江蘇省濱??h界牌初級中學(xué) 譚啟華
數(shù)學(xué)課堂因思維發(fā)散而精彩
江蘇省濱??h界牌初級中學(xué)譚啟華
傳統(tǒng)教學(xué)中,教師機械灌輸,學(xué)生被動接受,習(xí)慣以固定的方式解題,其認知結(jié)構(gòu)產(chǎn)生缺陷,面對新問題時常束手無策。教師要引領(lǐng)學(xué)生從不同角度分析問題,提高其發(fā)散思維能力。本文主要從激發(fā)興趣、調(diào)動熱情、夯實基礎(chǔ)、巧妙設(shè)計、參與實踐等角度提出思維發(fā)散培養(yǎng)的有效策略。
初中數(shù)學(xué)發(fā)散思維生命課堂教學(xué)策略
長期以來,教師難以走出應(yīng)試教育的樊籬,迷戀于追逐“考分”,一味采用單一的訓(xùn)練方式,以“刷題”提高學(xué)生的解題技能,學(xué)生習(xí)慣采用常規(guī)的、固定的方式去解決問題,逐漸形成思維定式,使得學(xué)生認知結(jié)構(gòu)產(chǎn)生缺陷,無益于學(xué)生的發(fā)散思維能力發(fā)展。教師要引領(lǐng)他們從不同視角觀察、從不同層面思考,由問題向外延伸、思維向外擴散,使課堂充滿靈動、充滿智慧。
1.創(chuàng)設(shè)問題情境,喚醒學(xué)生的發(fā)散思維。學(xué)起于思,思源于疑。教師要在精準(zhǔn)把握學(xué)情的基礎(chǔ)上,在學(xué)生知識的生長點、教學(xué)的重難點提出問題,能調(diào)動學(xué)生的求知欲,引發(fā)學(xué)生的思維。如在“有理數(shù)的乘方”教學(xué)中,教者創(chuàng)設(shè)情境如下:“大家都吃過拉面吧,拉面師傅將1根面一拉為2根,再拉變成4根……厲恩海先生曾將1根約2.5米的拉面拉出20環(huán),長度約為252km,相當(dāng)于上海到嘉峪關(guān)的距離、珠穆朗瑪峰高度的266倍,你知道拉面被拉成了多少根嗎?”問題一提出,煥發(fā)了學(xué)生的探究熱情,他們嘗試用已有的乘法知識去解決問題,從而衍生出新的運算——乘方。教者以問題引發(fā)學(xué)生思維的發(fā)散,實現(xiàn)運算方法的轉(zhuǎn)變。
2.探尋生活原型,源于生活,應(yīng)用于生活。數(shù)學(xué)教學(xué)與生活緊密相連,彼此相依,教師要建立數(shù)學(xué)知識與生活聯(lián)系的橋梁,從生活中挖掘素材,增加內(nèi)容的生活性、時代性,讓知識與生活彼此交融。如在“軸對稱與軸對稱圖形”教學(xué)中,教師改變過去提出概念、展示實例、呈現(xiàn)定義的做法,而是展示展翅的蝴蝶、北京天壇兩幅圖片,創(chuàng)設(shè)情境:“觀察這兩幅圖片形狀是怎樣的?它們有什么共同的特征?”繼而引出“軸對稱”的話題。教者讓學(xué)生對折剪紙,“想一想,展開后會是怎樣的圖形?位于折痕兩側(cè)的圖案有什么關(guān)系?”傳統(tǒng)的教學(xué)方式,勢必會牽制學(xué)生的思維,束縛了學(xué)生的思維發(fā)展。教者從學(xué)生所熟知的生活圖案入手,讓學(xué)生經(jīng)歷觀察、折疊、思考、交流等活動,圍繞“軸對稱圖形”無拘無束地展開思維、放飛思緒,獲得深刻而透徹的理解。
1.從典型題入手,以“變”培養(yǎng)學(xué)生的思維能力。學(xué)生只有有扎實的基礎(chǔ)知識、充足的知識儲備,在深刻理解的基礎(chǔ)上才能拓展自己的想象空間,產(chǎn)生解決問題的新思路。教師要在研讀教材、把握重點的基礎(chǔ)上,從典型題入手,精心設(shè)計“變題”,以一題多解、一題多變等形式活躍學(xué)生的思維,由點向線、面輻射,達到觸類旁通、舉一反三的效果。如:
原題:在梯形ABCD中,AD∥BC,∠B=Rt∠,AD=2,CD=6,BC=4,M是AB的中點,求證:DM⊥CM.
變題一:在梯形ABCD中,AD∥BC,CD=AD+BC,M是AB的中點,求證:DM⊥CM。
變題二:在梯形ABCD中,AD∥ BC,CD=AD+BC,M是AB的中點,求證:
教者通過變式,引導(dǎo)學(xué)生從多種角度討論,拓展了學(xué)生的視野,活躍了學(xué)生的思維,提高了學(xué)生的善變能力。
2.溝通知識點之間的內(nèi)在聯(lián)系。初中數(shù)學(xué)教材的知識點是螺旋上升的,知識點之間有著內(nèi)在的聯(lián)系,教師不囿于單一的知識點,而要“跳出圈外”,引導(dǎo)學(xué)生構(gòu)建知識網(wǎng)絡(luò)結(jié)構(gòu)圖、繪制知識樹,構(gòu)建知識點之間的聯(lián)系。圖示的構(gòu)建方式多種多樣,如在復(fù)習(xí)“四邊形“內(nèi)容時,筆者以邊角關(guān)系設(shè)計框圖,當(dāng)然可以從對角線的性質(zhì)入手設(shè)計框圖。
知識框圖既有章節(jié)內(nèi)部的聯(lián)系,也有不同章節(jié)內(nèi)容之間的聯(lián)系。如“一元一次方程”“一次函數(shù)”“一元一次不等式”之間存在著密切的關(guān)系,教者畫出一次函數(shù)y=ax+b的圖像,它與x軸的交點的橫坐標(biāo)x0,就是方程ax+b=0的解。不等式ax+b>0就是圖像與x軸交點的上半側(cè)。教師要引導(dǎo)學(xué)生梳理知識,挖掘知識點間的聯(lián)系,建構(gòu)知識網(wǎng)絡(luò),讓學(xué)生在轉(zhuǎn)化中提高發(fā)散思維能力。
教師要引領(lǐng)學(xué)生走出課堂,參與豐富多彩的實踐活動,如參加社會實踐調(diào)查、撰寫數(shù)學(xué)小論文、用幾何圖案設(shè)計報頭、出版數(shù)學(xué)墻報等,能拓展學(xué)生視野,豐富學(xué)生的知識結(jié)構(gòu),引導(dǎo)學(xué)生的思維向外擴散。如在“測量旗桿的高度”探究活動中,有學(xué)生運用相似三角形的知識,測量同一陽光下標(biāo)桿與旗桿的影長來求解;也有學(xué)生利用鏡子的反射角等于入射角,構(gòu)造相似三角形求解;還有同學(xué)利用測角儀以及三角函數(shù)的知識求解。教者為學(xué)生提供了提升發(fā)散思維能力的平臺,讓學(xué)生通過課外實踐掌握了多樣化的解決方法。
總之,我們初中數(shù)學(xué)教師要以學(xué)生的發(fā)展為本,努力構(gòu)建生命化課堂,引領(lǐng)學(xué)生從多角度思考,不拘泥于既定的理解,讓學(xué)生在探究、交流中激發(fā)興趣,提高發(fā)散思維能力。