劉孝力,劉 琳
?
-拓?fù)淇臻g中的Ⅲ型強(qiáng)連通集
劉孝力,劉 琳
(五邑大學(xué) 數(shù)理系,廣東 江門 529020)
證明 容易證出.
證明 顯然.
證明 顯然.
證明 與文獻(xiàn)[3]中定理2. 9的證明類似.
推論2.9 若一族Ⅲ型強(qiáng)連通集的交非空,則它們的并是Ⅲ型強(qiáng)連通集.
由預(yù)備知識中的結(jié)論可得:
必要性. 設(shè)定理中條件不成立,即存在映射
致謝 感謝白世忠教授的悉心指導(dǎo)!
[1]王國俊.-fuzzy拓?fù)淇臻g中的連通性[J]. 陜西師范大學(xué)學(xué)報(bào):自然科學(xué)版,1987(3): 1-10.
[2] BAI S Z. Strong connectedness in-fuzzy topological spaces [J]. J Fuzzy Math, 1995, 3: 715-719.
[3] BAI S Z, WANG W L. I type of strong connectivity in L-fuzzy topological spaces[J]. J Fuzzy Set and Systems, 1998, 993: 357-362.
[5] BAI S Z. PS-connectedness of L-subsets[J]. J Korean Math Soc, 2007, 44(1): 129-137.
[7] LIU X L. Fuzzy WS-irresolute mappings[C]//The third intelligent computing conference. Jinan: global Link publisher, 2009.
[8]王國俊. LF拓?fù)淇臻g論[M]. 西安:陜西師范大學(xué)出版社,1988.
[9]PAO B M, LIU Y M. Fuzzy topology I[J]. J Math Anal Appl, 1980, 76: 571-599.
[責(zé)任編輯:熊玉濤]
A New Kind of Connectedness in-Topological Spaces
LIUXiao-li,LIULin
With the help of the weakly semiclosed sets, we introduce the concept of Ⅲ type of connectivity in-topological spaces and study Ⅲ type of connectivity properties and other type of connectivity connection in-topological spaces.
-topological spaces; weakly semiclosed sets; weak semiclosure; connected sets.
1006-7302(2010)01-0052-05
O189.1
A
2009-05-14
廣東省自然科學(xué)基金資助項(xiàng)目(8152902001000004),江門市科技計(jì)劃項(xiàng)目(江財(cái)工[2008]103)
劉孝力(1980—),男,河南民權(quán)人,在讀研究生,研究方向:格上拓?fù)鋵W(xué),E-mail: abcxiaoliliumn@163.com.