,2011,286(48):41434-41441.
[21]Ge Y, Zhou F, Chen H, et al.Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells[J].Biochem Biophys Res Commun,2010,397(4):711-717.
[22]H?gerstrand D, He X, Bradic Lindh M, et al.Identification of a SOX2-dependent subset of tumor-and sphere-forming glioblastoma cells with a distinct tyrosine kinase inhibitor sensitivity profile[J].Neuro Oncol,2011,13(11):1178-1191.
[23]Gambelli F, Sasdelli F, Manini I, et al.Identification of cancer stem cells from human glioblastomas:growth and differentiation capabilities and CD133/prominin-1 expression [ J].Cell Biol Int,2012,36(1):29-38.
[24]Beier D, Hau P, Proescholdt M, et al.CD133(+) and CD133(-)glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles[J].Cancer Res,2007,67(9):4010-4015.
[25]Joo KM,Shi YK,Jun X,et al.Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas[J].Lab Invest,2008,88(8):808-815.
[26]Yang T, Rycaj K.Targeted therapy against cancer stem cells[J].Oncol Lett,2015,10(1):27-33.
[27]Chen R,Nishimura MC, Bumbaca SM,et al.A hierarchy of self-renewing tumor-initiating cell types in glioblastoma[J].Cancer Cell,2010,17(4):362-375.
[28]Brescia P, Ortensi B, Fornasari L, et al.CD133 is essential for glioblastoma stem cell maintenance[J].Stem Cells,2013,31(5):857-869.
[29]Huang Z, Cheng L, Guryanova OA, et al.Cancer stem cells in glioblastoma--molecular signaling and therapeutic targeting[J].Protein Cell,2010,1(7):638-655.
[30]Zhang Y,Dutta A,Abounader R.The role of microRNAs in glioma initiation and progression[J].Front Biosci(Landmank Ed),2012,17:700-712.
[31]Wang W, Dai LX, Zhang S, et al.Regulation of epidermal growth factor receptor signaling by plasmid-based microRNA-7 inhibits human malignant gliomas growth and metastasis in vivo[J].Neoplasma,2013,60(3):274-283.
[32]Jeon HM,Sohn YW,Oh SY,et al.ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9?-mediated suppression of SOX2[J].Cancer Res,2011,71(9):3410-3421.
[33]Schraivogel D, Weinmann L, Beier D, et al.CAMTA1 is a novel tumour suppressor regulated by miR-9/9?in glioblastoma stem cells[J].Embo J,2011,30(20):4309-4322.
[34]Li H, Yang BB.Stress response of glioblastoma cells mediated by miR-17-5p targeting PTEN and the passenger strand miR-17-3p targeting MDM2[J].Oncotarget,2013,3(12):1653-1668.
[35]Moon SH, Kim DK, Cha Y, et al.PI3K/Akt and Stat3 signaling regulated by PTEN control of the cancer, stem cell population,proliferation and senescence in a glioblastoma cell line[J].Inter J Oncol,2013,42(3):921-928.
[36]Li Y, Guessous F,Zhang Y,et al.MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes[J].Cancer Res,2009,69(19):7569-7576.
[37]Guessous F, Zhang Y, Kofman A, et al.microRNA-34a is tumor suppressive in brain tumors and glioma stem cells[J].Cell Cycle,2010,9(6):1031-1036.
[38]Fan X, Khaki L, Zhu TS, et al.NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts[J].Stem Cells,2010,28(1):5-16.
[39]Zhen Y, Zhao S, Li Q, et al.Arsenic trioxide-mediated Notch pathway inhibition depletes the cancer stem-like cell population in gliomas[J].Cancer Lett,2010,292(1):64-72.
[40]Fan X,Matsui W,Khaki L,et al.Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors[J].Cancer Res,2006,66(15):7445-7452.
[41]Wang J, Wakeman TP, Lathia JD, et al.Notch promotes radioresistance of glioma stem cells[J].Stem cells,2010,28(1):17-28.
[42]Chen SM, Chen HC, Chen SJ, et al.MicroRNA-495 inhibits proliferation of glioblastoma multiforme cells by downregulating cyclin-dependent kinase 6[J].World J Surg Oncol,2013,11:87.
[43]Xia H, Cheung WK, Ng SS, et al.Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells[J].J Biol Chem,2012,287(13):9962-9971.
[44]Sun L, Yan W, Wang Y, et al.MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10[J].Brain Res,2011,1389:9-18.
[45]Bier A,Giladi N,Kronfeld N,et al.MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1[J].Oncotarget,2013,4(5):665-676.
[46]Silber J, Lim DA, Petritsch C, et al.miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells[J].BMC Med,2008,6:14.
[47]Fareh M,Turchi L,Virolle V,et al.The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network [ J].Cell Death Differ, 2012,19(2):232-244.
[48]Tu Y, Gao X, Li G, et al.MicroRNA-218 inhibits glioma invasion,migration, proliferation, and cancer stem-like cell self-renewal by targeting the polycomb group gene Bmi1[J].Cancer Res,2013,73(19):6046-6055.
[49]Gao X,Jin W.The emerging role of tumor-suppressive microRNA-218 in targeting glioblastoma stemness[J].Cancer Lett,2014,353(1):25-31.
[50]Hemmati HD, Nakano I, Lazareff JA, et al.Cancerous stem cells can arise from pediatric brain tumors[J].Pro Natl Acad Sci U S A,2003,100(25):15178-15183.
[51]Rich JN, Eyler CE.Cancer stem cells in brain tumor biology[J].Cold Spring Harb Symp Quant Biol,2008,73:411-420.
[52]Vescovi AL, Galli R, Reynolds BA.Brain tumour stem cells[J].Nat Rev Cancer,2006,6(6):425-436.
[53]Artavanis-Tsakonas S, Rand MD, Lake RJ.Notch signaling: cell fate control and signal integration in development[J].Science,1999,284(5415):770-776.
[54]Beatus P, Lendahl U.Notch and neurogenesis[J].J Neurosci Res,1998,54(2):125-136.
[55]Lasky JL, Wu H.Notch signaling, brain development, and human disease[J].Pediatr Res,2005,57(5 Pt 2):104R-109R.
[56]Kanamori M,Kawaguchi T,Nigro J M,et al.Contribution of Notch signaling activation to human glioblastoma multiforme[J].J Neurosurg,2007,106(3):417-427.
[57]Purow BW,Haque RM,Noel MW,et al.Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation[J].Cancer Res,2005,65(6):2353-2363.
[58]Piccirillo SG, Reynolds BA, Zanetti N, et al.Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells[J].Nature,2006,444(7120):761-765.
[59]Pistollato F, Chen HL, Rood BR, et al.Hypoxia and HIF-1α repress the differentiative effects of BMPs in high-grade glioma[J].Stem cells,2009,27(1):7-17.
[60]Persano L, Pistollato F, Rampazzo E, et al.BMP2 sensitizes glioblastoma stem-like cells to Temozolomide by affecting HIF-1α stability and MGMT expression[J].Cell Death Dis,2012,3:e412.
[61]Yan K, Wu Q, Yan DH, et al.Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy[J].Genes Dev,2014,28(10):1085-1100.
[62]Atkins RJ, Dimou J, Paradiso L, et al.Regulation of glycogen synthase kinase-3 beta (GSK-3β) by the Akt pathway in gliomas[J].J Clin Neurosci,2012,19(11):1558-1563.
[63]Hatten ME, Roussel MF.Development and cancer of the cerebellum[J].Trends Neurosci,2011,34(3):134-142.
[64]Bowman A, Nusse R.Location, location, location: FoxM1 mediates β-catenin nuclear translocation and promotes glioma tumorigenesis[J].Cancer Cell,2011,20(4):415-416.
[65]Zhang N, Wei P, Gong A, et al.FoxM1 promotes β-catenin nuclear localization and controls wnt target-gene expression and glioma tumorigenesis[J].Cancer Cell,2011,20(4):427-442.
[66]Zheng H, Ying H, Wiedemeyer R, et al.PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas[J].Cancer Cell,2010,17(5):497-509.
[67]Ayuso-Sacido A, Moliterno JA, Kratovac S, et al.Activated EGFR signaling increases proliferation, survival, and migration and blocks neuronal differentiation in post-natal neural stem cells[J].J Neurooncology,2010,97(3):323-337.
[68]Yang W, Xia Y, Ji H, et al.Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation[J].Nature,2011,480(7375):118-122.
[69]Ayuso-Sacido A, Graham C, Greenfield JP, et al.The duality of epidermal growth factor receptor(EGFR) signaling and neural stem cell phenotype: cell enhancer or cell transformer[J].Curr Stem Cell Res Ther,2006,1(3):387-394.
[70]Sun Y, Goderie SK, Temple S.Asymmetric distribution of EGFR receptor during mitosis generates diverse CNS progenitor cells[J].Neuron,2005,45(6):873-886.
[71]Agarwala S,Sanders TA,Ragsdale CW.Sonic Hedgehog Control of Size and Shape in Midbrain Pattern Formation[J].Science,2001,291(5511):2147-2150.
[72]Bar EE, Chaudhry A, Lin A, et al.Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma[J].Stem Cells,2007,25(10):2524-2533.
[73]Clement V, Sanchez P, de Tribolet N, et al.HEDGEHOG-GLI1 signaling regulates human glioma growth,cancer stem cell self-renewal, and tumorigenicity[J].Curr Biol,2007,17(2):165-172.
[74]Guryanova OA, Wu Q, Cheng L, et al.Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3[J].Cancer Cell,2011,19(4):498-511.
[75]Kortylewski M,Kujawski M,Herrmann A,et al.Toll-like receptor 9 activation of signal transducer and activator of transcription 3 constrains its agonist-based immunotherapy[J].Cancer Res,2009,69(6):2497-2505.
[76]Herrmann A, Cherryholmes G, Schroeder A, et al.TLR9 is critical for glioma stem cell maintenance and targeting[J].Cancer Res,2014,74(18):5218-5228.
[77]Fidoamore A, Cristiano L, Antonosante A, et al.Glioblastoma stem cells microenvironment:the paracrine roles of the niche in drug and radioresistance[J].Stem Cells Int,2016,2016:6809105.
[78]Lathia JD, Gallagher J, Myers JT, et al.Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells[J].PloS One,2011,6(9):e24807.
[79]Calabrese C,Poppleton H,Kocak M,et al.A perivascular niche for brain tumor stem cells[J].Cancer Cell,2007,11(1):69-82.
[80]Li Z,Bao S,Wu Q,et al.Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells[J].Cancer Cell,2009,15(6):501-513.
[81]Mack SC, Hubert CG, Miller TE, et al.An epigenetic gateway to brain tumor cell identity[J].Nat Neurosci,2016,19(1):10-19.
[82]Christensen K, Schr?der HD, Kristensen BW.CD133+ niches and single cells in glioblastoma have different phenotypes[J].J Neurooncology,2011,104(1):129-143.
[83]Jain RK, Tomaso ED, Dan GD, et al.Angiogenesis in brain tumours[J].Nat Rev Neurosci,2007,8(8):610-622.
[84]Carmeliet P, Jain RK.Angiogenesis in cancer and other diseases[J].Nature,2000,407(6801):249-257.
[85]Ulasov IV, Nandi S,Dey M,et al.Inhibition of sonic hedgehog and notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy[J].Mol Med,2011,17(1-2):103-112.
[86]Pollard SM,Yoshikawa K, Clarke ID,et al.Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens[J].Cell Stem Cell,2009,4(6):568-580.
[87]Chang KW, Huang YL, Wong ZR, et al.Fibroblast growth factor-2 up-regulates the expression of nestin through the Ras-Raf-ERK-Sp1 signaling axis in C6 glioma cells[J].Biochem Biophys Res Commun,2013,434(4):854-860.
[88]Li G, Chen Z, Hu YD, et al.Autocrine factors sustain glioblastoma stem cell self-renewal[J].Oncology Rep,2009,21(2):419-424.
[89]Haley EM,Kim Y.The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture[J].Cancer Lett,2013,346(1):1-5.
[90]Pietras A, Katz AM, Ekstr?m EJ, et al.Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth[J].Cell Stem Cell,2014,14(3):357-369.
[91]Zheng X, Xie Q, Li S, et al.CXCR4-positive subset of glioma is enriched for cancer stem cells[J].Oncol Res,2011,19(12):555-561.
[92]Würth R, Bajetto A, Harrison JK, et al.CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment[J].Front Cell Neurosci,2014,8:144.
[93]Charles N, Ozawa T, Squatrito M, et al.Perivascular nitric oxide activates notch signaling and promotes stem-like character in pdgfinduced glioma cells[J].Cell Stem Cell,2010,6(2):141-152.
[94]Eyler CE, Wu Q, Yan K, et al.Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2[J].Cell,2011,146(1):53-66.
[95]Heddleston JM, Li Z, Mclendon RE, et al.The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype[J].Cell Cycle,2009,8(20):3274-3284.
[96]Filatova A, Acker T, Garvalov BK.The cancer stem cell niche(s):the crosstalk between glioma stem cells and their microenvironment[J].Biochim Biophys Acta,2013,1830(2):2496-2508.
[97]Peng G,Liu Y.Hypoxia-inducible factors in cancer stem cells and inflammation[J].Trends Pharmacol Sci,2015,36(6):374-383.
[98]Yang L, Lin C, Wang L, et al.Hypoxia and hypoxia inducible factors in glioblastoma multiforme progression and therapeutic implications[J].Exp Cell Res,2012,318(19):2417-2426.
[99]Holmquistmengelbier L, Fredlund E, L?fstedt T, et al.Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype[J].Cancer Cell,2006,10(5):413-423.
[100]Mackey TK, Cuomo R, Guerra C, et al.After counterfeit Avastin?--what have we learned and what can be done[J].Nat Rev Clin Oncol,2015,12(5):302-308.
[101]Qiang L, Wu T, Zhang HW, et al.HIF-1α is critical for hypoxiamediated maintenance of glioblastoma stem cells by activating Notch signaling pathway[J].Cell Death Differ,2012,19(2):284-294.
[102]Yi L, Xiao H, Xu M, et al.Glioma-initiating cells: A predominant role in microglia/macrophages tropism to glioma[J].J Neuroimmunol,2011,232(1-2):75-82.
[103]Wang SC, Hong JH, Hsueh C, et al.Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model[J].Lab Invest,2012,92(1):151-162.
[104]Tafani M,Di Vito M,F(xiàn)rati A,et al.Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma[J].J Neuroinflammation,2011,8:32.
Advances in phenotypic maintenance of glioma stem cells
REN Dong-Ni1, WANG Zhen1,2, LIU Nan1, TU Yan-Yang11Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China;2Department of Biology, Xi'an Jiaotong University, Xi'an 710049, China
Glioma stem cells (GSCs) have the characteristics of self-renewal, the formation of neurospheres, the expression of stem cell markers, multi-directional differentiation, higher invasion,radiotherapy and chemotherapy resistance,and these characteristics are considered to be the main cause of glioma recurrence.As a relevant target for glioblastoma therapy,the elimination of GSCs is crucial in treating glioblastoma.The strategy to target GSCs therapeutically is mainly focused on the direct ablation of GSCs by targeting cell surface markers and specific pathways that are required for maintaining GSCs stemness.However, it has been increasingly acknowledged that another way to specifically target GSCs is to alter the ability of GSCs to interact with their microenvironments.GSCs exist in specific niches (perivascular/proliferative niche and hypoxic/perinecrotic niche) that play a role in enhancing the stem-like features of GSCs,promoting invasion and metastasis of GSCs, and even making GSCs survive.Recognition of these mechanisms has opened doors for targeting GSCs.
glioma stem cells; Notch signaling; stemness markers; hypoxic niche; perivascular niche
膠質(zhì)瘤干細(xì)胞(GSCs)具有自我更新、形成神經(jīng)球、表達(dá)干細(xì)胞標(biāo)志物、多向分化、較高侵襲力、放化療抵抗等特性,這些特性被認(rèn)為是膠質(zhì)瘤復(fù)發(fā)的主要因素.GSCs作為膠質(zhì)瘤治療的重要靶標(biāo),主要是通過(guò)抑制維持GSC干性所需的細(xì)胞表面標(biāo)志物的表達(dá)以及阻斷相關(guān)特異性分子通路,從而減少GSCs增殖,促進(jìn)其分化,降低其致瘤性來(lái)殺傷GSCs.近年來(lái),GSCs與其所處的血管周?chē)錾晕h(huán)境以及缺氧/周?chē)鷫乃佬晕h(huán)境的相互作用逐漸被關(guān)注.研究發(fā)現(xiàn)血管周?chē)h(huán)境及壞死周?chē)毖鯀^(qū)域中,存在一些分子和細(xì)胞,通過(guò)分子信號(hào)轉(zhuǎn)導(dǎo)機(jī)制,增強(qiáng)GSCs的干細(xì)胞樣特性,促進(jìn)了這些細(xì)胞的侵襲和轉(zhuǎn)移,使GSCs在治療中幸存.因此深入了解這一機(jī)制,破壞這些微環(huán)境,尋找新的靶點(diǎn),可以為膠質(zhì)瘤的治療開(kāi)辟一條新的路徑.
膠質(zhì)瘤干細(xì)胞;Notch信號(hào);干性標(biāo)記物;缺氧微環(huán)境;血管微環(huán)境
R739.41
A
2095-6894(2017)12-57-07
2017-05-05;接受日期:2017-05-18
國(guó)家自然科學(xué)基金(81572983,81272419);陜西省社會(huì)發(fā)展科技攻關(guān)項(xiàng)目(2015SF027);唐都醫(yī)院創(chuàng)新發(fā)展基金資助項(xiàng)目(2016JCYJ013)
任東妮.碩士.研究方向:膠質(zhì)瘤治療.E-mail:rendongni123@ 163.com
涂艷陽(yáng).博士,副主任醫(yī)師,副教授.E-mail:tu.fmmu@ gmail.com