亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        可降解塑料的生物降解性能研究進(jìn)展

        2013-12-31 00:00:00李琳琳高佳楊翔華王戰(zhàn)勇
        湖北農(nóng)業(yè)科學(xué) 2013年11期

        摘要:伴隨塑料的大量使用及塑料廢棄物處理困難帶來(lái)的壓力,人們對(duì)可生物降解塑料的開(kāi)發(fā)和研究越來(lái)越重視。為了解決合成塑料所帶來(lái)的環(huán)境問(wèn)題,科研人員已經(jīng)開(kāi)展了大量關(guān)于可生物降解塑料的研究。對(duì)目前的可生物降解塑料及其生物降解性能進(jìn)行了綜述。

        關(guān)鍵詞:生物降解性能;合成塑料;可生物降解塑料

        中圖分類號(hào):TQ321.4;X384 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2013)11-2481-05

        塑料是人工合成的長(zhǎng)鏈高分子材料[1]。由于塑料具有優(yōu)秀的理化性能,如強(qiáng)度、透明度和防水性等,合成塑料已廣泛應(yīng)用于食物、藥物、化妝品、清潔劑和化學(xué)品等產(chǎn)品的包裝。塑料已經(jīng)成了人類生活中不可缺少的一部分,目前全世界大約有30%的塑料用于包裝,而且仍以每年高達(dá)12%的比率擴(kuò)展。

        塑料材料在世界范圍內(nèi)的廣泛使用,在給人類生產(chǎn)和生活帶來(lái)巨大益處的同時(shí)也帶來(lái)了很多問(wèn)題:如石油資源的大量消耗和塑料垃圾的日益增加等,它們會(huì)給人類未來(lái)的生活帶來(lái)難以估計(jì)的能源危機(jī)和環(huán)境污染問(wèn)題。尤其是各種廢棄塑料制品的處理問(wèn)題,已經(jīng)不單是簡(jiǎn)單的環(huán)境治理方面的問(wèn)題,世界各國(guó)普遍已將其發(fā)展認(rèn)識(shí)成為值得重視的政治問(wèn)題和社會(huì)問(wèn)題。由于塑料在自然進(jìn)化中存在的時(shí)間較短,因此塑料可抵抗微生物的侵蝕,自然界中一般也沒(méi)有能夠降解塑料這種合成聚合物的酶[2]。目前塑料垃圾一般是通過(guò)填埋、焚化和回收處理掉。但不恰當(dāng)?shù)乃芰蠌U棄物處理往往是環(huán)境污染的重要來(lái)源,不僅直接危害人類的生存,而且潛在地威脅社會(huì)的可持續(xù)發(fā)展。比如聚氯乙烯(Polyvinyl chloride,PVC)塑料的燃燒會(huì)產(chǎn)生二惡英的持久性有機(jī)污染物[3]。

        由于與傳統(tǒng)塑料有相似的材料性質(zhì),又具有非常好的生物降解性能[4],以聚羥基脂肪酸酯(Polyhydroxyalkanoates,PHAs)、聚乳酸(Polylactic acid,PLA)、 聚己內(nèi)酯(Polycaprolactone,PCL)等為代表的可生物降解塑料已開(kāi)始廣泛應(yīng)用于各種包裝材料、醫(yī)療設(shè)備以及一次性衛(wèi)生用品生產(chǎn),另外在農(nóng)田地膜生產(chǎn)中也已用作聚丙烯或聚乙烯的替代品[5]??缮锝到馑芰系氖褂每山档褪唾Y源消耗的30%~50%,進(jìn)一步緩解對(duì)石油資源的使用;另外可生物降解塑料制品的廢棄物可以進(jìn)行堆肥處理,所以與普通石油來(lái)源的塑料垃圾相比可避免人工分揀的步驟,這樣就大大方便了垃圾的收集和后續(xù)處理。因此,可生物降解塑料十分符合現(xiàn)在提倡的可持續(xù)發(fā)展的政策,以利于真正實(shí)現(xiàn)“源于自然,歸于自然”。

        1 塑料降解概述

        任何聚合物中的物理和化學(xué)變化都是由光、熱、濕度、化學(xué)條件或是生物活動(dòng)等環(huán)境因素引起的。塑料的降解一般包括光降解、熱降解以及生物降解等。

        聚合物光降解的敏感性與其吸收來(lái)自對(duì)流層的太陽(yáng)輻射的能力直接相關(guān)。在非生物降解中,光輻射活動(dòng)是影響降解最重要的因素[6]。一般來(lái)說(shuō),UV-B輻射(295~315 nm)和UV-A輻射(315~400 nm)會(huì)直接造成光降解;而可見(jiàn)光(400~760 nm)是通過(guò)加熱來(lái)實(shí)現(xiàn)加快聚合體降解的;紅外光(760~2 500 nm)則是通過(guò)加快熱氧化作用實(shí)現(xiàn)降解。大多數(shù)塑料傾向于吸收光譜中紫外部分的高能量輻射,激活電子更活躍的反應(yīng),導(dǎo)致氧化、裂解和其他的降解。

        聚合物的熱降解是由過(guò)熱引起的分子降解。在高溫下,聚合物分子鏈的遷移率和體積會(huì)發(fā)生改變,長(zhǎng)鏈骨架組分?jǐn)嗔眩l(fā)生相互作用從而改變聚合物特性[6]。熱降解中的化學(xué)反應(yīng)導(dǎo)致材料學(xué)和光學(xué)性能的改變。熱降解通常包括聚合物相對(duì)分子質(zhì)量變化和典型特性的改變;包括延展性的降低、脆化、粉末化、變色、裂解和其他材料學(xué)性能的降低。

        生物降解是塑料降解的最主要途徑,一般來(lái)說(shuō),塑料在自然狀態(tài)下進(jìn)行有氧生物降解,在沉積物和垃圾填埋池中進(jìn)行厭氧降解,而在堆肥和土壤中進(jìn)行兼性降解。有氧生物降解會(huì)產(chǎn)生二氧化碳和水,而無(wú)氧生物降解過(guò)程會(huì)產(chǎn)生二氧化碳、水和甲烷[7]。通常情況下,高分子聚合物分解成二氧化碳需要很多不同種類的微生物的配合作用,一些微生物可將其降解為相應(yīng)的單體,另一些微生物能利用單體分泌更簡(jiǎn)單的化合物,還有一些微生物再進(jìn)一步利用這些簡(jiǎn)單化合物以實(shí)現(xiàn)聚合物的完全降解[1]。

        生物降解是受很多因素控制的,包括微生物類型和聚合物特性(遷移率、立構(gòu)規(guī)整度、結(jié)晶度、相對(duì)分子質(zhì)量、功能團(tuán)類型以及取代基等),另外添加到聚合物中的增塑劑和添加劑等都在生物降解過(guò)程中起著重要作用[8]。降解過(guò)程中聚合物首先轉(zhuǎn)化成單體,然后單體再進(jìn)行礦化。大多數(shù)聚合物都難以通過(guò)細(xì)胞膜,所以在被吸收和生物降解進(jìn)入細(xì)胞前必須先解聚成更小的單體或寡聚體[9]。微生物降解起始于各種各樣的物理和生物推動(dòng)力。物理動(dòng)力(如加熱/冷卻、冷凍/熔化以及濕潤(rùn)/干燥)會(huì)引起聚合物材料裂化的機(jī)械破壞;微生物進(jìn)一步滲透,造成小規(guī)模溶脹和爆破。至少有兩種酶在聚合物降解中起著重要作用,它們分別是胞內(nèi)解聚酶和胞外解聚酶。胞外解聚酶將聚合物分解成短鏈分子,短鏈分子小到足以透過(guò)細(xì)胞膜,被胞內(nèi)解聚酶進(jìn)一步分解。

        2 天然可生物降解塑料的生物降解

        天然可生物降解塑料一般是指以有機(jī)物為碳源,通過(guò)微生物發(fā)酵而得到的生物降解塑料。主要以PHAs較多,其中最常見(jiàn)的有聚3-羥基丁酸酯[Poly(3-hydroxybutyrate),PHB]、聚羥基戊酸酯[Poly(3-hydroxyvalerate),PHV]和其共聚物[Poly(3-hydroxybutyrate-co-3-hydroxyvalerate),PHBV][10]。微生物在營(yíng)養(yǎng)缺乏的情況下產(chǎn)生并儲(chǔ)存PHAs,當(dāng)營(yíng)養(yǎng)不受限時(shí)微生物會(huì)將其降解并代謝[11]。但是微生物儲(chǔ)存PHAs的能力未必能保證環(huán)境中微生物對(duì)PHAs的降解能力。微生物必須先分泌胞外水解酶,將聚合物轉(zhuǎn)化成相應(yīng)的羥基酸單體[7]。PHB水解產(chǎn)物為3-羥基丁酸,而PHBV的胞外降解產(chǎn)物為3-羥基丁酸和3-羥基戊酸[12]。這些單體都是水溶性的,可透過(guò)細(xì)胞壁,在有氧情況下進(jìn)行β-氧化和三羧酸循環(huán),完全氧化為二氧化碳和水,厭氧情況下還會(huì)生成甲烷。實(shí)際上,在所有高等動(dòng)物血清中都發(fā)現(xiàn)了3-羥基丁酸,因此PHAs可用于醫(yī)學(xué)方面,包括用于長(zhǎng)期控制藥物釋放、手術(shù)針、手術(shù)縫合線、骨頭和血管替代品等。

        目前已在多種環(huán)境中分離出大量可以降解PHAs的微生物[13,14]。在土壤中發(fā)現(xiàn)的Acidovorax faecilis、Aspergillus fumigatus、 Comamonas sp.、 Pseudomonas lemoignei和Variovorax paradoxus,在活性污泥中分離出的Alcaligenes faecalis和Pseudomonas sp.,在海水中發(fā)現(xiàn)的Comamonas testosteroni,存在于厭氧污泥中的Ilyobacter delafieldii以及在湖水中發(fā)現(xiàn)的Pseudomonas stutzeri對(duì)PHAs均具有降解能力。

        PHB胞外解聚酶是微生物自身分泌的,對(duì)于環(huán)境中PHB的新陳代謝發(fā)揮著重要作用。很多PHB解聚酶已從Alcaligenes[15]、Comamonas[16]和Pseudomonas[17]的微生物中分離純化出來(lái)。對(duì)它們的基本結(jié)構(gòu)分析表明,這些酶由底物結(jié)合區(qū)、催化區(qū)和連接二者的聯(lián)合區(qū)域構(gòu)成。底物結(jié)合區(qū)域在結(jié)合PHB方面發(fā)揮著重要作用。催化部分包含一個(gè)催化單元,由催化三聯(lián)體(Ser-His-Asp)構(gòu)成。目前對(duì)于PHB解聚酶的性能研究已比較深入,研究顯示,PHB解聚酶相對(duì)分子質(zhì)量一般低于100 000,大多數(shù)PHA解聚酶相對(duì)分子質(zhì)量都在40 000~50 000;最適pH為7.5~9.8,只有來(lái)源于Pseudomonas picketti和Penicillium funiculosum的解聚酶的最適pH是5.5和7.0;在較寬的pH、溫度、離子強(qiáng)度等范圍內(nèi)穩(wěn)定;大多數(shù)PHA解聚酶都會(huì)受到絲氨酸酯酶抑制劑的抑制[18]。

        3 聚合物共混材料的生物降解

        聚合物共混材料是由可降解塑料和通用塑料混合制成的,其降解率取決于其中較易降解的成分,降解過(guò)程破壞聚合物的結(jié)構(gòu)完整性,增加了表面積,剩余聚合物暴露出來(lái),微生物分泌的降解酶也會(huì)增強(qiáng)。目前常見(jiàn)的聚合物共混材料主要是以淀粉基為主要可降解部分的共混材料。

        3.1 淀粉/聚乙烯共混物的生物降解

        聚乙烯是一種對(duì)微生物侵蝕有很強(qiáng)抵御能力的惰性聚合物[19]。隨著相對(duì)分子質(zhì)量的增加,生物降解也會(huì)減弱[20]。將容易生物降解的化合物如淀粉添加到低密度的聚乙烯基質(zhì)中,可加強(qiáng)碳-碳骨架的降解。與純淀粉相比,淀粉聚乙烯共混物的碳轉(zhuǎn)移率降低,在有氧的情況下轉(zhuǎn)移率較高。Chandra等[21]研究發(fā)現(xiàn)在Aspergillus niger、Penicillium funiculom、Chaetomium globosum、 Gliocladium virens和Pullularia pullulans混合真菌接種的土壤環(huán)境中,線性低密度聚乙烯淀粉共混物可有效地被生物降解。添加淀粉的聚乙烯的降解率取決于淀粉含量,而且對(duì)環(huán)境條件和共混物中的其他成分很敏感[22]。很多研究者在研究時(shí)發(fā)現(xiàn),在淀粉/低密度聚乙烯共混物中添加改性淀粉后,改性淀粉可增強(qiáng)其在共混物中的可混合性和黏著力[23]。但是與未改性的淀粉/聚乙烯共混物相比,這種改性淀粉的生物降解率較低。

        3.2 淀粉/聚酯共混物的生物降解

        淀粉和PCL共混物被認(rèn)為是可完全降解的,這是因?yàn)楣不煳镏械拿糠N成分都是可生物降解的[24],Nishioka等[25]已在活性污泥、土壤和堆肥中研究了不同等級(jí)商用聚酯Bionoll的生物降解能力。PHB解聚酶和脂酶均可以打開(kāi)PHB的酯鍵,由于其結(jié)構(gòu)的相似性,這些酶還能降解Bionolle。Bionolle和低成本淀粉的混合物的開(kāi)發(fā)研究可進(jìn)一步提高成本競(jìng)爭(zhēng)力,同時(shí)在可接受的程度上維持其他性能。有研究表明,淀粉的添加大大提高了Bionolle組分的降解率[26]。

        3.3 淀粉/水溶性聚合物聚乙烯醇共混物的生物降解

        水溶性聚合物聚乙烯醇(Polyvinyl alcohol,PVA)與淀粉有更好的兼容性,而且這種共混物擁有良好的薄膜性能。很多這樣的共混物已得到發(fā)展并用來(lái)制作可生物降解包裝設(shè)備[27]。PVA和淀粉共混物也被認(rèn)為是可生物降解的,因?yàn)檫@兩種成分在多種生物環(huán)境下都是可生物降解的。從城市污水廠和垃圾堆埋區(qū)的活性污泥中分離出的細(xì)菌和真菌對(duì)淀粉、PVA、甘油和尿素共混物的生物降解能力數(shù)據(jù)表明,微生物可消耗淀粉、PVA的非結(jié)晶區(qū)、甘油和尿素增塑劑[27],而PVA的結(jié)晶區(qū)未受降解影響。

        3.4 脂肪族-芳香族共聚酯的生物降解

        脂肪族-芳香族(Aliphatic-aromatic,AAC)共聚酯結(jié)合了脂肪族聚酯的生物可降解性和芳香族聚酯的高強(qiáng)度性能。為了降低AAC的成本經(jīng)?;旒拥矸邸Ec其他可生物降解塑料相比,AAC和低密度聚乙烯有更相似的特性,特別是吹膜擠出。AAC也符合食品保鮮膜的所有功能要求,如透明度、彈性和防霧特性,所以這種材料很適合用于水果和蔬菜的食品包裝。雖然AAC以化石燃料為基礎(chǔ),但是它是可生物降解和堆肥降解的。通常情況下,它在微生物環(huán)境中12周就會(huì)被降解得肉眼不可見(jiàn)。

        4 合成塑料的生物降解

        4.1 聚乳酸聚酯的生物降解

        聚乳酸(Polylactic acid,PLA)是一種線性脂肪族聚酯,它是由天然乳酸縮聚或是丙交酯的催化開(kāi)環(huán)制得的。PLA中的酯鍵對(duì)化學(xué)水解作用和酶催化斷鍵都很敏感。PLA的應(yīng)用是其熱壓產(chǎn)品,如水杯、外賣食物餐盒、集裝箱和花盆盒。PLA在60 ℃或是高于60℃大規(guī)模的堆肥操作中可以完全降解。PLA的降解首先是水解成水溶性化合物和乳酸。這些產(chǎn)物被多種微生物快速代謝成CO2和水。Torres等[28]研究了Fusarium moniliforme、Penicillium roquefort 對(duì)PLA低聚物(相對(duì)分子質(zhì)量為1 000)的降解;Pranamuda等[29]報(bào)道了Amycolatopsis sp.對(duì)PLA的降解,而在Tomita等[30]的研究中也報(bào)道了Bacillus brevis對(duì)PLA具有降解能力。另外,已證明可使用專性酯酶如Rhizopus delemer脂肪酶降解小分子PLA(相對(duì)分子質(zhì)量為2 000)。

        4.2 聚琥珀酸丁二酯的生物降解

        聚琥珀酸丁二酯(Polybutylene succinate,PBS)具有優(yōu)良的機(jī)械性能,通過(guò)傳統(tǒng)的熔融技術(shù)可用于一系列終端產(chǎn)品。這些應(yīng)用包括地膜、包裝膜、塑料袋和易沖刷衛(wèi)生產(chǎn)品。PBS是水合式生物降解的,通過(guò)水解機(jī)制開(kāi)始生物降解。在酯鍵處發(fā)生水解,相對(duì)分子質(zhì)量降低,使得微生物可進(jìn)行進(jìn)一步降解。

        4.3 改性的聚對(duì)苯二甲酸乙二酯的生物降解

        改性的聚對(duì)苯二甲酸乙二酯(Polyethylene terephthalate,PET)是在PET中添加乙醚、酰胺或是脂肪族單體共聚單體,由于它們的鍵能較弱而更容易通過(guò)水解作用進(jìn)行生物降解。這一降解機(jī)制包括酯鍵的水解與醚和酰胺鍵的酶促作用。改性PET可通過(guò)改變所使用的共聚單體調(diào)節(jié)和控制降解率。

        5 聚氨酯的生物降解

        聚氨酯(Polyurethane, PUR)是具有分子內(nèi)氨基甲酸酯鍵(碳酸酯鍵-NHCOO-) 的聚異腈酸酯和多元醇的縮合產(chǎn)物。據(jù)報(bào)道,PUR中的氨基甲酸酯鍵易受到微生物的進(jìn)攻。PUR的酯鍵水解作用被認(rèn)為是PUR的生物降解機(jī)制。已發(fā)現(xiàn)土壤中的4種真菌Curvularia senegalensis、 Fusarium solani、Aureobasidium pullulans和Cladosporium sp.可降解聚氨酯。Kay等[31]分離并研究了16種不同細(xì)菌降解PUR的能力。Shah[32]報(bào)道稱在埋于土壤中6個(gè)月的聚氨酯薄膜中分離出了5種細(xì)菌,它們分別被定義為Bacillus sp. AF8、 Pseudomonas sp. AF9、 Micrococcus sp. AF10、 Arthrobacter sp. AF11和Corynebacterium sp. AF12。

        FTIR光譜可用來(lái)證明聚氨酯生物降解機(jī)制是聚氨酯中酯鍵的水解作用。聚氨酯生物降解能力取決于酯鍵的水解作用[33]。酯鍵降低的比率大約超過(guò)醚鍵50%,這與測(cè)量到的聚氨酯降解的數(shù)量相吻合。FTIR分析埋于土壤中6個(gè)月經(jīng)真菌作用后的PUR薄膜[34],顯示2 963 cm-1(對(duì)照)至2 957 cm-1(試驗(yàn))波峰有輕微下降,這表明在1 400~1 600 cm-1處C-H鍵的斷裂和C=C的形成。FTIR分析Corynebacterium sp.降解聚氨酯的分解產(chǎn)物表明聚合物的酯鍵是微生物酯酶進(jìn)攻的主要地方[31]。目前已分離并表征了兩種PU酶,它們分別是與細(xì)胞膜結(jié)合的PU酯酶和胞外PU酯酶[35]。這兩種酶在聚氨酯的生物降解中發(fā)揮著不同的作用。與膜結(jié)合的PU酯酶可提供細(xì)胞介導(dǎo)接近聚氨酯的疏水表面,然后胞外PU酯酶吸附在聚氨酯表面。在這些酶的作用下,細(xì)菌可以吸附在聚氨酯的表面并將PU基質(zhì)水解代謝掉。

        6 結(jié)論

        傳統(tǒng)石油來(lái)源的通用塑料的過(guò)度使用已使得其成為當(dāng)今世界環(huán)境污染的罪魁禍?zhǔn)?,因此可生物降解塑料取代通用塑料已?jīng)成為未來(lái)材料科學(xué)領(lǐng)域發(fā)展的必然趨勢(shì)。這些可生物降解塑料的優(yōu)勢(shì)主要體現(xiàn)在其可生物降解性和可再生性,此外還具有許多優(yōu)良的理化性能,如熱塑性、生物相容性、產(chǎn)物安全性、成膜后具有高透明度、纖維的高拉伸強(qiáng)度以及易于加工等。但是應(yīng)該看到的是相關(guān)可生物降解塑料在自然界中降解往往十分緩慢,而且在PLA經(jīng)改性或制成產(chǎn)品后,其在環(huán)境中的降解就更為緩慢,因此在進(jìn)行可生物降解塑料合成和改性研究的同時(shí),其生物降解研究也應(yīng)該受到重視,以實(shí)現(xiàn)其廢棄物快速完全降解,并建立有效的生物循環(huán)系統(tǒng)以實(shí)現(xiàn)產(chǎn)品物料循環(huán)。

        參考文獻(xiàn):

        [1] EUBELER J P, BERNHARD M, ZOK S, et al. Environmental biodegradation of synthetic polymers I. Test methodologies and procedures [J]. TrAC Trends in Analytical Chemistry,2009,28(9):1057-1072.

        [2] MUELLER R J. Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling [J]. Process Biochemistry, 2006,41(10):2124-2128.

        [3] JAYASEKARA R,HARDING I,BOWATER I, et al. Biodegradability of selected range of polymers and polymer blends and standard methods for assessment of biodegradation[J]. Journal of Polymers and the Environment,2005,13(2):231-251.

        [4] 陳國(guó)強(qiáng),羅榮聰,徐 軍,等. 聚羥基脂肪酸酯生態(tài)產(chǎn)業(yè)鏈——生產(chǎn)與應(yīng)用技術(shù)指南[M].北京:化學(xué)工業(yè)出版社,2008.25-37.

        [5] OJUMU T V, YU J, SOLOMON B O. Production of polyhydroxyalkanoates, a bacterial biodegradable polymer[J]. African Journal of Biotechnology,2004,3(1):18-24.

        [6] LUCAS N,BIENAIME C,BELLOY C,et al. Polymer biodegradation: Mechanisms and estimation techniques [J]. Chemosphere,2008,73(4):429-442.

        [7] VOLOVA T G,BOYANDIN A N,VASILIEV A D,et al. Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria [J]. Polymer Degradation and Stability,2010,95(12):2350-2359.

        [8] ARTHAM T, DOBLE M. Biodegradation of aliphatic and aromatic polycarbonates[J]. Macromolecular Bioscience,2008,8(1):14-24.

        [9] TRAINER M A, CHARLES T C. The role of PHB metabolism in the symbiosis of rhizobia with legumes [J]. Applied Microbiology and Biotechnology,2006,71(4):377-386.

        [10] SHAH A A, HASAN F, HAMEED A, et al. Biological degradation of plastics: A comprehensive review[J]. Biotechnology Advances,2008,26(3):246-265.

        [11] PAPANEOPHYTOU C P, VELALI E E, PANTAZAKI A A. Purification and characterization of an extracellular medium-chain length polyhydroxyalkanoate depolymerase from Thermus thermophilus HB8[J]. Polymer Degradation and Stability,2011, 96(4):670-678.

        [12] GARC?魱A D E,MAR?魱A C, HUESO DOM?魱NGUEZ K B. Simultaneous kinetic determination of 3-hydroxybutyrate and 3-hydroxyvalerate in biopolymer degradation processes[J]. Talanta,2010,80(3):1436-1440.

        [13] ZHOU H, WANG Z, CHEN S, et al. Purification and characterization of extracellular poly(β-hydroxybutyrate) depolymerase from Penicillium sp. DS9701-D2[J]. Polymer-Plastics Technology and Engineering,2009,48(1):58-63.

        [14] CALABIA B P, TOKIWA Y. A novel PHB depolymerase from a thermophilic Streptomyces sp.[J]. Biotechnology Letters,2006,28(6):383-388.

        [15] BACHMANN B M, SEEBACH D. Investigation of the enzymatic cleavage of diastereomeric oligo (3-hydroxybutanoates) containing two to eight HB units. A model for the stereoselectivity of PHB depolymerase from Alcaligenes faecalis T1[J]. Macromolecules,1999,32(6):1777-1784.

        [16] KASUYA K, DOI Y, YAO T. Enzymatic degradation of poly [(R)-3-hydroxybutyrate] by Comamonas testosterone ATSU of soil bacterium[J]. Polymer Degradation and Stability,1994, 45(3):379-386.

        [17] SCH?魻BER U, THIEL C, JENDROSSEK D. Poly(3-hydroxyvalerate) depolymerase of Pseudomonas lemoignei[J]. Applied and Environmental Microbiology,2000,66(4):1385-1392.

        [18] JENDROSSEK D. Microbial degradation of polyesters: A review on extracellular poly(hydroxyalkanoic acid) depolymerases[J]. Polymer Degradation and Stability,1998,59(1-3):317-325.

        [19] GILAN I, HADAR Y, SIVAN A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber [J]. Applied Microbiology and Biotechnology,2004,65(1):97-104.

        [20] ROSA D S,GABOARDI F, GUEDES C G F, et al. Influence of oxidized polyethylene wax(OPW) on the mechanical, thermal, morphological and biodegradation properties of PHB/LDPE blends [J]. Journal of Materials Science,2007,42(19):8093-8100.

        [21] CHANDRA R, RUSTGI R. Biodegradation of maleated linear low-density polyethylene and starch blends [J]. Polymer Degradation and Stability,1997,56(2):185-202.

        [22] ALBERTSSON A C, KARLSSON S. Aspects of biodeterioration of inert and degradable polymers[J]. International Biodeterioration Biodegradation,1993,31(3):161-170.

        [23] 何小維,黃 強(qiáng). 淀粉基生物降解材料[M]. 北京:中國(guó)輕工業(yè)出版社,2008.262-263.

        [24] (日)土肥義治,(德)A. 斯泰因比歇爾. 生物高分子 聚酯Ⅲ——應(yīng)用和商品(第4卷)[M]. 陳國(guó)強(qiáng),譯.北京:化學(xué)工業(yè)出版社,2004.49-53.

        [25] NISHIOKA M, TUZUKI T, WANAJYO Y, et al. Biodegradable Plastics and Polymers[M]. Amsterdam: Elsevier Science,1994. 584-590.

        [26] RATTO J A, STENHOUSE P J, AUERBACH M, et al. Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system [J]. Polymer,1999,40(24): 6777-6788.

        [27] TUDORACHI N, CASCAVAL C N, RUSU M, et al. Testing of polyvinyl alcohol and starch mixtures as biodegradable polymeric materials [J]. Polymer Testing,2000,19(7):785-799.

        [28] TORRES A, LI S M, ROUSSOS S, et al. Screening of microorganisms for biodegradation of poly(lactic-acid) and lactic acid-containing polymers [J]. Applied and Environmental Microbiology,1996,62(7):2393-2397.

        [29] PRANAMUDA H, TOKIWA Y. Degradation of poly(L-lactide) by strains belonging to genus Amycolatopsis[J]. Biotechnology Letters,1999,21(10):901-905.

        [30] TOMITA K, KUROKI Y, NAGAI K. Isolation of thermophiles degrading poly(L-lactic acid)[J]. Journal of Bioscience and Bioengineering,1999,87(6):752-755.

        [31] KAY M J, MORTON L H G, PRINCE E L. Bacterial degradation of polyester polyurethane [J]. International Biodeterioration,1991,27(2):205-222.

        [32] SHAH A A. Role of microorganisms in biodegradation of plastics [D].Islamabad:Quaid-i-Azam University,2007.

        [33] TANG Y W, LABOW R S, SANTERRE J P. Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes[J]. Biomaterials,2003, 24(17):2805-2819.

        [34] OPREA S, DOROFTEI F. Biodegradation of polyurethane acrylate with acrylated epoxidized soybean oil blend elastomers by Chaetomium globosum[J]. International Biodeterioration Biodegradation,2011,65(3):533-538.

        [35] HOWARD G T. Biodegradation of polyurethane: A review [J].International Biodeterioration Biodegradation,2002,49(4):245-252.

        日本色偷偷| 天堂网在线最新版www| 天天爽夜夜爽夜夜爽| 国产精品青草视频免费播放| 久久这里只有精品黄色| 亚洲一区二区三区精品| 国产乱子伦农村xxxx| 国模私拍福利一区二区| 亚洲精品一品二品av| 漂亮人妻出轨中文字幕| 成在线人av免费无码高潮喷水| 久久中文精品无码中文字幕下载 | 99久热re在线精品99 6热视频| 91福利国产在线观看网站| 亚洲一区二区三区免费的视频| 色翁荡熄又大又硬又粗又动态图| 欧美最大胆的西西人体44| 国产手机在线αⅴ片无码| 亚洲av第一区综合激情久久久| 99久久国内精品成人免费| 又粗又黄又猛又爽大片免费| 18级成人毛片免费观看| 亚洲免费毛片网| 日本少妇熟女一区二区| 中文无码成人免费视频在线观看| 国产精品va在线播放我和闺蜜| 丰满少妇又紧又爽视频| 老熟妇嗷嗷叫91九色| 一边捏奶头一边高潮视频| 日韩精品一区二区三区免费视频| 亚洲a级片在线观看| 中文字幕人妻激情在线视频| 久久久久亚洲精品无码系列| 香蕉视频在线精品视频| 国产综合久久久久影院| 久久精品国产亚洲av夜夜| 国产欧美日韩中文久久| 青草国产精品久久久久久| 国产品精品久久久久中文| 日本免费播放一区二区| 女人18毛片a级毛片|