亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        試論高考函數(shù)問題中的新熱點(diǎn)

        2014-04-29 00:00:00曾麗瓊
        新課程學(xué)習(xí)·下 2014年11期

        摘 要:對(duì)近幾年的高考試卷進(jìn)行分析可以看出,數(shù)學(xué)中函數(shù)問題的命題方式正發(fā)生著變化,它經(jīng)常與數(shù)學(xué)中的其他知識(shí)點(diǎn)或其他學(xué)科交叉命題,甚至?xí)跃C合性題目的形式對(duì)學(xué)生進(jìn)行考查,這種新的命題方式已成為高考命題的一個(gè)新的熱點(diǎn),因此,學(xué)生在學(xué)習(xí)過程中不僅要積累扎實(shí)的基礎(chǔ)知識(shí),還有注重發(fā)散思維和橫向思維能力的培養(yǎng)。針對(duì)數(shù)學(xué)中函數(shù)問題的新的命題趨勢(shì),從三次函數(shù)、抽象函數(shù)、向量知識(shí)和相關(guān)知識(shí)點(diǎn)結(jié)合的題型等幾個(gè)考查熱點(diǎn)進(jìn)行分析。

        關(guān)鍵詞:函數(shù);考查形式;熱點(diǎn)題型

        函數(shù)是高中數(shù)學(xué)的基礎(chǔ)知識(shí)和主干知識(shí),不僅起著連接數(shù)學(xué)知識(shí)的重要作用,也是高考的重點(diǎn)考查內(nèi)容,通常以方程、不等式和數(shù)列相結(jié)合的方式進(jìn)行考查。隨著近幾年課程改革的不斷深入,高考對(duì)函數(shù)的考查方式發(fā)生了深刻的變化。尤其是導(dǎo)數(shù)和向量等內(nèi)容的引入,不僅增加了解題途徑的多樣性和靈活性,也拓寬了有關(guān)函數(shù)問題的命題空間。

        一、高考函數(shù)的考查形式和特點(diǎn)分析

        函數(shù)的定義域、值域和反函數(shù)是高考對(duì)函數(shù)概念的考查形式,這類題型通常比較簡(jiǎn)單,可以直接通過具體問題找出函數(shù)關(guān)系。有關(guān)函數(shù)性態(tài)問題的題型偏中等難度,通過組合形式多角度的題型設(shè)置考查函數(shù)的單調(diào)性、奇偶性、周期性和對(duì)稱性。函數(shù)性質(zhì)的考查方式比較靈活,不僅考查學(xué)生對(duì)函數(shù)內(nèi)容的掌握情況,同時(shí)也考查對(duì)觀察問題、分析問題和解決問題的能力。函數(shù)的最值問題幾乎每年都考,也是高考的重要題型之一,大多數(shù)的最值問題都與應(yīng)用問題相結(jié)合,這類考題一般要求學(xué)生有靈活和準(zhǔn)確構(gòu)建函數(shù)模型的能力。

        導(dǎo)數(shù)是解決初等數(shù)學(xué)問題的有效工具,高考對(duì)于導(dǎo)數(shù)的考查主要偏重于其在函數(shù)和解析幾何中的應(yīng)用,主要的考查點(diǎn)有以下三個(gè)方面:(1)運(yùn)用導(dǎo)數(shù)解決函數(shù)的最值問題一直是高考每年考查的熱點(diǎn)。對(duì)于實(shí)際問題,通過建立相應(yīng)的數(shù)學(xué)模型,從數(shù)學(xué)的角度轉(zhuǎn)化為函數(shù)最大值和最小值的問題,然后利用導(dǎo)數(shù)的性質(zhì),解決函數(shù)最大值和最小值的問題,從而進(jìn)一步解決實(shí)際問題。(2)利用導(dǎo)數(shù)的幾何意義,將函數(shù)問題轉(zhuǎn)化為曲線斜率問題也是高考經(jīng)??疾榈闹攸c(diǎn)內(nèi)容之一。函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù),表示點(diǎn)P(x0,f(x0))處的斜率。(3)通過導(dǎo)數(shù)研究函數(shù)的單調(diào)性也是導(dǎo)數(shù)的一個(gè)重點(diǎn)應(yīng)用,在每年的高考中都會(huì)有所涉及。

        二、高考函數(shù)中的幾個(gè)熱點(diǎn)問題

        函數(shù)在數(shù)學(xué)中具有重要的地位,它不僅是高考考查的重點(diǎn)內(nèi)容,也是學(xué)生必須掌握的重要知識(shí)點(diǎn)。高考對(duì)于函數(shù)的考查趨勢(shì)將會(huì)在一定程度上高于課程標(biāo)準(zhǔn)。對(duì)函數(shù)概念、性質(zhì)和圖像問題的考查主要是通過選擇、填空等小題的形式,對(duì)于函數(shù)與不等式、數(shù)列、向量和解析幾何等綜合知識(shí)的考查主要通過解答題,重點(diǎn)考查學(xué)生理解、靈活運(yùn)用的能力,因此難度也會(huì)比較大。高考中應(yīng)用題的設(shè)置主要是考查運(yùn)用函數(shù)模型解題的能力,也是高考命題的熱點(diǎn)之一。下面針對(duì)幾種主要的高考考查熱點(diǎn)問題進(jìn)行相應(yīng)的題型分析。

        1.三次函數(shù)型問題

        以三次函數(shù)為主線的問題融合了三次函數(shù)、不等式、導(dǎo)數(shù)和方程等知識(shí),主要是考查極值和單調(diào)性問題的應(yīng)用。隨著中學(xué)數(shù)學(xué)課改后導(dǎo)數(shù)內(nèi)容的引入,三次函數(shù)最值、極值、圖像和單調(diào)性等內(nèi)容成為近幾年高考數(shù)學(xué)的考查熱點(diǎn),這類題目具有內(nèi)容新、方法新和背景新等特點(diǎn),整體難度不大。

        例1.已知f(x)=x3+bx2+cx+d在(-∞,0)上是增函數(shù),在[0,2]上是減函數(shù),且方程f(x)有一個(gè)根是2。

        (1)求c的值;

        (2)求證:f(1)≥2。

        于是f(1)=b+d+1=b-4(b+2)+1=-7-3b≥2。

        這種題型融合了三次函數(shù)、導(dǎo)數(shù)、不等式、方程等知識(shí),主要考查導(dǎo)數(shù)在三次函數(shù)極值與單調(diào)性中的應(yīng)用。

        2.抽象函數(shù)型問題

        這類問題主要考查抽象函數(shù)、數(shù)列和函數(shù)的單調(diào)性等知識(shí),解題的基本思路是先將抽象函數(shù)賦值,然后做恒等變形,通過函數(shù)單調(diào)性將函數(shù)關(guān)系轉(zhuǎn)化為自變量關(guān)系。通過對(duì)抽象函數(shù)賦值,可以找到一個(gè)具體的函數(shù)原型,通過研究具體函數(shù)的周期性、對(duì)稱性和單調(diào)性等,可以為抽象函數(shù)問題的解決提供新的思路,近幾年的高考數(shù)學(xué)中對(duì)抽象函數(shù)問題的考查有增加的趨勢(shì)。

        (1)若f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上都有意義,求a的取值范圍;

        (2)討論f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上是否是接近的。

        解:(1)要使f1(x)與f2(x)有意義,則有x-3a>0,x-a>0,(其中 a>0,且a≠1),即x>3a。要使f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上都有意義,等價(jià)于a+2>3a(a>0,且a≠1),所以0

        (2)由f1(x)-f2(x)=loga(x2-4ax+3a2),

        令loga(x2-4ax+3a2)≤1,得-1≤loga(x2-4ax+3a2)≤1 ①,

        ∵0

        解決這種抽象函數(shù)問題,關(guān)鍵是找到其函數(shù)特征,在本題中通過運(yùn)用該方法,脫去抽象函數(shù)的記號(hào),化為具體函數(shù)進(jìn)行解決。

        3.向量知識(shí)型問題

        這類問題主要考查向量、導(dǎo)數(shù)、不等式和函數(shù)等知識(shí),解題的基本思路是先將向量間的幾何關(guān)系轉(zhuǎn)化為坐標(biāo)關(guān)系,然后利用導(dǎo)數(shù)研究其單調(diào)性。由于向量具有可以和函數(shù)相互轉(zhuǎn)化的特點(diǎn),函數(shù)問題可以以向量的形式進(jìn)行表述,這也使得以向量知識(shí)為背景的函數(shù)問題成為高考的重點(diǎn)考查內(nèi)容。

        (1)求函數(shù)關(guān)系式s=f(t);

        (2)若函數(shù)s=f(t)在[1,+∞)上是單調(diào)函數(shù),求k的取值范圍。

        (2)f ′(x)=3t2-k,因?yàn)閒(t)在[1,+∞)上是單調(diào)函數(shù),所以在[1,+∞)上有f ′(t)≥0或者f ′(t)≤0。由f ′(t)≥0?圯3t2-k≥0?圯k≤3t2?圯k≤3。由f ′(t)≤0?圯3t2-k≤0?圯k≥3t2。因?yàn)樵趖∈[1,+∞)上3t2是增函數(shù),所以不存在k,使k≥3t2在[1,+∞)上恒成立。故k的取值范圍是k≤3。

        這類題融合了向量、導(dǎo)數(shù)、函數(shù)和不等式等知識(shí),具體的解題思路是:將幾何位置關(guān)系轉(zhuǎn)換為坐標(biāo)關(guān)系,然后運(yùn)用導(dǎo)數(shù)研究其單調(diào)性。

        4.與相關(guān)知識(shí)點(diǎn)結(jié)合的問題

        以高等數(shù)學(xué)知識(shí)為背景的題型主要以函數(shù)的邊界條件為背景,給函數(shù)設(shè)置新的情境,主要考查學(xué)生靈活運(yùn)用函數(shù)知識(shí)解決不等式恒成立的問題,解題的基本思路是首先理解題型中考查的定義,通過定義的證明求解不等式的恒成立。這種以高等數(shù)學(xué)知識(shí)為背景的函數(shù)問題成為最近幾年高考命題的熱點(diǎn),函數(shù)問題成為考查的重中之重。

        與概率和統(tǒng)計(jì)交叉的題型主要通過實(shí)際應(yīng)用問題的方式進(jìn)行考查,通過排列組合和概率統(tǒng)計(jì)知識(shí)考查概率的計(jì)算和概率分布,最近幾年形成的概率統(tǒng)計(jì)與函數(shù)相結(jié)合的題型也成為考查熱點(diǎn)。

        函數(shù)知識(shí)不僅是數(shù)學(xué)的重要內(nèi)容,也是研究其他學(xué)科的必備基礎(chǔ),通過函數(shù)知識(shí)可以研究和解決其他學(xué)科中的各種基礎(chǔ)問題,函數(shù)的教學(xué)內(nèi)容也包含著豐富的辯證思想,可以對(duì)學(xué)生進(jìn)行辯證唯物主義的教育。函數(shù)的思想方法已經(jīng)滲透到其他學(xué)科中,產(chǎn)生了廣泛的影響。

        綜上所述,近幾年的高考命題方式既考查學(xué)生對(duì)基本知識(shí)的掌握,也考查學(xué)生對(duì)相關(guān)知識(shí)點(diǎn)綜合題型的解題能力。這種多樣性的考查方式不僅體現(xiàn)了新教材的教育理念,也體現(xiàn)了新課程中新的思想和方法。這種考查學(xué)生基礎(chǔ)知識(shí)和綜合能力的命題特點(diǎn),可以提高學(xué)生的理解能力、辯證能力和應(yīng)用能力等。

        參考文獻(xiàn):

        劉運(yùn)金.高考函數(shù)問題中的新熱點(diǎn)討論[J].中學(xué)課程輔導(dǎo):教學(xué)研究,2014(20):157-158.

        編輯 王夢(mèng)玉

        综合色区亚洲熟妇另类| 亚洲五月天中文字幕第一页| 在线播放国产自拍av| 无码av不卡一区二区三区| 国产熟女高潮视频| 国产成年无码久久久免费 | 久久精品国产在热亚洲不卡| 国产精品一区二区av麻豆| 亚洲中文字幕无码久久| 98国产精品永久在线观看| 福利一区视频| 中文字幕在线一区乱码| 中文字幕精品一区二区的区别| 成人免费无遮挡在线播放| 精品少妇人妻av免费久久久| 日韩欧美亚洲国产一区二区三区 | 国产放荡对白视频在线观看| av无码久久久久久不卡网站| 亚洲AV无码日韩综合欧亚| 国产一区二区三区日韩在线观看| 亚洲乱码一区av春药高潮| 丰满少妇人妻无码专区| 亚洲国产av自拍精选| 手机在线免费av资源网| 99精品国产一区二区| 精品人妻无码中文字幕在线| 淫秽在线中国国产视频| 中文无码人妻有码人妻中文字幕| 国产va免费精品高清在线| 精品久久久久久午夜| 精品成人av人一区二区三区| 精品一区二区三区免费视频| 人与嘼av免费| 精品视频一区二区杨幂| 日本饥渴人妻欲求不满| 亚洲综合色自拍一区| 欧美成人a视频免费专区| 亚洲一区二区三区偷拍视频| 国产喷水1区2区3区咪咪爱av| 亚洲一区视频在线| 我的极品小姨在线观看|