函數(shù)是整個中學(xué)乃至大學(xué)的一個重點內(nèi)容.函數(shù)的思想貫穿了整個中學(xué)、大學(xué),具有極其廣泛的應(yīng)用價值.按目前的課程標(biāo)準(zhǔn),中學(xué)階段主要學(xué)習(xí)了一次函數(shù)、二次函數(shù)、反比例函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、反函數(shù)、三角函數(shù)形式等,其中二次函數(shù)在目前的教材中安排在初三,也起了一種承上啟下的作用.對它們學(xué)習(xí)的好壞,直接關(guān)系著高中繼續(xù)學(xué)習(xí)的難易程度問題,這兩周我校開展了公開課比賽,我聽了初二年級兩位老師的課,都是《6.1函數(shù)》,受益匪淺,有所思考.兩位老師的教學(xué)結(jié)構(gòu)、教學(xué)方式以及教學(xué)活動都是以學(xué)生為主體,雖教學(xué)活動各有千秋,但都以學(xué)生為主體,引導(dǎo)學(xué)生自主學(xué)習(xí),在各個環(huán)節(jié)引導(dǎo)學(xué)生.
一、創(chuàng)設(shè)情境
師:十年前大家還是個蹦蹦跳跳的孩子,隨著年齡的增長,大家的個子越來越高.我們生活在一個四季明顯的地理位置上,隨著四季的變化,氣溫也隨之變化……“變化”讓我們的生活多姿多彩,“變化”也時常給我們帶來困惑,所以“變”引領(lǐng)我們?nèi)ヌ剿餍轮?,這節(jié)課開始讓我們在變化過程中去感悟新知識——函數(shù).
下面我們先來看一個有關(guān)行程的問題.
從甲地到乙地,有一輛勻速行駛的列車.
師:在從甲地到乙地的行駛過程中,有哪些量?
生:甲乙兩地間的路程、速度、時間.
師:在這些量中有哪些量是沒有變化的?
生:列車行駛的速度數(shù)值不變.
師:還有沒有其他不變的量呢?(沉思片刻)
生:甲乙兩地的路程不變.
師:哪些量是不斷變化的?
生:列車行駛的時間.
師:還有嗎?
生:列車距起點、終點的路程不斷變化.
師:在上面的過程中,列車行駛的速度數(shù)值不變,甲地到乙地的路程數(shù)值不變,這樣的量我們稱之為常量.
而列車行駛的時間,列車距起點、終點的路程不斷變化,這樣的量我們稱之為變量.
由此,我們得到兩個新的概念:常量與變量的概念.
在某一變化過程中,數(shù)值保持不變的量叫做常量.
在某一變化過程中,可以取不同數(shù)值的量叫做變量.
二、探索活動
問題1 看一個波紋問題.
一石激起千層浪,水滴泛起層層波.變化中的波紋可以看作是一個不斷向外擴展的圓.
師:你能說出這個過程中的變量嗎?
生:半徑和圓的面積在變化.
師:你能用語言描述變化中圓的面積與其半徑大小之間的關(guān)系嗎?
生:圓的面積隨半徑的變化而變化.
問題2 看搭小魚問題.
如圖,搭一條小魚需要8根火柴,每多搭一條小魚就要增加6根火柴.
師:這個過程中有哪些變量?
生:小魚條數(shù)和所需火柴根數(shù).
師:你能寫出搭n條小魚所需的火柴根數(shù)s與小魚條數(shù)n之間的關(guān)系式嗎?
生:s=8+6(n-1).
師:說說你從關(guān)系式中獲得的信息.
生:火柴棒的根數(shù)s隨小魚條數(shù)n的變化而變化.
師:以上二個實際問題都有一個共性,是什么?
生:都有兩個變量.
師:上面二個實際問題的共性為:
上面的每個變化過程都有兩個變量,且當(dāng)其中一個變量變化時,另一個變量也隨著發(fā)生變化;當(dāng)其中一個變量確定時,另一個變量也隨著確定.(引出定義)
一般的,如果在一個變化的過程中有兩個變量x和y,并且對于變量x的每一個值,變量y都有唯一的值與它對應(yīng),那么我們稱y是x的函數(shù),x是自變量.
師:回頭看前面的實例,現(xiàn)在可以用函數(shù)的思想來理解其中兩個變量間的關(guān)系.
生:在搭小魚的過程中,總共需要的火柴數(shù)隨所搭小魚的條數(shù)的變化而變化,所用火柴根數(shù)s是小魚條數(shù)n的函數(shù).
生:在波紋逐漸變化的過程中,圓的面積隨著半徑的變化而變化,圓的面積是半徑的函數(shù).
三、練習(xí)鞏固(略)
四、作業(yè)(略)
五、課堂小結(jié)(略)
六、課后反思
數(shù)學(xué)概念比較抽象,函數(shù)對于初二學(xué)生來說更加抽象,筆者的經(jīng)驗證實了這一點,如果單純抽象地進行函數(shù)概念教學(xué),那么教學(xué)效果一定不會好,因此,兩位老師函數(shù)概念教學(xué)的過程中,做到細(xì)心、耐心,從學(xué)生日常生活中所熟悉的事物情形開始引入.
1.運用生活中的例子引出新概念
數(shù)學(xué)中的有些概念,往往難以直觀表述,但用生活中的例子學(xué)生容易理解一些.兩位老師都運用行程問題引出常量和變量的定義.在備課時要分析這個新概念可以用哪些例子.利用學(xué)生已掌握的知識講授新概念,學(xué)生容易接受.
2.數(shù)學(xué)課堂要給學(xué)生足夠的思維空間
要培養(yǎng)學(xué)生的思維能力,就要求教學(xué)時給學(xué)生足夠的思維空間,留足思考時間.這兩位老師多處給學(xué)生留有充分的思考時間,不為了趕進度,將“結(jié)果”直接拋給學(xué)生,而是讓學(xué)生自己探索知識的形成過程,體驗研究數(shù)學(xué)的樂趣.
3.數(shù)學(xué)課應(yīng)該要安排適量的習(xí)題
練習(xí)概念性的習(xí)題,目的在于讓學(xué)生綜合運用,區(qū)分比較,深化理解概念.要根據(jù)學(xué)生實際和教學(xué)的需要,采用多種形式和方法設(shè)計,借以激發(fā)學(xué)生鉆研深究的興趣.只有學(xué)生會運用所掌握的概念,才能更深刻地理解概念,從而更好地掌握新的數(shù)學(xué)知識.只有這樣,培養(yǎng)能力,發(fā)展智力才會有堅實的基礎(chǔ).
編輯 王亞青