王宏棟,徐國(guó)鋒,矯薇薇,張秀英
(東北農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)學(xué)院,哈爾濱 150030)
?
豬源氟喹諾酮耐藥大腸桿菌通過(guò)接合水平傳遞耐藥性的研究
王宏棟,徐國(guó)鋒,矯薇薇,張秀英*
(東北農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)學(xué)院,哈爾濱 150030)
摘要:為研究豬源大腸桿菌中可移動(dòng)質(zhì)粒在氟喹諾酮類藥物耐藥性水平傳播機(jī)制中的作用,作者對(duì)氟喹諾酮耐藥且PMQR基因陽(yáng)性的大腸桿菌進(jìn)行接合試驗(yàn),并對(duì)所得接合子采用微量肉湯稀釋法測(cè)定其對(duì)8種常見(jiàn)藥物的最小抑菌濃度(MIC),針對(duì)質(zhì)粒介導(dǎo)的氟喹諾酮耐藥基因(PMQR)設(shè)計(jì)特異性引物對(duì)接合子進(jìn)行PCR擴(kuò)增。研究結(jié)果顯示,41株氟喹諾酮耐藥且PMQR基因陽(yáng)性的供體菌共接合成功16株細(xì)菌,接合成功率高達(dá)39%,接合子與受體菌J53相比,均呈現(xiàn)一定的耐藥表型,與供體菌相比,87.5%的接合子存在耐藥譜型的變化,并且存在丟失一種藥物耐藥性,產(chǎn)生另一種藥物耐藥性的現(xiàn)象,PCR結(jié)果顯示,接合子與供體菌相比,基因型有所減少,接合子中qnrS基因接合成功率最高,12.5%的接合子發(fā)生oqxA、oqxB和qnrS的共轉(zhuǎn)移。本研究表明不同的PMQR基因在可移動(dòng)質(zhì)粒介導(dǎo)耐藥性水平傳播的過(guò)程中接合成功率存在差異,不同的PMQR基因有可能位于不同的可移動(dòng)質(zhì)粒上,通過(guò)比較接合前后供體菌和受體菌耐藥表型的變化,尤其是PMQR基因檢出率的變化,可以初步確定,可移動(dòng)性質(zhì)粒在大腸桿菌耐藥性水平傳播的過(guò)程中起到了非常重要的作用。
關(guān)鍵詞:大腸桿菌;質(zhì)粒;接合子;水平傳播
隨著畜牧養(yǎng)殖業(yè)的迅速發(fā)展,各種抗生素和化學(xué)抗菌劑也不斷得到開(kāi)發(fā)利用,在其為人類做出突出貢獻(xiàn)的同時(shí),細(xì)菌耐藥性現(xiàn)象也越發(fā)嚴(yán)重,尤其是R質(zhì)粒的發(fā)現(xiàn),證實(shí)了在遺傳物質(zhì)含有天然耐藥基因的同時(shí),細(xì)菌迫于生存壓力,也可產(chǎn)生獲得性耐藥性[1],這就造成了耐藥性不僅可以垂直傳播,也存在細(xì)菌種內(nèi)甚至種間的耐藥性傳遞,即水平傳播。作者通過(guò)接合試驗(yàn),比較接合前后大腸桿菌耐藥表型和基因型的變化,從而探討可移動(dòng)質(zhì)粒在耐藥性傳播過(guò)程中所發(fā)揮的作用。
1材料與方法
1.1試驗(yàn)材料
大腸桿菌質(zhì)控菌株ATCC 25922購(gòu)自中國(guó)獸醫(yī)藥品監(jiān)察所;大腸桿菌臨床分離株分離自哈爾濱市周邊規(guī)?;B(yǎng)豬場(chǎng)豬肛拭子(冰盒保存);受體菌為大腸桿菌J53,購(gòu)自中國(guó)科學(xué)院微生物研究所,不含質(zhì)粒,對(duì)疊氮鈉耐藥,對(duì)大多數(shù)藥物敏感。試劑:BA(Blood-Agar)瓊脂,麥康凱培養(yǎng)基、伊紅美藍(lán)培養(yǎng)基等試驗(yàn)用培養(yǎng)基以及腸桿菌科生化鑒定管等均購(gòu)自杭州天和微生物試劑有限公司;2×Tap PCR Mix、DL2000 DNA Marker購(gòu)自TaKaRa公司。藥品:疊氮鈉、慶大霉素(GEN)、阿米卡星(AMK)、恩諾沙星(ENR)、環(huán)丙沙星(CIP)、頭孢曲松(CRO)、頭孢曲松-舒巴坦(CRO-SCF)、多西環(huán)素(DOX)、氟苯尼考(FLO)均購(gòu)自北京天壇藥物生物技術(shù)開(kāi)發(fā)公司。
1.2接合試驗(yàn)
接合試驗(yàn)方法參考膜過(guò)濾接合法(filter mating method)[2],即分別將25 μL供體菌和受體菌的LB培養(yǎng)液接種于25 μL含有環(huán)丙沙星(4 μg·μL-1,前期試驗(yàn)證明J53對(duì)其敏感)和疊氮鈉(150 μg·μL-1,全部供體菌敏感)的LB肉湯中,37 ℃培養(yǎng)4~5 h,當(dāng)其OD600 nm達(dá)到0.6時(shí),分別取0.5 mL供體菌和受體菌菌懸液加入到4 mL LB肉湯中,再將混合物用φ 0.45 μm的無(wú)菌濾膜過(guò)濾,帶菌濾膜置一BA平板表面,37 ℃培養(yǎng)3~4 h后,用1 mL LB肉湯重懸菌體。細(xì)菌混合物適當(dāng)稀釋后,分別取50 μL稀釋液涂布于同時(shí)含有環(huán)丙沙星(4 μg·mL-1)和疊氮鈉(150 μg·mL-1)的BA平板,同時(shí)分別取等量受體菌和供體菌菌懸液同法處理,37 ℃培養(yǎng)過(guò)夜。挑取培養(yǎng)后平板上單菌落并轉(zhuǎn)移至麥康凱平板,然后確定接合子對(duì)相應(yīng)抗生素的藥敏性、抗性基因的轉(zhuǎn)移及接合效率[3]。
1.3疑似接合子的鑒定
挑取上述含藥平板上的疑似接合子單菌落于LB肉湯中(其中含4 μg·μL-1的環(huán)丙沙星和150 μg·μL-1的疊氮鈉)進(jìn)行培養(yǎng),提取DNA,進(jìn)行ERIC-PCR鑒定,參考文獻(xiàn)[4]設(shè)計(jì)引物,ERIC-1:5′-ATGTAAGCTCCTGGGGATTCAC-3′;ERIC-2:5′-AAGTAAGTGACTGGGGTGAGCG-3′,比較與J53是否一致,最終在含藥平板和含藥LB肉湯中生長(zhǎng)且ERIC條帶和J53相同的菌液確定為接合子,并且用30%的甘油進(jìn)行保存。
1.4接合子PMQR基因型及耐藥表型的檢測(cè)
根據(jù)GenBank已知序列和參考文獻(xiàn)[5]設(shè)計(jì)9對(duì)特異性引物,由英濰捷基(上海)貿(mào)易有限公司合成,各組PCR所用引物及擴(kuò)增長(zhǎng)度見(jiàn)表1。取上述已證明成功接合的接合子DNA進(jìn)行PMQR-PCR檢測(cè),并將陽(yáng)性擴(kuò)增產(chǎn)物,選取部分送英濰捷基(上海)貿(mào)易有限公司進(jìn)行測(cè)序,利用NCBI blast程序在GenBankTM中對(duì)目的基因序列進(jìn)行同源檢索分析,觀察是否發(fā)生了耐藥基因的水平轉(zhuǎn)移。采用美國(guó)臨床實(shí)驗(yàn)室標(biāo)準(zhǔn)化委員會(huì)(CLSI)所推薦的微量肉湯稀釋法對(duì)接合子菌液進(jìn)行藥敏試驗(yàn)[6],并根據(jù)CLSI標(biāo)準(zhǔn)進(jìn)行藥物敏感性判斷,藥敏試驗(yàn)結(jié)果與供體菌、受體菌進(jìn)行比較。
表1PCR引物序列
Table 1Sequences of primers used for PCR
基因Gene引物序列(5'-3')Primersequences(5'-3')產(chǎn)物長(zhǎng)度/bpProductlengthqnrAF:TCAGCAAGAGGATTTCTCA627R:GGCAGCACTATTACTCCCAqnrBF:CCTGAGCGGCACTGAATTTAT617R:GTTTGCTGCTCGCCAGTCGAqnrSF:ACGACATTCGTCAACTGCAA417R:TAAATTGGCACCCTGTAGGCqnrCF:GGGTTGTACATTTATTGAATC447R:TCCACTTTACGAGGTTCTqnrDF:CGAGATCAATTTACGGGGAATA582R:AACAAGCTGAAGCGCCTGaac(6')-IbF:TTGCGATGCTCTATGAGTGGCTA482R:CTCGAATGCCTGGCGTGTTTqepAF:AACTGCTTGAGCCCGTAGAT596R:GTCTACGCCATGGACCTCACoqxAF:GCGTCTCGGGATACATTGAT482R:GGCGAGGTTTTGATAGTGGAoqxBF:CTGGGCTTCTCGCTGAATAC498R:CAGGTACACCGCAAACACTG
2結(jié)果
2.1接合試驗(yàn)
41株氟喹諾酮耐藥且PMQR基因陽(yáng)性的供體菌共接合成功16株細(xì)菌,接合成功率高達(dá)39%,ERIC-PCR電泳結(jié)果如圖1。
2.2藥敏試驗(yàn)
16株接合成功的大腸桿菌對(duì)8種抗菌藥物的敏感性測(cè)定結(jié)果如表2和圖2,從中可以看出接合前后,與供體菌相比,對(duì)頭孢噻呋、阿米卡星、慶大霉素、氟苯尼考以及多西環(huán)素的耐藥性均發(fā)生了轉(zhuǎn)移,16株接合成功的大腸桿菌中,12.5%的接合子耐藥譜型沒(méi)有發(fā)生變化,12.5%的接合子耐藥譜型變寬,68.75%的接合子發(fā)生了耐藥譜型變窄,本試驗(yàn)中一株接合子菌株還發(fā)生了丟失一種藥物耐藥性的同時(shí),產(chǎn)生對(duì)另一種藥物耐藥的現(xiàn)象;與受體菌相比,接合子均表現(xiàn)出一定的耐藥表型(受體菌E.coliJ53對(duì)上述臨床常見(jiàn)藥物均敏感)。
M.DL2000 DNA相對(duì)分子質(zhì)量標(biāo)準(zhǔn);1.陰性對(duì)照;2~13.基因片段產(chǎn)物M.DL2000 DNA marker;1.Negative control;2-13.Partial segment of qnrS gene product band圖1 ERIC-PCR電泳結(jié)果Fig.1 The results of ERIC-PCR
表216株供體菌與其接合子耐藥表型
Table 2Drug resistance phenotypes of donor strains and transconjugants
供體菌Donorstrain接合子TransconjugantH1CRO-CEF-AMK-GEN-CIP-ENR-FLOCRO-CEF-CIP-ENR-FLOH3CRO-CEF-AMK-GEN-CIP-ENR-DOX-FLOCRO-CEF-AMK-GEN-CIP-ENR-DOX-FLOH5CRO-CEF-AMK-GEN-CIP-ENR-FLOCRO-CEF-CIP-ENR-FLOH6CRO-CEF-AMK-GEN-CIP-ENR-FLOCRO-CEF-AMK-GEN-CIP-ENR-DOX-FLOH9CRO-CEF-AMK-GEN-CIP-ENR-DOX-FLOCRO-CEF-GEN-CIP-ENR-DOX-FLOH10CRO-CEF-AMK-GEN-CIP-ENR-DOX-FLOCRO-CEF-GEN-CIP-ENR-DOX-FLOH18AMK-GEN-CIP-ENR-FLOCIP-ENR-FLOH21CRO-CEF-AMK-GEN-CIP-ENR-FLOCRO-CEF-CIP-ENR-FLOH32CRO-CEF-AMK-GEN-CIP-ENR-FLOCRO-CEF-AMK-GEN-CIP-ENR-FLOH40CRO-CEF-AMK-GEN-CIP-ENR-FLOCRO-CEF-CIP-ENR-FLOH47CRO-CEF-AMK-GEN-CIP-ENR-FLOCRO-CEF-CIP-ENR-FLOH48CRO-CEF-AMK-GEN-CIP-ENR-FLOCRO-CEF-AMK-GEN-CIP-ENR-DOX-FLOH53CRO-CEF-AMK-GEN-CIP-ENR-FLOCRO-CEF-GEN-CIP-ENR-DOX-FLOH63CRO-CEF-AMK-GEN-CIP-ENR-DOX-FLOCRO-CEF-CIP-ENR-FLOH69CRO-CEF-AMK-GEN-CIP-ENR-FLOCRO-CEF-CIP-ENR-FLOH74CRO-CEF-AMK-GEN-CIP-ENR-DOX-FLOCRO-CIP-ENR-FLO
圖2 16株供體菌與其接合子對(duì)8種抗菌藥物多重耐藥情況Fig.2 Multiple drug resistance of 16 strains of donors and transconjugants to 8 kinds of antimicrobial agents
2.3接合子PMQR基因檢測(cè)結(jié)果
通過(guò)對(duì)接合子進(jìn)行PMQR-PCR檢測(cè)、測(cè)序、Blast比對(duì),最終發(fā)現(xiàn),16株接合子中全部檢測(cè)到了PMQR基因,并且對(duì)接合子進(jìn)行了ERIC-PCR,結(jié)果顯示接合子均為E.coliJ53,供體菌與接合子的PMQR基因檢出率和基因分型結(jié)果見(jiàn)表3和表4,從中可以看出qnrS基因全部接合成功,qepA和aac-Ib-cr未接合成功,11株含oqxA和oqxB的供體菌中,oqxA和oqxB接合成功率為45.5%,在8株oqxA、oqxB和qnrS共存在的供體菌中,25%的接合子發(fā)生了oqxA、oqxB和qnrS的共轉(zhuǎn)移。
表316株供體菌與其接合子PMQR基因檢出率
Table 3The detection rate of PMQR genes of 16 strains of donors and transconjugants
基因型Genetype供體菌Donorstrain接合子TransconjugantoqxA115oqxB115qnrS1313aac-Ib-cr10qepA10
3討論
在過(guò)去相當(dāng)長(zhǎng)的一段時(shí)間里,人們一直認(rèn)為細(xì)菌對(duì)氟喹諾酮類耐藥機(jī)制主要是由染色體耐藥決定區(qū)[6](quinolone resistance determining regions,QRDRs)突變?cè)斐傻模⑼ㄟ^(guò)自我復(fù)制垂直傳遞給子代,但是這卻不能解釋臨床上耐藥性在不同細(xì)菌平行傳播的現(xiàn)象,隨著研究的深入,不斷有學(xué)者研究發(fā)現(xiàn)和報(bào)道了質(zhì)粒介導(dǎo)的氟喹諾酮類耐藥基因,即PMQR,雖然這種質(zhì)粒介導(dǎo)的PMQR耐藥機(jī)制僅僅是處于低水平的,但是多基因型的攜帶以及與染色體耐藥決定區(qū)的相互配合,卻能有利于篩選出具有更高耐藥性的菌株[7],截止到目前為止,已有三大類PMQR基因[qnr、aac(6′)-Ib-cr、qepA]在世界范圍內(nèi)報(bào)道[8],R質(zhì)粒的發(fā)現(xiàn),則證實(shí)了在遺傳物質(zhì)含有天然耐藥基因的同時(shí),細(xì)菌迫于生存壓力,也可產(chǎn)生獲得性耐藥性,因此R質(zhì)粒在細(xì)菌間的水平傳播是細(xì)菌產(chǎn)生獲得性耐藥機(jī)制的關(guān)鍵途徑。本試驗(yàn)中腸桿菌J53具有疊氮鈉抗性,且對(duì)絕大多數(shù)抗菌藥物極為敏感,J53作為受體菌與PMQR基因陽(yáng)性臨床耐藥菌株共培養(yǎng),并通過(guò)氟喹諾酮類藥物和疊氮鈉共同篩選,以及ERIC-PCR驗(yàn)證,最終得到了16株接合子,接合成功率高達(dá)39%,這與本課題組前期的試驗(yàn)結(jié)果[9]相符合,這也充分說(shuō)明在自然狀態(tài)下,質(zhì)粒非常容易地在不同大腸桿菌之間轉(zhuǎn)移,使耐藥性的傳播更加便捷[10-12],為臨床上的治療用藥帶來(lái)了極其嚴(yán)重的危害。
表416株供體菌與其接合子基因型
Table 4The gene phenotype of 16 strains of donors and transconjugants
供體菌Donorstrain接合子TransconjugantH1oqxA,oqxB,qnrSqnrSH3oqxA,oqxBoqxA,oqxBH5oqxA,oqxB,qnrSqnrSH6oqxA,oqxB,qnrSqnrSH9oqxA,oqxB,qnrSoqxA,oqxB,qnrSH10oqxA,oqxB,qnrSoqxA,oqxB,qnrSH18qnrSqnrSH21oqxA,oqxBoqxA,oqxBH32qnrSqnrSH40qnrSqnrSH47qnrS,qepAqnrSH48qnrSqnrSH53oqxA,oqxB,aac-Ib-croqxA,oqxBH63oqxA,oqxB,qnrSqnrSH69oqxA,oqxB,qnrSqnrSH74oqxA,oqxB,qnrSqnrS
通過(guò)藥敏試驗(yàn)結(jié)果可以發(fā)現(xiàn),87.5%的接合子與供體菌相比發(fā)生了耐藥譜型的變化,其中68.75%的接合子耐藥譜型變窄,說(shuō)明耐藥基因不全都是位于可移動(dòng)質(zhì)粒中,或者是不同菌株攜帶的質(zhì)粒不同,而質(zhì)粒之間存在著不兼容性,因此暫時(shí)兼容的質(zhì)粒在失去藥物壓力的作用下,傳遞的過(guò)程中發(fā)生了丟失,因此未能轉(zhuǎn)移到受體菌中[13];而12.5%的接合子耐藥譜型變寬,6.25%的接合子在丟失某種耐藥的同時(shí),產(chǎn)生新的藥物耐藥,而且新增加的耐藥表型均為多西環(huán)素的耐藥性增強(qiáng),四環(huán)素類藥物耐藥基因的表達(dá)和調(diào)節(jié)主要通過(guò)兩方面進(jìn)行:一方面是通過(guò)基因自身的調(diào)節(jié)機(jī)制在轉(zhuǎn)錄和翻譯水平上進(jìn)行調(diào)節(jié),主要包括啟動(dòng)子、操縱基因和莖環(huán)結(jié)構(gòu)等;另一方面是通過(guò)四環(huán)素類藥物、pH及Na+和K+等效應(yīng)物在翻譯水平上進(jìn)行調(diào)節(jié),兩者相互聯(lián)系、相互配合,從而使耐藥基因得以有效表達(dá)和調(diào)節(jié)[14]。本試驗(yàn)中之所以出現(xiàn)了對(duì)多西環(huán)素耐藥性增強(qiáng)現(xiàn)象,結(jié)合前期學(xué)者研究成果[15],分析原因可能是,tet基因在轉(zhuǎn)移的過(guò)程中結(jié)構(gòu)發(fā)生了變化,因而導(dǎo)致在受體菌中表達(dá)增強(qiáng),或者是在供體菌中存在了抑制四環(huán)素耐藥基因表達(dá)的機(jī)制,再或者有可能是不同菌株自身環(huán)境的不同造成了tet基因表達(dá)水平的差異。
前期學(xué)者的報(bào)道表明,oqxA和oqxB多共同存在于同一個(gè)質(zhì)粒pOLA52中[16],oqxA、oqxB和qnrS也可以位于同一個(gè)可移動(dòng)質(zhì)粒中發(fā)生共轉(zhuǎn)移,這與本試驗(yàn)PMQR基因檢出結(jié)果相一致。并且結(jié)合藥敏試驗(yàn)結(jié)果發(fā)現(xiàn),同轉(zhuǎn)移的PMQR基因越多,對(duì)臨床氟喹諾酮類藥物的MIC值越高。與供體菌MIC相比,接合子MIC值顯著降低,分析原因有可能是供體菌中還存在著其他的耐藥機(jī)制,如染色體喹諾酮決定區(qū)突變,也可能是PMQR耐藥基因型組合的減少,從而介導(dǎo)了低水平耐藥,這也反向證明了多種基因型的組合可以造成高水平耐藥,甚至達(dá)到臨床耐藥。
質(zhì)粒接合試驗(yàn)已經(jīng)證明PMQR基因能提高喹諾酮藥物的MIC值[17],但許多研究認(rèn)為這種MIC值提高的程度存在一定限度,只表現(xiàn)為在一定程度上降低細(xì)菌對(duì)喹諾酮類藥物的敏感性,很少能使細(xì)菌對(duì)喹諾酮類藥物達(dá)到實(shí)際意義的耐藥水平,同時(shí)有研究指出,質(zhì)粒接合試驗(yàn)的接合子表現(xiàn)的耐藥水平低于供體菌,可能說(shuō)明染色體介導(dǎo)的耐藥機(jī)制在細(xì)菌耐藥中仍然起著主導(dǎo)作用。
4結(jié)論
不同的PMQR基因在可移動(dòng)質(zhì)粒介導(dǎo)耐藥性水平傳播的過(guò)程中接合成功率存在差異,不同的PMQR基因有可能位于不同的可移動(dòng)質(zhì)粒上,通過(guò)比較接合前后供體菌和受體菌耐藥表型的變化,尤其是PMQR基因檢出率的變化,可以初步確定,可移動(dòng)性質(zhì)粒在大腸桿菌耐藥性水平傳播的過(guò)程中起到了非常重要的作用,同時(shí)質(zhì)粒接合試驗(yàn)的接合子表現(xiàn)的耐藥水平低于供體菌,可能說(shuō)明染色體介導(dǎo)的耐藥機(jī)制在細(xì)菌耐藥中仍然起著主導(dǎo)作用。
參考文獻(xiàn)(References):
[1]潘渭涓,陳祥,王曉泉,等.1993-2008年禽源大腸桿菌和沙門(mén)菌對(duì)喹諾酮類藥物耐藥性分析[J].中國(guó)人獸共患病學(xué)報(bào),2009,25(7):630-635.
PAN W J,CHEN X,WANG X Q,et al.The analysis of quinolone resistance of the avianEscherichiacoliandSalmonellaisolates from 1993 to 2008[J].ChineseJournalofZoonoses,2009,25(7):630-635.(in Chinese)
[2]CLEWELL D B,AN F Y,WHITE B A,et al.Sex pheromones and plasmid transfer in Streptococcus faecalis:a pheromone,cAM373,which is also excreted by Staphylococcus aureus[J].BasicLifeSci,1985,30:489-503.
[4]張輝,楊振泉,趙雋,等.大腸桿菌 ERIC-PCR分子分型方法的建立及其初步應(yīng)用[J].江蘇農(nóng)業(yè)學(xué)報(bào),2010,26(5):1098-1103.
ZHANG H,YANG Z Q,ZHAO J,et al.Generating of ERIC-PCR molecular typing method and its application inEscherichiacoli[J].JiangsuJournalofAgriculturalSciences,2010,26(5):1098-1103.(in Chinese)
[5]WANG M,GUO Q,XU X,et al.New plasmid-mediated quinolone resistance gene,qnrC,found in a clinical isolate of Proteus mirabilis[J].AntimicrobAgentsChemother,2009,53(5):1892-1897.
[6]JOHN P H,RENATER R,TAKASHIA,et al.M49-P methods for broth dilution susceptibility testing of bacterial isolated from aquatic animals;proposed guideline[S].Pennsylvania:Clinical and laboratory Standards Institute,2005.
[7]YOSHIDA H,BOGAKI M,NAKAMURA M,et al.Quinolone resistance-determining region in the DNA gyrase gyrA gene ofEscherichiacoli[J].AntimicrobAgentsChemother,1990,34(6):1271-1272.
[8]朱恒乾,廖曉萍,陳朝喜,等.寵物源大腸桿菌質(zhì)粒介導(dǎo)喹諾酮類耐藥基因流行性檢測(cè)[J].中國(guó)農(nóng)業(yè)科學(xué),2010,43(16):3447-3454.
ZHU H Q,LIAO X P,CHEN C X,et al.Detection of plasmid-mediated quinolone resistance in clinical isolates ofEscherichiacolifrom pet animals[J].ScientiaAgriculturaSinica,2010,43(16):3447-3454.(in Chinese)
[9]安微,張秀英,徐國(guó)鋒,等.豬源多重耐藥大腸桿菌通過(guò)接合水平傳播傳遞耐藥性研究[J].中國(guó)獸醫(yī)雜志,2014,50(5):76-78,81.
AN W,ZHANG X Y,XU G F,et al.Study of antibiotic resistance transferred horizontally in multidrug-resistantEscherichiacolifrom swine[J].ChineseJournalofVeterinaryMedicine,2014,50(5):76-78,81.(in Chinese)
[10]CAVACO L M,HANSEN D S,F(xiàn)RIIS-M?LLER A,et al.First detection of plasmid-mediated quinolone resistance(qnrA and qnrS) inEscherichiacolistrains isolated from humans in Scandinavia[J].JAntimicrobChemother,2007,59(4):804-805.
[11]王明貴,TRAN J H,JACOBY G A,等.大腸埃希菌臨床分離株對(duì)喹諾酮類抗菌藥的質(zhì)粒介導(dǎo)耐藥[J].中國(guó)感染與化療雜志,2006,6(4):217-221.
WANG M G,TRAN J H,JACOBY G A,et al.Plasmid-mediated quinolone resistance in clinical isolates ofEscherichiacoli[J].ChineseJournalofInfectionandChemotherapy,2006,6(4):217-221.(in Chinese)
[12]劉渠,劉衡川,白松濤,等.食品中大腸埃希氏菌、沙門(mén)氏菌整合子的耐藥性水平傳遞研究[J].現(xiàn)代預(yù)防醫(yī)學(xué),2004,31(5):681-684.
LIU Q,LIU H C,BAI S T,et al.Antibiotic resistance horizontal transfer of integrons inEscherichiacoliandSalmonellaspp.strains isolated from food[J].ModernPreventiveMedicine,2004,31(5):681-684.(in Chinese)
[13]李德喜,劉建華,張素梅,等.豬源大腸桿菌質(zhì)粒和染色體介導(dǎo)的喹諾酮類藥的耐藥機(jī)制[J].中國(guó)獸醫(yī)學(xué)報(bào),2011,31(9):1262-1265.
LI D X,LIU J H,ZHANG S M,et al.Mechanism of plasmid- and chromosome-mediated quinolone resistance inEscherichiacoliisolated from pigs[J].ChineseJournalofVeterinaryScience,2011,31(9):1262-1265.(in Chinese)
[14]代敏,王雄清,殷桂蘭.四環(huán)素耐藥基因的生化和遺傳機(jī)制研究進(jìn)展[J].綿陽(yáng)師范學(xué)院學(xué)報(bào),2006,25(5):72-78.
DAI M,WANG X Q,YIN G L.Advances of the research in biochemical and genetic mechanism of tetracycline resistance gene[J].JournalofMianyangNormalUniversity, 2006,25(5):72-78.(in Chinese)
[15]田哲,張昱,楊敏,等.四環(huán)素類藥物酶修飾基因-tet(X)的起源、分布及在環(huán)境中的作用[J].環(huán)境化學(xué),2014,33(12):2027-2037.
TIAN Z,ZHANG Y,YANG M,et al.The origin,environmental distribution and potential application of tetracycline resistance gene-tet(X)[J].EnvironmentalChemistry,2014,33(12):2027-2037.(in Chinese)
[16]王垚,吳疆.質(zhì)粒介導(dǎo)喹諾酮類藥物耐藥機(jī)制的研究現(xiàn)狀及進(jìn)展[J].西部醫(yī)學(xué),2015,27(7):1108-1112.
WANG Y,WU J.Recent research and progress on plasmid-mediated quinolones resistence[J].MedicalJournalofWestChina,2015,27(7):1108-1112.(in Chinese)
[17]GUAN X,XUE X,LIU Y,et al.Plasmid-mediated quinolone resistance--current knowledge and future perspectives[J].JIntMedRes, 2013,41(1):20-30.
(編輯白永平)
Investigation of Antimicrobial Agents Resistance Transferred Horizontally in Fluoroquinolone ResistantEscherichiacolifrom Swine
WANG Hong-dong,XU Guo-feng,JIAO Wei-wei,ZHANG Xiu-ying*
(CollegeofVeterinaryMedicine,NortheastAgriculturalUniversity,Harbin150030,China)
Abstract:In order to investigate the role of mobile plasmids in the horizontal transmission mechanism of drug resistance inEscherichiacoliisolated from pigs,the conjugation experiments of fluoroquinolone resistance andPMQRgenes positiveEscherichiacoliwere carried out,the minimum inhibitory concentration(MIC) of 8 kinds of common drug in transconjugants were figured by using broth micro dilution method and the plasmid mediated quinolone resistance gene(PMQR) were detected by PCR methods with specific primers designed after the conjugation experiments.The results showed that 16 strains of bacteria were joined successfully within 41 strains of fluoroquinolone resistance andPMQRgenes positive donors,successful rate of conjugation experiments was up to 39%,transconjugants showed kinds of resistant phenotypes compared with J53 strain through testing the figure of MIC values,and compared with donor strains,87.5% of the transconjugants reveals changes of drug resistance patterns and the phenomenon of missing a drug resistance with obtaining another drug resistance,the results of PCR showed the decline of gene phenotypes compared with donor strains,qnrSgene revealed the highest successful conjugation rate,the genes ofoqxAandoqxBcan transferred in the same mobile plasmid,12.5% of the transconjugants displayed that the genes ofoqxA,oqxBandqnrScan be transferred by the same mobile plasmid.The results above suggest that differentPMQRgenes show different success rates in the process of conjugation jointing with mobile plasmid which mediated resistance genes transferred horizontally in strains,which suggest the differentPMQRgenes may be located in the different mobile plasmid,by comparing the changes of drug resistance and gene phenotypes before and after conjugation experiments,especially the detection rate ofPMQRgene,it can be preliminarily confirmed that the mobile plasmids play a very important role in the process that antimicrobial agents resistance genes are transferred horizontally inEscherichiacolistrains.
Key words:Escherichiacoli;plasmid;transconjugants;horizontal transmission
doi:10.11843/j.issn.0366-6964.2016.04.021
收稿日期:2015-07-15
基金項(xiàng)目:哈爾濱市科技局科技創(chuàng)新人才基金(2013RFXXJ035)
作者簡(jiǎn)介:王宏棟(1990-),男,山東樂(lè)陵人,碩士生,主要從事獸醫(yī)藥理學(xué)與毒理學(xué)研究,E-mail:1026220197@qq.com *通信作者:張秀英,E-mail:zhangxiuying@neau.edu.cn
中圖分類號(hào):S852.612
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0366-6964(2016)04-0805-07