【摘 要】邏輯思維是創(chuàng)造思維的基礎(chǔ),創(chuàng)造思維往往是邏輯思維的簡縮。就多數(shù)學(xué)生說,如果沒有良好的邏輯思維訓(xùn)練,很難發(fā)展創(chuàng)造思維。因此如何貫徹《大綱》的目的要求,在教學(xué)中有計(jì)劃有步驟地培養(yǎng)學(xué)生邏輯思維能力,是值得重視和認(rèn)真研究的問題。
【關(guān)鍵詞】初探 邏輯思維 能力 策略
高中教學(xué)的邏輯思維能力,說到底是一個(gè)正確、嚴(yán)謹(jǐn)、合理地進(jìn)行思考和解決問題的能力,它要求學(xué)生在對(duì)具體問題的觀察、分析、類比、歸納、演繹、綜合、抽象和概括時(shí),周密嚴(yán)謹(jǐn),有理有據(jù);也要求在采用演繹、歸納和類比等推理方式進(jìn)行推理和論證的表達(dá)中,格式、步驟要規(guī)范,要準(zhǔn)確而有條理,符合邏輯。那么如何科學(xué)地培養(yǎng)和訓(xùn)練學(xué)生邏輯思維能力呢?
首先.向?qū)W生充分展現(xiàn)探究問題的全部失敗或成功的思維過程,培養(yǎng)學(xué)生周密、嚴(yán)謹(jǐn)、靈活思考問題的良好習(xí)慣。
例1.求方程2cos2x+(1 - a)cosx -a - 1=0在區(qū)間[0,π]內(nèi)有惟一解時(shí),參數(shù)a的取值范圍。
著眼于方程的“二次”結(jié)構(gòu)特征,學(xué)生的慣常思路是解出cosx=-1或cosx=,而后據(jù)給定區(qū)間及解的惟一處理之,無疑,這個(gè)思考過程是正確的,符合邏輯的,但若僅局限于此,未免有些單薄,事實(shí)上,作為經(jīng)驗(yàn)豐富的教師,會(huì)注意向?qū)W生揭示和展現(xiàn)以下幾種思考這個(gè)問題時(shí)的出發(fā)點(diǎn)和過程。
顯然,這樣的揭示和展現(xiàn),既處處體現(xiàn)了邏輯思維的深刻性、嚴(yán)謹(jǐn)性,又體現(xiàn)了數(shù)形結(jié)合思想方法、函數(shù)思想方法,也培養(yǎng)了等價(jià)轉(zhuǎn)化、遇繁思簡的思維意識(shí);對(duì)問題的徹底解決大有裨益。
其次.密切關(guān)注學(xué)生思維失誤的表現(xiàn),通過旗幟鮮明、有的放矢地訓(xùn)練和點(diǎn)撥,使學(xué)生在“吃一塹、長一智”中不斷提高。
數(shù)學(xué)語言(包括文字語言、符號(hào)語言、圖形語言)是正確進(jìn)行推演論證的重要工具,過不了純熟的語言關(guān),就無法規(guī)范、流暢、準(zhǔn)確地表達(dá)思維成果,因此,做好這方面的工作,是培養(yǎng)學(xué)生邏輯思維能力的重要一環(huán)。
最后值得強(qiáng)調(diào)的是,高中的后兩年,恰是學(xué)生邏輯思維能力飛速提高的階段,因此,訓(xùn)練的措施與程度是否得力與深刻,確實(shí)關(guān)系著學(xué)生數(shù)學(xué)素質(zhì)的奠基。
總之,在高中數(shù)學(xué)教學(xué)中,要發(fā)展學(xué)生思維能力,就要引導(dǎo)學(xué)生去分析、比較、綜合、抽象、概括、判斷、推理,然后對(duì)學(xué)生思維的過程給予肯定或糾正。有經(jīng)驗(yàn)的教師總是注意讓學(xué)生用語言表達(dá)自己的計(jì)算過程和解題思路,結(jié)果學(xué)生思維能力有較快的提高。教師還應(yīng)有意識(shí)有計(jì)劃地注意幫助差生,鼓勵(lì)差生發(fā)言,推動(dòng)他們積極思維,以便促使他們的數(shù)學(xué)成績和思維能力都取得較大的進(jìn)步。