亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The Diffusion Relaxation Approximation of the Incompressible Navier-Stokes Equations

        2014-08-08 02:56:00LIUYanhuiYANGJianwei
        關(guān)鍵詞:橢圓型春華廣西師范大學(xué)

        LIU Yanhui,YANG Jianwei

        (1.Faculty of Science,Hunan Institute of Engineering,Xiangtan 411104,Hunan;2.College of Mathematics and Information Science,North China University of Water Resources and Electric Power,Zhengzhou 450011,Henan)

        1 Introduction

        Let us consider the following system

        for(x,t)∈T2×[0,T],whereT2=(R/Z)2is the unit periodic square.The unknowns aren∈R,u∈R2,V∈R2,2and φ∈R.

        Now,let us consider a diffusive scaling,namely,for τ>0,we set

        Therefore system(1)becomes

        In this paper we shall prove that,under some suitable assumptions,the solutions to(3)converge,when τ goes to 0,to the(smooth)solutions of the incompressible Navier-Stokes equations

        The aim of this note is to give a rigorous justification to this formal computation by using the hyperbolic energy method.

        There have been a lot of studies on the diffusive scalinghas been largely investigated in the framework of hydrodynamic limit of the Boltzmann equation[1]and in the analysis of hyperbolic-parabolic relaxation limits for weak solutions of hyperbolic systems of balance laws with strongly diffusive source term[2-3].Brenier et al[4]study the relaxation approximation of the incompressible version of present relaxation system by using the modulated energy method.For other diffusive relaxation models and some useful results,the reader is refered to[5-11].

        Here we state the main differences between the present paper and [7].First,the convergence rates obtained in two papers are different.Second,the new unknowns introduced by us are also different from[7].Therefore,each equation of the error system in present paper involves singular term which is different from[7].Finally,we give the convergence rate forVwhich has not been given in[7].We noticed that the method used in[7]can also obtain our result.

        2 The main result

        In this section,we state our main theorem.For this,we first recall the following classical result on the existence of sufficiently regular solutions of the incompressible Euler equation[12-13].

        3 Proof of theorem 2.1

        3.1 Reformulation of the system with new unknownsAs in[14],we define the new unknownsn1,d1,ω1,D1,Ω1as

        with(u0,φ0)the solution of(4),and ω0=curlu0.Moreover,D0=divV0and Ω0=curlV0.Note that by taking the divergence of the second equation in(4)the pressure is given by

        Then,from system(3)we know the vector(n1,d1,ω1,D1,Ω1)solves the system

        Here,we have used the fact that

        3.2 Energy estimatesFor|α|≤s-1 withs≥4,let us set

        Taking theL2inner product of the equations in(8)with,respectively,one gets,by integration by parts and using Cauchy-Schwartz's inequality,Sobolev's lemma,basic Moser-type calculus inequalities[15]that

        By an integration by parts,we have

        The termsI2andI3are easily estimated by

        Therefore,we obtain the estimate

        Combining(9)with(12)~(16)together and summing this over all multiindexes α≤s-1,one gets

        Then by the Gronwall inequality and the initial data assumption(6)we can conclude,that if the solution(u0,φ0)of incompressible Navier-Stokes equations(4)is smooth on the time interval[0,T],for anyT1<Tthere exists τ0such that the sequence(n1,d1,ω1,D1,Ω1) ‖τ<τ0is bounded inC([0,T],Hs-1(T2)).Then we have

        This proves Theorem 2.1.

        AcknowledgmentsThe authors are very grateful to both referees for their constructive comments and helpful suggestions,which considerably improved the presentation of the paper.

        [1]Bouchut F,Golse F,Pulvirenti M.Kinetic Equations and Asymptotic Theory[M].Paris:Gauthiers-Villars,2000.

        [2]Donatelli D,Marcati P.Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems[J].Trans Am Math Soc,2004,356:2093-2121.

        [3]Marcati P,Rubino B.Hyperbolic to parabolic relaxation theory for quasilinear first order systems[J].J Diff Eqns,2000,162:359-399.

        [4]Brenier Y,Natalini R,Puel M.On a relaxation approximation of the incompressible Navier-Stokes equations[J].Proc Am Math Soc,2004,132:1021-1028.

        [5]Jin S,Liu H L.Diffusion limit of a hyperbolic system with relaxation[J].Meth Appl Anal,1998,5:317-334.

        [6]Yong W A.Relaxation limit of multi-dimensional isentropic hydrodynamical models for semiconductors[J].SIAM J Appl Math,2004,64:1737-1748.

        [7] Natalini R,Rousset F.Convergence of a singular Euler-Poisson approximation of the incompressible Navier-Stokes equations[J].Proc Am Math Soc,2006,134:2251-2258.

        [8]Xu J,Yong W A.Relaxation-time limits of non-isentropic hydrodynamic models for semiconductors[J].J Diff Eqns,2009,247:1777-1795.

        [9]Yang J W,Wang S.The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas[J].J Math Anal Appl,2011,380:343-353.

        [10]廖為,蒲志林.一類擬線性橢圓型方程Dirichlet問題正解的存在性[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2007,30(1):31-35.

        [11]李傳華,馮春華.一類二階常p-Laplace系統(tǒng)周期解的存在性[J].廣西師范大學(xué)學(xué)報(bào):自然科學(xué)版,2011,29(3):28-32.

        [12]McGrath F J.Nonstationary plane flow of viscous and ideal fluds[J].Arch Rational Mech Anal,1968,27:229-348.

        [13]Kato T.Nonstationary flow of viscous and ideal fluids in R3[J].J Funct Anal,1972,9:296-305.

        [14]Loeper G.Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampère systems[J].Commun Partial Diff Eqns,2005,30:1141-1167.

        [15]Taylor M E.Partial Differential Equations(III)of Applied Mathematical Sciences[M].New York:Springer-Verlag,1997.

        猜你喜歡
        橢圓型春華廣西師范大學(xué)
        廣西師范大學(xué)教育學(xué)部特殊教育系簡介
        一類帶臨界指數(shù)增長的橢圓型方程組兩個(gè)正解的存在性
        待到春華爛漫時(shí)
        黃河之聲(2020年5期)2020-05-21 08:24:38
        我們該如何表達(dá)苦難?——讀黃春華《扁腦殼》
        AnAnalysisofInterculturalCommunicationEnglishTeachinginChinese HighSchoolfromthePerspectiveofPost—MethodPedagogy
        一類擬線性橢圓型方程的正解
        一類完全非線性橢圓型方程組解的對稱性
        RN擬線性橢圓型方程兩個(gè)非負(fù)解的存在性
        春華而后秋實(shí)
        海峽姐妹(2015年3期)2015-02-27 15:10:04
        TI-Injective and TI-Flat Modules
        国产精品久久久久久久成人午夜| 亚洲AV无码一区二区一二区色戒| 无人视频在线播放在线观看免费| 亚洲av黄片一区二区| 色综合中文字幕综合网| 亚洲av第一区国产精品| 亚洲av永久无码精品漫画| 国产好大好硬好爽免费不卡| 日韩人妻无码一区二区三区久久99| 国产AV无码专区亚洲AV桃花庵| 国产成人色污在线观看| 美女主播网红视频福利一区二区| 疯狂添女人下部视频免费| 成年男女免费视频网站| 亚洲一区二区三区免费av在线| 亚洲天堂一区二区精品| 色吧噜噜一区二区三区| 97在线视频人妻无码| 成av人片一区二区三区久久| 久久伊人影院| av网页在线免费观看| 日韩av毛片在线观看| 无码人妻丰满熟妇区bbbbxxxx | 中文字幕色婷婷在线视频| 精品一区二区三区亚洲综合| 色综合久久中文娱乐网| 欧美白人最猛性xxxxx| 日韩欧美在线播放视频| 白白色发布视频在线播放 | 亚洲av无码一区二区二三区下载| 国产精品国产三级国产av主| 亚洲熟女一区二区三区250p| 色综合久久久久久久久久| 超碰97人人做人人爱少妇| 精品囯产成人国产在线观看| 亚洲中文字幕一二区精品自拍| 中文字幕人妻丝袜成熟乱| 亚洲av无码专区国产乱码不卡| 麻豆国产成人AV网| 亚洲中文字幕精品视频| 四虎国产精品永久在线国在线 |