余 濤
線性彈性問題的異質(zhì)多尺度—間斷有限元方法
余 濤
(井岡山大學(xué)數(shù)理學(xué)院,江西,吉安 343009)
在異質(zhì)多尺度方法的框架下,使用內(nèi)部懲罰間斷有限元方法作為宏觀求解器,構(gòu)造了多尺度線性彈性問題的異質(zhì)多尺度—間斷有限元方法,并且給出了介質(zhì)是周期情況下的最佳誤差估計(jì)。
多尺度線性彈性問題;異質(zhì)多尺度方法;間斷有限元方法
顯然,上述均勻化方程(1.5)可以在粗網(wǎng)格上用傳統(tǒng)的方法求解,這樣也就得到了問題(1.1)的宏觀解。但是,只有對(duì)介質(zhì)有嚴(yán)格的假設(shè)條件的基礎(chǔ)上[1],才可以得到此方程均勻化系數(shù)0的具體表達(dá)式。
為了在不知道均勻化系數(shù)0的具體表達(dá)式的情況下去求解上面的均勻化問題(1.5),就需要構(gòu)造多尺度算法?,F(xiàn)有的多尺度算法包括:廣義有限元方法[3]、多尺度有限元方法[4]、變分多尺度方法[5]、無殘差Bubble方法[6]以及異質(zhì)多尺度方法[7]等等。
本文將采用異質(zhì)多尺度方法去求解方程(1.5)。它由兩部分組成:粗網(wǎng)格上選取一個(gè)宏觀求解器和估計(jì)宏觀求解器中的未知宏觀數(shù)據(jù)。在異質(zhì)多尺度方法的框架下,選取不同的宏觀求解器就可以得到不同的算法。針對(duì)線性彈性問題,文獻(xiàn)[8]中采用有限元方法作為宏觀求解器,得到了相應(yīng)的算法和誤差估計(jì)。最近,Abdulle將異質(zhì)多尺度方法和間斷有限元方法相結(jié)合提出了求解純擴(kuò)散問題的算法[9],并且給出了詳細(xì)的誤差分析[10]。本文將這種方法應(yīng)用到線性彈性問題上得到相應(yīng)的結(jié)果。
考慮分片多項(xiàng)式間斷有限元空間
考慮數(shù)值積分格式
進(jìn)而,可以得到如下改進(jìn)的雙線性形式
根據(jù)內(nèi)部懲罰間斷有限元方法的誤差估計(jì)[5],可知宏觀誤差
和
易得
從而,模型誤差
結(jié)合(3.2)~(3.5)式,有
[1] Ciarlet P G. The finite element method for elliptic problems[M]. Elsevier, 1978.
[2] Bensoussan A,Lions J L,Papanicolaou G. Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications[M].New York: North-Holland Publication, 1978.
[3] Babu?ka I, Osborn J E. Generalized finite element methods: their performance and their relation to mixed methods[J]. SIAM Journal on Numerical Analysis, 1983, 20(3): 510-536.
[4] Hou T Y, Wu X H. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. Journal of computational physics, 1997, 134(1): 169-189.
[5] Franca L P, Russo A. Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles[J]. Applied mathematics letters, 1996, 9(5): 83-88.
[6] Hughes T J R. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[J]. Computer methods in applied mechanics and engineering, 1995, 127(1): 387-401.
[7] Weinan E,Engquist B. The heterogeneous multi-scale methods[J]. Commun. Math. Sci., 2003, 1:87-132.
[8] Abdulle A. Analysis of a heterogeneous multiscale FEM for problems in elasticity[J]. Mathematical Models and Methods in Applied Sciences, 2006, 16(04): 615-635.
[9] Abdulle A. Multiscale method based on discontinuous Galerkin methods for homogenization problems[J]. Comptes Rendus Mathematique, 2008, 346(1): 97-102.
[10] Abdulle A. Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales[J]. Mathematics of Computation, 2012, 81(278): 687-713.
[11] Arnold D N. An interior penalty finite element method with discontinuous elements[J]. SIAM journal on numerical analysis, 1982, 19(4): 742-760.
HETEROGENEOUS MULTISCALE-DISCONTINUOUS GALERKIN METHOD FOR PROBLEMS IN LINEAR ELASTICITY
YU Tao
(School of Mathematics and Physics, Jinggangshan University,Ji’an, Jiangxi 343009, China)
We develop an interior penalty discontinuous Galerkin finite element method (IPDG-FEM) based on the heterogenous multiscale method (HMM), for the multiscale linear elasticity problems. The optimal error estimate is given for periodic media.
multiscale linear elasticity problems; heterogeneous multiscale method; discontinuous Galerkin method
O242.1
A
10.3969/j.issn.1674-8085.2014.04.006
1674-8085(2014)04-0027-04
2014-02-09;
2014-03-11
江西省自然科學(xué)基金項(xiàng)目(20132BAB211018);吉安市軟科學(xué)計(jì)劃項(xiàng)目(吉市科計(jì)字[2012]32-7);井岡山大學(xué)博士科研啟動(dòng)基金項(xiàng)目(JZB11002).
余 濤(1983-),男,江西萬安人,講師,博士,主要從事多尺度建模研究(E-mail: yutao@jgsu.edu.cn).