亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        TI-Injective and TI-Flat Modules

        2010-11-26 09:20:22XIANGYueming
        關(guān)鍵詞:廣西師范大學(xué)維數(shù)桂林

        XIANG Yue-ming

        (College of Mathematics and Computer Science, Hunan Normal University, Changsha 410006, China)

        1 Introduction

        ArightR-moduleTiscalledtorsionlessiftheevaluationmapσ:T→T**isinjection.AringRissaidtoberight∏-coherent[5]ifeveryfinitelygeneratedtorsionlessrightR-moduleisfinitelypresented.TherightFGT-injectivedimensionofarightR-moduleM[6],denotedbyFGT-id(M),isdefinedastheleastnonnegativeintegernsuchthatExtn+1(T,M)=0foranyfinitelygeneratedtorsionlessrightR-moduleT.SetFGT-I.dim(R) =sup{FGT-id(M):M∈MR}andcallFGT-I.dim(R)therightFGT-injectivedimensionofR.TheleftFGT-flatdimensionofaleftR-moduleF,denotedbyFGT-fd(F),isdefinedastheleastnonnegativeintegernsuchthatTorn+1(T,F)=0foranyfinitelygeneratedtorsionlessrightR-moduleT.ArightR-moduleMiscalledFGT-injectiveifExt1(T,M)=0foranyfinitelygeneratedtorsionlessrightR-moduleT.AleftR-moduleFiscalledFGT-flatifTor1(T,F)=0foranyfinitelygeneratedtorsionlessrightR-moduleT(see[6]).AleftR-moduleMisFGT-flatifandonlyifM+isFGT-injectivebythestandardisomorphismExt1(T,M+)?Tor1(M,T)+foranyfinitelygeneratedtorsionlessrightR-moduleT.WewriteTIfortheclassofallFGT-injectiveR-modules.Following[4],TIisclosedunderextensions,directsummandsanddirectproducts.IfRisa∏-coherentring,thenTIisclosedunderdirectsums,directlimitsandpuresubmodules.

        Thetheoryof(pre)coversand(pre)envelopestakesanimportantpartintheoryofringsandmodules,homologicalalgebra,representationtheoryofalgebraandsoon. (Pre)envelopesand(pre)coversofmoduleshavebeenstudiedbymanyauthors[2,4,7-9].Inparticular,thecokernelof(pre)envelopeandthekernelof(pre)coverarealsoconsidered[10-12].InSection2ofthisarticle,weintroducetheconceptsofTI-injectiveandTI-flatmodulesandshowsomeoftheirgeneralproperties.Section3isdevotedtoTI-dimensionsofmodulesandrings.

        2 TI-injective modules and TI-flat modules

        Definition1ArightR-moduleMissaidtobeTI-injectiveifExt1(N,M)=0foranyFGT-injectiverightR-moduleN.AleftR-moduleFiscalledTI-flatifTor1(N,F)=0foranyFGT-injectiverightR-moduleN.

        Remark1(1)Bywakamutsu’sLemma,anykernelofanFGT-injectivecoverisTI-injective.

        (2)AleftR-moduleFisTI-flatifandonlyifF+isTI-injectivebythestandardisomorphismExt1(N,F+) ?Tor1(N,F)+foranyFGT-injectiverightR-moduleN.

        Proposition1ThefollowingareequivalentforarightR-moduleM:

        (1)MisTI-injective.(2)Foreveryexactsequence0→M→A→B→0withanFGT-injective,A→BisanFGT-injectiveprecoverofB.(3)MisthekernelofanFGT-injectiveprecoverf:A→BwithAinjective.(4)Misinjectivewithrespecttoeveryexactsequence0→K→A→C→0,whereCisFGT-injective.

        ProofTheproofissimilartothatof[10,Proposition2.4].

        Itisclearthateveryinjective(flat)moduleisTI-injective(TI-flat)byDefinition1.Theconverseisnottrueingeneral.However,ifRisaright∏-coherentring,wehavethefollowingproposition.

        ArightR-moduleMiscalledreduced[2]ifMhasnononzeroinjectivesubmodules.Similartotheproofsof[10,Proposition2.3],[10,Proposition2.5],[10,Theorem2.6]respectively,wehave

        Proposition2LetRbearight∏-coherentring.Thenthefollowingstatementshold:

        (1)ArightR-moduleMisinjectiveifandonlyifMisTI-injectiveandFGT-id(M) ≤1.

        (2)AleftR-moduleFisflatifandonlyifFisTI-flatandFGT-fd(F)≤1.

        Proposition3LetMbearightR-moduleoveraright∏-coherentringR.Thenthefollowingareequivalent:

        (1)MisreducedTI-injective. (2)MisthekernelofanFGT-injectivecoverf:A→BwithAinjective.

        Theorem1LetMbearightR-moduleoveraright∏-coherentringR.Thenthefollowingareequivalent:

        (1)MisTI-injective.

        (2)MisadirectsumofaninjectiverightR-moduleandareducedTI-injectiverightR-module.

        Proposition4LetSbeasimpleR-moduleoveracommutativeringR.Thenthefollowingareequivalent:

        (1)SisTI-injective. (2)SisTI-flat.

        ProofSupposethat{Si}i∈IisanirredundantsetofrepresentativesofthesimpleR-modules.LetE=E(⊕i∈ISi),theinjectivehullof⊕i∈ISi,thenEisaninjectivecogenerator.ForanyFGT-injectiveR-moduleN,thereexistsanisomorphismExt1(N,Hom(S,E))?Hom(Tor1(N,S),E).NotethatHom(S,E)?S.ThusSisTI-injectiveifandonlyifExt1(N,Hom(S,E)) =0ifandonlyifHom(Tor1(N,S),E)=0ifandonlyifTor1(N,S)=0ifandonlyifSisTI-flat.

        Proposition5LetRbeacommutative∏-coherentringandFbeaflatR-module.Thenthefollowingstatementshold:

        (1)MisTI-injectiveifandonlyifHom(F,M)isTI-injective.

        (2)NisTI-flatifandonlyifF?NisTIV-flat.

        Proof(1)(?)holdsbylettingF=R.(?).ForanyFGT-injectiveR-moduleEandflatR-moduleF,weclaimthatE?FisFGT-injective.Infact,anyfinitelygeneratedtorsionlessR-moduleTisfinitelypresentedsinceRis∏-coherent,thenthereisanexactsequence0→K→P→T→0withFandKfinitelygeneratedandPfree,soPandKarefinitelypresented.Ontheotherhand,thesequenceHom(P,E)?F→Hom(K,E)?F→0isexactsinceEisFGT-injective.Furthermore,wehavethefollowingcommutativediagram:

        Hom(P,E)?F→Hom(K,E)?F→0

        α↓β↓

        Hom(P,E?F) →Hom(K,E?F).

        SincePandKarefinitelypresented,by[2,Theorem3.2.14],αandβareisomorphic.ThenHom(P,E?F)→Hom(K,E?F)→0isexact.ThusExt1(T,E?F)=0,andhenceE?FisFGT-injective.

        NowweprovethatHom(F,M)isTI-injective.Thereexistsanexactsequence0→K1→P1→E→0withP1projective.ThenwehaveaninducedexactsequenceHom(P1?F,M)→Hom(K1?F,M)→Ext1(E?F,M)=0.

        SothesequenceHom(P1,Hom(F,M))→Hom(K1,Hom(F,M))→0isexact.ThusExt1(E,Hom(F,M))=0,asdesired.

        (2)NisTI-flatifandonlyifN+isTI-injectiveifandonlyifHom(F,N+)isTI-injectiveby(1)ifandonlyif(F?N)+isTI-injectivebythestandardisomorphism(F?N)+?Hom(F,N+)ifandonlyifF?NisTI-flat.

        RecallthatRisaQF-ring[1]ifRisleft(right)noetherianandRR(RR)isinjective.HerewehaveanewcharacterizationofQF-rings.

        Theorem2RisaQF-ringifandonlyifeveryrightR-moduleisTI-injective.

        ProofIfRisaQF-ring,inviewof[4,Remark2.3 (2)],everyFGT-injectiverightR-moduleisinjective,andhenceeveryFGT-injectiverightR-moduleisprojectiveby[1,Theorem31.9].ThuseveryrightR-moduleisTI-injective.Conversely,notethatanyinjectiverightR-moduleMisFGT-injective,byassumption,anyrightR-moduleNisTI-injective,soExt1(M,N)=0,henceMisprojective.Therefore,RisaQF-ringby[1,Theorem31.9]again.

        Inthefollowingproposition,weconsiderthecokernelofanFGT-flatpreenvelope.

        Proposition6LetRbearight∏-coherentring.Thenthefollowingstatementshold:

        (1)IfCisthecokernelofanFGT-flatpreenvelopef:M→FofaleftR-moduleMwithFflat,thenCisTI-flat.

        (2)IfLisafinitelypresentedTI-flatleftR-module,thenListhecokernelofanFGT-flatpreenvelopeg:K→PwithPflat.

        ProofTheproofissimilartothatof[10,Proposition2.7].

        LetKbeasubmoduleofleftR-moduleM.Kiscalledaclosedsubmodule[13]ifM/Kistorsionless.

        Proposition7LetRbealeftandright∏-coherentring.Thenthefollowingareequivalent:

        (1)FGT-id(RR) ≤1. (2)EveryclosedsubmoduleofafinitelygeneratedTI-flatleftR-moduleisTI-flat.

        Proof(1)?(2).LetKbeaclosedsubmoduleofafinitelygeneratedTI-flatleftR-moduleM.ForanyFGT-injectiverightR-moduleN,thereisanexactsequenceTor2(N,M/K)→Tor1(N,K)→Tor1(N,M) = 0.InviewofTheorem5.6.16andTheorem5.6.17of[6],FGT-fd(NR) ≤1.NotethatM/Kisfinitelygeneratedtorsionless,soTor2(N,M/K)=0.ThusTor1(N,K)=0,andhenceKisTI-flat.

        (2)?(1).ForanyfinitelygeneratedtorsionlessleftR-moduleM,thereisanexactsequence0→K→F→M→0,whereKisclosedsubmoduleoffinitelygeneratedfreeR-moduleF.Sothereisaninducedexactsequence0=Tor2((RR)+,F)→Tor2((RR)+,M)→Tor1((RR)+,K) →…Byassumption,KisTI-flat.ThenTor1((RR)+,K)=0,andhenceTor2((RR)+,M)=0.SoFGT-fd((RR)+) ≤1.By[6,Theorem5.6.11],FGT-id(RR)≤1.

        3 TI-dimensions

        LetRbearight∏-coherentring.By[4,Theorem3.4],everyrightR-modulehasaTI-precover.TheneveryrightR-modulehasaleftTI-resolution.Accordingto[9,Theorem3.5]and[4,Lemma3.2],itiseasytoverifythateveryrightR-modulehasaTI-preenvelope.ThuseveryrightR-modulehasarightTI-resolution.SoHom(-,-)isleftbalanced[14]onMR×MRbyTI×TI.LetExtn(-,-)bethenthleftderivedfunctorofHom(-,-)withrespecttothepairTI×TI.Then,fortworightR-modulesMandN,Extn(M,N)canbecomputedbyusingarightTI-resolutionofMoraleftTI-resolutionofN.

        Proposition8LetRbearight∏-coherentring.ThefollowingareequivalentforarightR-moduleM:

        (1)MisFGT-injective. (2)Thecanonicalmapα:Ext0(M,N)→Hom(M,N)isanepimorphismforanyrightR-moduleN. (3)Thecanonicalmapα:Ext0(M,M)→Hom(M,M)isanepimorphism.

        ProofTheproofissimilartothatof[10,Proposition3.1].

        Lemma1LetRbearight∏-coherentringandMarightR-module.ThenFGT-id(M)=rightTI-dimM.Moreover,FGT-I.dim(R)=gl.rightTI-dimMR.

        ProofNotethatrightTI-resolutionisexactbecauseinjectivemoduleisFGT-injective.ItiseasytoseethatFGT-id(M)≤rightTI-dimM.Conversely,assumethatFGT-id(M)=n<∞.Let0→M→F0→F1→…→Fn→…bearightTI-resolutionofM.Thenwehaveanexactsequence0→M→F0→F1→…→Fn-1→L→0,whereL=Coker(Fn-2→Fn-1).By[6,Proposition5.5.4],LisFGT-injective,andhencerightTI-dimM≤n.

        Proposition9LetRbearight∏-coherentring.ThefollowingareequivalentforarightR-moduleM:

        (1)FGT-id(M)≤1.

        (2)Thecanonicalmapα:Ext0(M,N)→Hom(M,N)isamonomorphismforanyrightR-moduleN.

        ProofTheproofissimilartothatof[10,Proposition3.3].

        AringRiscalledaD-ring[13]ifI=rl(I)foreveryrightidealIandL=lr(L)foreveryleftidealLofR,wherel(I)(resp.r(L))denotestheleft(resp.right)annihilatorofI(resp.L).ItisshownthatFGT-injectiveR-modulescoincidewithinjectiveR-modulesoveraD-ring(see[6,Proposition5.5.1]).

        Proposition10LetRbearight∏-coherentring.If

        (1)FGT-id(RR)≤1.(2)Thecanonicalmapα:Ext0(R,N) →Hom(R,N)isamonomorphismforanyrightR-moduleN.(3)EveryTI-injectiverightR-modulehasanepimorphicTI-precover.Then(1)?(2)and(1)?(3).IfRisaD-ring,then(3)?(1).

        Proof(1)?(2)followsfromProposition9.

        (1)?(3).LetMbeaTI-injectiverightR-module.ByProposition1,MiskernelofaTI-precoverofarightR-moduleN.ThenwehavealeftTI-resolution…→F1→F0→N→0,whereM=Ker(F0→N)andFiisFGT-injectiveforalli.Ontheotherhand,thereisanexactsequence0→R→F0→F1→0,whereFiisFGT-injectivefori=0,1.So0→Hom(F1,N)→Hom(F0,N)→Hom(R,N)isexact.ThusExtk(R,N) = 0fork≥ 1andExt0(R,N) →Hom(R,N)ismonomorphicbyProposition9.ButcomputingExt0(R,N)usingaleftTI-resolutionofN,weseethatF1→F0→NisexactatF0,soMadmitsanepimorphicTI-precover.

        (3)?(1).IfRisaD-ring,forleftTI-resolution…→F1→F0→N→0ofarightR-moduleNwithK1=Ker(F0→N),byProposition1,K1isTI-injective.Byassumption,K1hasanepimorphicTI-precoverF1→K1,henceHom(R,F1) →Hom(R,K1)isepimorphic.By[15,Lemma2.2],FGT-id(RR) ≤ 1.

        Proposition11LetRbearight∏-coherentringandanintegern≥ 2.ThefollowingareequivalentforarightR-moduleM. (1)rightTI-dimM≤n.(2)Extn+k(M,N)=0forallrightR-modulesNandk≥-1.(3)Extn-1(M,N)=0forallrightR-modulesN.

        Proof(1)?(2).Let0→M→E0→E1→…→En→0bearightTI-resolutionofM.Then0→Hom(En,N)→Hom(En-1,N)→Hom(En-2,N)isexactandsoExtn-1(M,N)=Extn(M,N)=0.Inaddition,itisclearthatExtn+k(M,N)=0forallk≥ 1.Hence(2)follows.

        (2)?(3)istrivial. (3)?(1).Let0→M→E0→E1→…bearightTI-resolutionofMandletC=im(En-2→En-1).ThenExtn-1(M,En-1/C)=0byassumption.ButthenEn-1/C→Enhasaretract.HenceEn-1/CisFGT-injective.So0→M→E0→E1→…→En-1→En-1/C→0mustbearightTI-resolutionofM.

        AclassCofrightR-modulesissaidtobecoresolving[8]ifE∈CforallinjectiveR-modulesE,ifCisclosedunderextensions,andifgivenanexactsequenceofrightR-modules0→A′→A→A→ 0,A″∈CwheneverA′,A∈C.By[4,Lemma3.2],TIiscoresolvingoveraright∏-coherentring.Thenwehavethefollowingproposition.

        Proposition12LetRbearight∏-coherentringandanintegern≥2.Considerthefollowingstatements.

        (1)leftTI-dimN≤n-2. (2)Extn+k(M,N)=0forallrightR-modulesMandk≥-1. (3)Extn-1(M,N)=0forallrightR-modulesM.

        Then(1)?(2)?(3).IfRisaD-ring,then(3)?(1).

        Corollary1LetRbearight∏-coherentringandanintegern≥2.Considerthefollowingstatements.

        (1)gl.leftTI-dimMR≤n-2. (2)gl.rightTI-dimMR≤n. (3)Extn+k(M,N) =0forallrightR-modulesM,Nandk≥-1. (4)Extn-1(M,N)=0forallrightR-modulesM,N.

        Then(1)?(3)?(4)?(2).IfRisaD-ring,then(2)?(1).

        ProofItfollowsfromProposition11andProposition12.

        Ahomomorphismg:M→CwithC∈CissaidtobeaC-envelopewiththeuniquemappingproperty[7]ifforanyhomomorphismg′:M→C′withC′∈C,thereisauniquehomomorphismf:C→C′suchthatfg=g′.Dually,wehavethedefinitionofaC-coverwiththeuniquemappingproperty.

        Intheendofthissection,westudytheright∏-coherentringswithFGT-I.dim(R) ≤ 2.

        Theorem3Thefollowingareequivalentforaright∏-coherentringR:

        (1)FGT-I.dim(R) ≤ 2. (2)gl.rightTI-dimMR≤2. (3)EveryrightR-modulehasaTI-coverwiththeuniquemappingproperty. (4)EveryTI-injectiverightR-modulehasaTI-coverwhichismonomorphic.

        (3)?(2).ForanyrightR-moduleM,thereexistsaTI-coverf:F→Mwiththeuniquemappingproperty,hence0→F→M→0isaleftTI-resolution.Thusgl.leftTI-dimMR=0,sogl.rightTI-dimMR≤2byCorollary3.7.

        (1)?(4).LetMbeaTI-injectiverightR-module.ThenMisakernelofaTI-precoverF0→NofarightR-moduleN.ThuswehavealeftTI-resolution…→F1→F0→N→0,whereM=Ker(F0→N)andK2=Ker(F1→F0).Byassumption,FGT-id(K2) ≤2,soHom(K2,F2)→Hom(K2,K2)isepimorphicby[15,Lemma2.2].ThusK2isFGT-injective.Ontheotherhand,f:F1→MisaTI-precoverofM,thenwehavetheexactsequence0→K2→F1→im(f)→0.Thusim(f)isFGT-injectivesinceTIiscoresolving.Thereforetheinclusionim(f) →MisaTI-coverwhichismonomorphic.

        (4)?(1).LetMbearightR-moduleandlet…→F1→F0→N→0beanyleftTI-resolutionofarightR-moduleNandK2=Ker(F1→F0),K1=Ker(F0→N).K1hasamonomorphicTI-coverF→K1byassumption.ThusK2⊕F?F1intermsof[2,Lemma8.6.3].SoK2isFGT-injective.ThusF2→K2isasplitepimorphism.ThenHom(M,F2) →Hom(M,K2)isepimorphic,andhenceFGT-id(M)≤2by[15,Lemma2.2]again.ThereforeFGT-I.dim(R) ≤ 2.

        :

        [1]ANDERSONFW,FULLERKR.Ringsandcategoriesofmodules[M].NewYork:Springer-Verlag, 1974.

        [2]ENOCHSEE,JENDAOMG.Relativehomologicalalgebra[M].NowYork:WalterdeGruyterBerlin, 2000.

        [3]ROTMANJJ.Anintroductiontohomologicalalgebra[M].NewYork:AcademicPress, 1979.

        [4]MAOLX. ∏-coherentdimensionsand∏-coherentrings[J].JKoreanMathSoc, 2007, 44(3): 719-731.

        [5]CAMILLOV.Coherenceforpolynomialrings[J].JAlgebra, 1990, 132(1): 72-76.

        [6] 程福長,易 忠.環(huán)的同調(diào)維數(shù)[M].桂林:廣西師范大學(xué)出版社,2000.

        [7]DINGNQ.Onenvelopeswiththeuniquemappingproperty[J].CommAlgebra, 1996, 24(4): 1 459-1 470.

        [8]PINZONK.Absolutelypurecovers[J].CommAlgebra, 2008, 36(6): 2 186-2 194.

        [9]RADAJ,SAORINM.Ringscharacterizedby(pre)envelopesand(pre)coversoftheirmodules[J].CommAlgebra, 1998, 26(3): 899-912.

        [10]MAOLX,DINGNQ.FI-injectiveandFI-flatmodules[J].JAlgebra, 2007, 309(1): 367-385.

        [11]ENOCHSEE,JENDAOMG.Copureinjectivemodules[J].QuaestMath, 1991, 14(3): 401-409.

        [12]ENOCHSEE,JENDAOMG.Copureinjectiveresolutions,flatresolutionsanddimensions[J].CommentMath, 1993, 34(2): 203-211.

        [13]WANGMY.Somestudyson∏-coherentrings[J].ProcAmerMathSoc, 1993, 119(1): 71-76.

        [14]ENOCHSEE,JENDAOMG.Balancedfunctorsappliedtomodules[J].JAlgebra, 1985, 92(2): 303-310.

        [15]XIANGYM.FGT-injectivedimensionsof∏-coherentringsandalmostexcellentextension[J].ProcIndianAcadSci(MathSci), 2010, 120(2): 149-161.

        猜你喜歡
        廣西師范大學(xué)維數(shù)桂林
        桂林六漫之歌
        歌海(2024年2期)2024-06-06 05:54:00
        桂林,美
        β-變換中一致丟番圖逼近問題的維數(shù)理論
        廣西師范大學(xué)教育學(xué)部特殊教育系簡介
        一類齊次Moran集的上盒維數(shù)
        AnAnalysisofInterculturalCommunicationEnglishTeachinginChinese HighSchoolfromthePerspectiveofPost—MethodPedagogy
        哪有你這樣你
        讀者(2018年16期)2018-07-31 05:08:12
        關(guān)于齊次Moran集的packing維數(shù)結(jié)果
        涉及相變問題Julia集的Hausdorff維數(shù)
        桂林游
        小主人報(2015年1期)2015-03-11 19:40:59
        香蕉视频在线观看国产| 无套内谢孕妇毛片免费看| 67194熟妇人妻欧美日韩| 久久亚洲中文字幕无码| 国产精品一区2区三区| 一区二区在线观看日本免费| 亚洲一区在线观看中文字幕| 国产成人无码一区二区在线播放| 中文字幕一区二区三区乱码不卡 | 免费拍拍拍网站| 99视频在线国产| 国产自产自现在线视频地址| 亚洲女优中文字幕在线观看| 大肉大捧一进一出好爽视频| 欧美黄色免费看| 最新国产成人自拍视频| 亚洲夫妻性生活免费视频| 亚洲人成未满十八禁网站| 自拍 另类 综合 欧美小说| 国产成人av一区二区三| 久久精品成人一区二区三区 | 亚洲av色影在线| 五月婷婷俺也去开心| 国产在线欧美日韩精品一区二区 | 日本一道dvd在线中文字幕| 国产内射一级一片内射高清视频1| 男人的天堂av网站| 妇女性内射冈站hdwwwooo| 国产精品白浆免费观看| 国产精品狼人久久影院软件介绍| 色www视频永久免费| 国产91在线免费| 久久精品天堂一区二区| 中文字幕在线观看| 日韩一线无码av毛片免费| 久久精品国产一区二区涩涩| 极品尤物精品在线观看| 亚洲av综合久久九九| 91久久综合精品国产丝袜长腿| 国产精品亚洲综合久久系列| 国产精品99精品无码视亚 |