吳國華
【摘要】隨著基礎教育改革的深入,高中數(shù)學教學的目標也發(fā)生了變化,由原來的追去知識和提升解題能力轉化為實現(xiàn)學生的全面發(fā)展和綜合素質的提升。本文中,筆者以問題教學模式的應用為著手點,探究了優(yōu)化教學過程,提升學生探究能力的相關策略,希望能對學生的發(fā)展起到一定的積極作用。
【關鍵詞】高中數(shù)學 問題模式 探究意識 學習發(fā)展
一、構建問題教學情境,激發(fā)學生的探究意識
高中數(shù)學課堂無論是在講授內容還是學習強度上都遠遠大于其它學科,并且學生感覺到數(shù)學課就是與數(shù)學符號、數(shù)學公理定理等打交道,時不時的感覺枯燥乏味,提不起學習的興趣。為此要想培養(yǎng)學生的問題意識,首先就要培養(yǎng)學生學習數(shù)學的興趣,讓學生在數(shù)學學習的過程中積極參與,并且敢于質疑,自然學生的問題意識就會大大提升了。學生習慣了被動接受,便出現(xiàn)無疑可問的現(xiàn)象,教師就要創(chuàng)設問題情境,讓學生生疑,誘發(fā)學生的問題意識。
情景教學近些年已經成為備受師生青睞的教學模式,提升了學生的學習興趣。比如在高中數(shù)學教學中,教師可以采取創(chuàng)設數(shù)學實驗教學情景來激發(fā)學生的問題意識。在學習等比數(shù)列的時候,講到《等比數(shù)列前n項和》的時候,為了培養(yǎng)學生的探究意識,教師可以創(chuàng)設折紙的實驗教學情景,讓學生體會和感悟等比數(shù)列的相關問題。折紙中學生以喜馬拉雅山脈為標桿,選擇紙片厚度為1 ,然后反復對折,對折20幾次后,告訴學生這個厚度已經超過了喜馬拉雅山的高度,此時學生一定會非常的驚訝,覺得不可思議,為什么對折有這么大的威力呢,教師迅速的引導學生,這就是我們要講的等比數(shù)列的前n項和,為了搞清楚對折后的厚度到底有沒有超過喜馬拉雅山脈的告訴,學生就會積極探究,在好奇心的驅使下,學生的問題意識就得到了前所未有的升華。
為了激發(fā)學生的問題意識,教師在教學的過程中還可以依據(jù)教學內容,從學情出發(fā),開展問題情景教學模式,頃刻間把學生帶入問題的世界。在高中數(shù)學學習的過程中對于兩面角來說是個難點也是重點,為了讓學生搞清楚兩面角的相關問題,教師就可以在學生元認知的基礎上設計問題:平面上的角怎么來定義?角有沒有大小,可以通過那些測量工具來測量?在立體幾何中,角的大小有哪些因素所影響?如何將立體空間的問題轉化為平面問題?通過設計的問題,學生的問題意識得到激發(fā),他們可以利用知識遷移的功能完成作答。一方面回顧了舊知識,另一方面也學習了新問題,也有利于構建知識體系。
二、學會尊重學生,提升學生的懷疑精神
古人就曾經說過:“盡信書則不如無書”。在高中數(shù)學的學習過程中,更需要培養(yǎng)和尊重學生的這些質疑精神,其實對于一些數(shù)學問題來說,它的解答思路和解答方法有可能都不止一種,所以在數(shù)學課堂教師一定要給學生留足思考和探究的時間與空間,并且鼓勵學生大膽的質疑。在課堂教學中,學生有問題就可以提出來,有新的解題思路也要說出來,倡導一題多解的教學思想。除此之外,教師還要擺正自己的問題,放下所謂的權威,學生也要重新審視師生地位,如果教師在課堂上有錯誤也要在適當?shù)臅r候給予指出,這要是提升他們問題意識的有效途徑。為了讓學生敢于在課堂上質疑,教師必須構建輕松和諧融洽的課堂教學氛圍,要在課堂上尊重學生,消除學生的畏懼心理,從心理上給學生質疑創(chuàng)造廣泛的天地。
例如在講授排列組合的知識時,往往一道問題都會有幾個解決問題的路徑,這時候教師就要鼓勵學生大膽的思考,跟隨著自己的思路去解決問題。題目如下:為了實現(xiàn)教育均衡化的發(fā)展,實現(xiàn)教師隊伍的交流,現(xiàn)有4名教師,需要把他們安排在3個學校進行支教,每一所學校只有有一名教師,并且每一名教師也只能去一所學校,請問有多少種這樣的安排方案?
對于這樣問題的解答,學生的切入點和解答思維不同,那么解題的過程也會不一樣,只要學生開動腦筋,大膽破題就會找出問題的答案。學生可能想到的方法有如下:方法A:按照學校來安排,4人中選一人去第一所,3人中選一人去第二所,2人中選一人去第三所,最后一個人選擇三所學校中的任何一所,那么一次是 、 、 和 ,所以最后的結果是 。方法B:將4名教師分3組,一組2人,其余1人,然后在將三組人員分配到3所學校,答案為 。那么教師就可以追問學生,那種思路正確,那種錯誤,為什么?這樣學生不但可以分析問題和解決問題還能判定問題,自然問題意識就會大大提升。
三、及時的做好課堂評價,優(yōu)化學生探究能力的提升環(huán)境
在教學的過程中,學生問題意識的培養(yǎng)不是一朝一夕的,而是一個循序漸進的過程,并且教師在教學的過程中一定要給予學生適當?shù)墓膭?,在教學評價中要做到及時和適當。多以鼓勵引導為主,幫助學生樹立探究問題的自信心。高中生有一定的自尊心,都希望得到老師的褒獎,所以恰當?shù)慕虒W評價可以鼓勵學生多分析問題和探究問題,提升他們的問題意識。
例如在學習等比數(shù)列和等差數(shù)列的時候,往往教師都會要求學生進行對比,然后探究出一些規(guī)律性的東西。學生確實在學習中也能總結得出諸如在等差數(shù)列中有:對于正整數(shù) ,若 ,則 ;類似的,在等比數(shù)列中有:對于正整數(shù) ,若 ,則 。這確實值得鼓勵,但是有的學生也會陷入學習的陷阱,把值得商榷的問題當成規(guī)律性的東西,如:在等差數(shù)列中連續(xù) 項和仍成等差數(shù)列,即 成等差數(shù)列( 為等差數(shù)列的前 項和, )。類比到等比數(shù)列中有:連續(xù) 項和仍成等比數(shù)列,即 ,成等比數(shù)列( 為等比數(shù)列的前項和, )。這個結論,在一般情況下是成立的,但在特殊情況下不成立:當?shù)缺葦?shù)列的公比是 時,連續(xù)偶數(shù)項的和是零,不能構成等比數(shù)列。這需要教師給予引導,要學生明白一定要全方位的探究問題,不要妄下結論。
隨著我國基礎教育教學改革的推進,在教學過程中課堂開始關注學生的發(fā)展,把提升學生的綜合素養(yǎng)作為教學的目標,一定程度上激發(fā)了學生學習的積極性和主觀能動性,優(yōu)化了教學過程,提升了教學質量。學生問題意識的培養(yǎng)符合新課改和素質教育的發(fā)展要求,理應得到推廣。
【參考文獻】
[1]王亞茹.淺論高中數(shù)學教學中對學生解決問題能力的培養(yǎng)[J].新課程,2013(07)
[2]李桂芳.試論高中數(shù)學課堂如何提升學生的探究能力[J],數(shù)學教學研究,2014(04)