【關(guān)鍵詞】學(xué)生學(xué)習(xí);概率論;積極性;應(yīng)用
概率論是研究隨機(jī)現(xiàn)象和事件不確定性的一門(mén)數(shù)學(xué)分支。隨著概率論與各學(xué)科之間的交叉融合,概率論已成為一門(mén)應(yīng)用非常廣泛的學(xué)科。正如英國(guó)邏輯學(xué)家和經(jīng)濟(jì)學(xué)家杰文斯所說(shuō):概率論是生活真正的領(lǐng)路人,如果沒(méi)有對(duì)概率論的某種估計(jì),人們就寸步難行,無(wú)所作為。
由于在學(xué)習(xí)概率論時(shí),隨機(jī)現(xiàn)象的不確定性容易使學(xué)生感到把握不定,同時(shí),學(xué)生對(duì)概率論的認(rèn)識(shí)不夠,僅僅停留于考試類(lèi),這些都將導(dǎo)致學(xué)生學(xué)習(xí)概率論的積極性不高,而學(xué)生為了應(yīng)付考試,都是被動(dòng)地學(xué)習(xí)。如何使現(xiàn)當(dāng)代的學(xué)生真正轉(zhuǎn)變學(xué)習(xí)觀念-主動(dòng)學(xué)習(xí),真正認(rèn)識(shí)到概率論的意義所在,主動(dòng)地學(xué)習(xí)概率論,把概率論與實(shí)踐相聯(lián)系,從而提高學(xué)生學(xué)習(xí)概率論的積極性成為亟需解決的問(wèn)題。本文將從概率論在日常生活、經(jīng)濟(jì)生活、就業(yè)考試和個(gè)人思維培養(yǎng)等四方面的意義及應(yīng)用,使學(xué)生充分認(rèn)識(shí)到概率論的真正意義,進(jìn)而幫助學(xué)生提高學(xué)習(xí)概率論的積極性。
1 概率論與日常生活
1.1 試試運(yùn)氣
街頭常有一種“試試運(yùn)氣”的游戲,即一個(gè)盒子中有20個(gè)兵乓求,紅白色球各占一半,游戲規(guī)則如下:游戲者先付2元,則依次不放回地從盒子里摸出10個(gè)球,再根據(jù)兩種球的比例獲得獎(jiǎng)金,如10-0或0-10,獲獎(jiǎng)金10 000 元;9-1或1-9,獲獎(jiǎng)金100 元;8-2或2-8,獲獎(jiǎng)金12 元;7-3或3-7,獲獎(jiǎng)金4 元;6-4或4-6,獲獎(jiǎng)金1 元;5-5,不獲獎(jiǎng)。
實(shí)際上,看上去如此誘人的獎(jiǎng)項(xiàng),最后發(fā)現(xiàn)贏的總是莊家。主要原因在于:若有1000人來(lái)試運(yùn)氣,則莊家的期望收益值為2×1 000-108-108-262.8-624-477=420.2 元??此坪苜嶅X(qián)的游戲,其實(shí)對(duì)莊家是非常有利的,只是大多中獎(jiǎng)游戲被設(shè)計(jì)設(shè)計(jì)得不易被發(fā)現(xiàn)。
1.2 抽簽公平性
在日常生活中常見(jiàn)“抽簽”決定勝負(fù), 其實(shí)在一些比賽中也在借用它,比如世界杯足球賽的分組、 國(guó)內(nèi)安置房的分配等。那么抽簽是否真正公平?通過(guò)以下的解釋可以一目了然。
一個(gè)盒子中裝有a個(gè)紅色小球和b個(gè)白色小球,a+b個(gè)小球除了顏色不同之外, 其他的情況完全相同,現(xiàn)有a+b個(gè)同學(xué)有放回地依次摸球,則每位同學(xué)摸到紅球的概率都是a/(a+b)。再者,一個(gè)盒子中裝有a個(gè)紅色小球和b個(gè)白色小球,a+b個(gè)小球除了顏色不同之外, 其他的情況完全相同, 現(xiàn)有a+b個(gè)同學(xué)不放回地依次摸球,每位同學(xué)拿到紅球的概率為
。
總之,從以上這兩種模型可以看出: 不管有沒(méi)有放回,每位同學(xué)摸到紅球的概率都是一樣的,也就是說(shuō)抽簽是公平的。
1.3 同一天生日
在生活中,常常會(huì)遇到一個(gè)集體中至少2個(gè)個(gè)體在同一天過(guò)生日的概率是p,而這個(gè)p到底是多少呢?以50人為例,文中的,即0.974,這個(gè)概率可能與直覺(jué)不太一致,但通過(guò)計(jì)算,p果真如此。
1.4 公交車(chē)們高度
公交車(chē)的車(chē)門(mén)設(shè)計(jì)的過(guò)程中涉及概率論與數(shù)理統(tǒng)計(jì)的知識(shí)。因?yàn)檐?chē)門(mén)的高低h與乘客上下車(chē)和車(chē)身的美觀息息相關(guān)。例如,假設(shè)h滿(mǎn)足成年男子頭部與車(chē)門(mén)頂部相撞的概率在2%以下,如果某城市成年男子的身高X~N(175,25),那么通過(guò)計(jì)算h為185.3cm,這樣的h才能更好地滿(mǎn)足乘客與公交車(chē)的需求。
1.5 小概率事件的發(fā)生
生活中“天有不測(cè)風(fēng)云,人有旦夕禍福”,“ 常在河邊走,哪有不濕鞋”,“ 天網(wǎng)恢恢,疏而不漏”,“越會(huì)游泳越容易被淹死” 等確實(shí)有一定的理論依據(jù),這些實(shí)質(zhì)是小概率事件發(fā)生的后果。例如,設(shè)在一次隨機(jī)試驗(yàn)中事件A發(fā)生的概率為p,Ak={A在第k次實(shí)驗(yàn)中發(fā)生},則p(Ak)=p,,(k=0,1,……),前n次試驗(yàn)中A至少發(fā)生一次的概率為,無(wú)論p多么小,當(dāng)n→∞時(shí)有Pn(A)→1,即A趨向于必然事件。這說(shuō)明實(shí)際工作中不能忽視小概率事件的存在,一件看起來(lái)可能性很事情在大量重復(fù)之下發(fā)生的可能性同樣會(huì)變得很大。
2 概率論與經(jīng)濟(jì)生活
本文將從三方面來(lái)談?wù)劯怕收撆c經(jīng)濟(jì)生活的關(guān)系。首先,保險(xiǎn)業(yè)務(wù)迅速發(fā)展的原因在于保險(xiǎn)公司虧本的概率幾乎為0,這里可以通過(guò)中心極限定理計(jì)算所得。然后,通過(guò)隨機(jī)變量函數(shù)期望的應(yīng)用可以求出某個(gè)行業(yè)的最大利潤(rùn)。最后,在福利彩票中,也有可能獲取大獎(jiǎng),當(dāng)然,這是“小概率事件”的發(fā)生??傊?,這三方面都可以通過(guò)概率統(tǒng)計(jì)知識(shí)來(lái)進(jìn)行說(shuō)明。
3 就業(yè)中的概率論
3.1 就業(yè)決策中的概率論
在就業(yè)季,有些人連面試的機(jī)會(huì)都沒(méi)有,而有些人卻在為如何選擇面試單位而犯愁。如甲、乙兩個(gè)招聘單位分別提供“優(yōu)” “良”“可” 三個(gè)職位,假設(shè)應(yīng)聘者在參加甲單位的面試后,若不被錄用,還可以參加乙單位的的面試。甲和乙相應(yīng)職位應(yīng)聘的概率以及相應(yīng)的待遇見(jiàn)下表,此時(shí),應(yīng)聘者應(yīng)該如何決策呢?
其實(shí),無(wú)論是哪種情況,只需通過(guò)隨機(jī)變量的數(shù)學(xué)期望相關(guān)知識(shí)就可以很快地計(jì)算出相應(yīng)的概率,也即做出相應(yīng)的決策。
3.2 就業(yè)考試中的概率論
行政能力測(cè)試是公務(wù)員考試的必考科目,隨著社會(huì)的快速發(fā)展,其他事業(yè)、企業(yè)等單位的招聘考試也要考察行政能力測(cè)試相關(guān)的知識(shí),某些單位甚至直接考察公務(wù)員考試的內(nèi)容。然而,在行政能力測(cè)試中往往包含許多概率論的知識(shí),若是之前掌握好概率論相關(guān)的知識(shí),對(duì)改類(lèi)型的題目的考察會(huì)感覺(jué)較為輕松,否則對(duì)于文科考生還一貫地認(rèn)為這是理科內(nèi)容,對(duì)自己太為難等現(xiàn)象發(fā)生。
4 概率論與個(gè)人思維的培養(yǎng)
概率論思維具有隨機(jī)性、概括性、問(wèn)題性、輻射性、指向性和創(chuàng)造性等特征。首先,在研究概率問(wèn)題時(shí)應(yīng)使用隨機(jī)的目光,以便透過(guò)表面上的偶然,去尋找內(nèi)部蘊(yùn)涵著的必然。其次,它能揭示變化中事物抽象的形式結(jié)構(gòu)和數(shù)量關(guān)系的本質(zhì)特征和規(guī)律。再次,還表現(xiàn)在問(wèn)題的提出、分析、解決、應(yīng)用等。再者,可以“固舊發(fā)新”,加深理解概率論知識(shí)的內(nèi)部聯(lián)系和規(guī)律性,提高概率論思維的深刻性,發(fā)展概率論思維的創(chuàng)造性。然后,通過(guò)某一問(wèn)題情境產(chǎn)生使人們產(chǎn)生對(duì)概率論的研究的愿望和動(dòng)力。最后,通過(guò)分析現(xiàn)象、探討問(wèn)題、索取因果等,進(jìn)而研討出創(chuàng)新性的問(wèn)題。
5 小結(jié)
總之,當(dāng)下的學(xué)生不是不好學(xué),而是沒(méi)有找到學(xué)習(xí)概率論的大門(mén),對(duì)概率論的模糊認(rèn)識(shí)降低了學(xué)習(xí)概率論的積極性。只有真正認(rèn)識(shí)到概率論的意義,才能更好地把握學(xué)習(xí)狀況,才能找準(zhǔn)學(xué)習(xí)概率論的大門(mén),才能明白概率論的意義所在。本文從日常生活、經(jīng)濟(jì)生活、就業(yè)考試、個(gè)人思維培養(yǎng)等四方面簡(jiǎn)述了概率論的實(shí)際意義與作用,使學(xué)生對(duì)概率論有了充分的認(rèn)識(shí),進(jìn)而也能明確地定位自己,從而提高學(xué)生學(xué)習(xí)概率論的積極性。希望通過(guò)這種方式能夠幫助當(dāng)下的學(xué)生與教師,能為當(dāng)前教育做一丁點(diǎn)貢獻(xiàn)。
參考文獻(xiàn)
[1]張秋華.概率論在復(fù)雜抽樣和無(wú)理數(shù)求值上的應(yīng)用[J].池州學(xué)院學(xué)報(bào),2009,03:10-11.
[2]范曉志,宋憲萍.概率論在經(jīng)濟(jì)生活中的多維應(yīng)用[J].統(tǒng)計(jì)與決策,2005,08:139-140.
[3]閔欣.概率論在幾個(gè)經(jīng)濟(jì)生活問(wèn)題中的應(yīng)用[J].經(jīng)濟(jì)研究導(dǎo)刊,2013,24:4-5.
[4]張棟棟,張德然.概率論思維及其智力品質(zhì)的培養(yǎng)[J].大學(xué)數(shù)學(xué),2005,05:106-111.