亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The Diffusion Relaxation Approximation of the Incompressible Navier-Stokes Equations

        2014-08-08 02:56:00LIUYanhuiYANGJianwei
        關(guān)鍵詞:橢圓型春華廣西師范大學(xué)

        LIU Yanhui,YANG Jianwei

        (1.Faculty of Science,Hunan Institute of Engineering,Xiangtan 411104,Hunan;2.College of Mathematics and Information Science,North China University of Water Resources and Electric Power,Zhengzhou 450011,Henan)

        1 Introduction

        Let us consider the following system

        for(x,t)∈T2×[0,T],whereT2=(R/Z)2is the unit periodic square.The unknowns aren∈R,u∈R2,V∈R2,2and φ∈R.

        Now,let us consider a diffusive scaling,namely,for τ>0,we set

        Therefore system(1)becomes

        In this paper we shall prove that,under some suitable assumptions,the solutions to(3)converge,when τ goes to 0,to the(smooth)solutions of the incompressible Navier-Stokes equations

        The aim of this note is to give a rigorous justification to this formal computation by using the hyperbolic energy method.

        There have been a lot of studies on the diffusive scalinghas been largely investigated in the framework of hydrodynamic limit of the Boltzmann equation[1]and in the analysis of hyperbolic-parabolic relaxation limits for weak solutions of hyperbolic systems of balance laws with strongly diffusive source term[2-3].Brenier et al[4]study the relaxation approximation of the incompressible version of present relaxation system by using the modulated energy method.For other diffusive relaxation models and some useful results,the reader is refered to[5-11].

        Here we state the main differences between the present paper and [7].First,the convergence rates obtained in two papers are different.Second,the new unknowns introduced by us are also different from[7].Therefore,each equation of the error system in present paper involves singular term which is different from[7].Finally,we give the convergence rate forVwhich has not been given in[7].We noticed that the method used in[7]can also obtain our result.

        2 The main result

        In this section,we state our main theorem.For this,we first recall the following classical result on the existence of sufficiently regular solutions of the incompressible Euler equation[12-13].

        3 Proof of theorem 2.1

        3.1 Reformulation of the system with new unknownsAs in[14],we define the new unknownsn1,d1,ω1,D1,Ω1as

        with(u0,φ0)the solution of(4),and ω0=curlu0.Moreover,D0=divV0and Ω0=curlV0.Note that by taking the divergence of the second equation in(4)the pressure is given by

        Then,from system(3)we know the vector(n1,d1,ω1,D1,Ω1)solves the system

        Here,we have used the fact that

        3.2 Energy estimatesFor|α|≤s-1 withs≥4,let us set

        Taking theL2inner product of the equations in(8)with,respectively,one gets,by integration by parts and using Cauchy-Schwartz's inequality,Sobolev's lemma,basic Moser-type calculus inequalities[15]that

        By an integration by parts,we have

        The termsI2andI3are easily estimated by

        Therefore,we obtain the estimate

        Combining(9)with(12)~(16)together and summing this over all multiindexes α≤s-1,one gets

        Then by the Gronwall inequality and the initial data assumption(6)we can conclude,that if the solution(u0,φ0)of incompressible Navier-Stokes equations(4)is smooth on the time interval[0,T],for anyT1<Tthere exists τ0such that the sequence(n1,d1,ω1,D1,Ω1) ‖τ<τ0is bounded inC([0,T],Hs-1(T2)).Then we have

        This proves Theorem 2.1.

        AcknowledgmentsThe authors are very grateful to both referees for their constructive comments and helpful suggestions,which considerably improved the presentation of the paper.

        [1]Bouchut F,Golse F,Pulvirenti M.Kinetic Equations and Asymptotic Theory[M].Paris:Gauthiers-Villars,2000.

        [2]Donatelli D,Marcati P.Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems[J].Trans Am Math Soc,2004,356:2093-2121.

        [3]Marcati P,Rubino B.Hyperbolic to parabolic relaxation theory for quasilinear first order systems[J].J Diff Eqns,2000,162:359-399.

        [4]Brenier Y,Natalini R,Puel M.On a relaxation approximation of the incompressible Navier-Stokes equations[J].Proc Am Math Soc,2004,132:1021-1028.

        [5]Jin S,Liu H L.Diffusion limit of a hyperbolic system with relaxation[J].Meth Appl Anal,1998,5:317-334.

        [6]Yong W A.Relaxation limit of multi-dimensional isentropic hydrodynamical models for semiconductors[J].SIAM J Appl Math,2004,64:1737-1748.

        [7] Natalini R,Rousset F.Convergence of a singular Euler-Poisson approximation of the incompressible Navier-Stokes equations[J].Proc Am Math Soc,2006,134:2251-2258.

        [8]Xu J,Yong W A.Relaxation-time limits of non-isentropic hydrodynamic models for semiconductors[J].J Diff Eqns,2009,247:1777-1795.

        [9]Yang J W,Wang S.The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas[J].J Math Anal Appl,2011,380:343-353.

        [10]廖為,蒲志林.一類擬線性橢圓型方程Dirichlet問題正解的存在性[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2007,30(1):31-35.

        [11]李傳華,馮春華.一類二階常p-Laplace系統(tǒng)周期解的存在性[J].廣西師范大學(xué)學(xué)報(bào):自然科學(xué)版,2011,29(3):28-32.

        [12]McGrath F J.Nonstationary plane flow of viscous and ideal fluds[J].Arch Rational Mech Anal,1968,27:229-348.

        [13]Kato T.Nonstationary flow of viscous and ideal fluids in R3[J].J Funct Anal,1972,9:296-305.

        [14]Loeper G.Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampère systems[J].Commun Partial Diff Eqns,2005,30:1141-1167.

        [15]Taylor M E.Partial Differential Equations(III)of Applied Mathematical Sciences[M].New York:Springer-Verlag,1997.

        猜你喜歡
        橢圓型春華廣西師范大學(xué)
        廣西師范大學(xué)教育學(xué)部特殊教育系簡介
        一類帶臨界指數(shù)增長的橢圓型方程組兩個(gè)正解的存在性
        待到春華爛漫時(shí)
        黃河之聲(2020年5期)2020-05-21 08:24:38
        我們該如何表達(dá)苦難?——讀黃春華《扁腦殼》
        AnAnalysisofInterculturalCommunicationEnglishTeachinginChinese HighSchoolfromthePerspectiveofPost—MethodPedagogy
        一類擬線性橢圓型方程的正解
        一類完全非線性橢圓型方程組解的對稱性
        RN擬線性橢圓型方程兩個(gè)非負(fù)解的存在性
        春華而后秋實(shí)
        海峽姐妹(2015年3期)2015-02-27 15:10:04
        TI-Injective and TI-Flat Modules
        综合图区亚洲另类偷窥| 久草热这里只有精品在线| 日韩欧美亚洲国产一区二区三区 | 国产一区不卡视频在线| 天堂av一区一区一区| 成人免费av高清在线| 亚洲 欧美 综合 在线 精品| 国产成人av一区二区三区在线观看| 国产精品成人aaaaa网站| 97久久精品亚洲中文字幕无码| 一本一本久久a久久精品综合| 久久国产36精品色熟妇| 日本精品久久久久中文字幕1| 日本在线中文字幕一区| 日韩精品极品免费在线视频| 亚洲日本人妻少妇中文字幕| 亚洲无线一二三四区手机| 爆乳熟妇一区二区三区霸乳| 99亚洲精品久久久99| 视频二区 无码中出| 日本一区二区三区精品免费| 豆国产96在线 | 亚洲| 亚洲色大成网站www久久九| 精品国产精品久久一区免费式| 亚洲精品乱码久久久久99| 国内精品少妇久久精品| 国产亚洲成性色av人片在线观| 在线涩涩免费观看国产精品| 亚洲日韩一区二区一无码| 国产三级精品三级在线观看粤语| 日本特殊按摩在线观看| 日本一区二区视频免费在线看| 色综合色狠狠天天综合色| 免费毛片视频网站| 日本红怡院东京热加勒比| 美女被男人插得高潮的网站| 美女网站免费福利视频| 亚洲爆乳无码专区| 亚洲午夜精品国产一区二区三区| 一本久道竹内纱里奈中文字幕| 国产乱码一区二区三区爽爽爽|