1題目背景
某次聯(lián)考中,一道電場(chǎng)情境下的粒子運(yùn)動(dòng)問(wèn)題難倒眾多學(xué)生:在區(qū)間 [-α,α] 內(nèi),場(chǎng)強(qiáng)大小與位移成正比,粒子做往復(fù)運(yùn)動(dòng).這實(shí)為簡(jiǎn)諧運(yùn)動(dòng),但學(xué)生因缺乏對(duì)周期公式普適性的理解而無(wú)從下手.現(xiàn)行高中教材僅在單擺和彈簧振子中引入周期公式 T= m,卻未揭示其本質(zhì)規(guī)律.本文從動(dòng)力學(xué)本質(zhì)出發(fā),推導(dǎo)簡(jiǎn)諧運(yùn)動(dòng)的周期公式,并拓展其在電磁場(chǎng)、重力場(chǎng)等復(fù)雜場(chǎng)景的應(yīng)用,構(gòu)建統(tǒng)一的理論框架.
2溯本根源,從動(dòng)力學(xué)本質(zhì)探究簡(jiǎn)諧運(yùn)動(dòng)的周期公式
2.1 簡(jiǎn)諧運(yùn)動(dòng)的定義及特點(diǎn)
從運(yùn)動(dòng)學(xué)視角來(lái)看:當(dāng)一個(gè)物體的位移隨時(shí)間變化的規(guī)律能夠用正弦函數(shù)準(zhǔn)確描述時(shí),也就是說(shuō)其振動(dòng)所對(duì)應(yīng)的位移一時(shí)間 (x-t) 圖像呈現(xiàn)為一條標(biāo)準(zhǔn)的正弦曲線形狀,那么該物體所進(jìn)行的這種振動(dòng)便屬于簡(jiǎn)諧運(yùn)動(dòng),如圖1.
x=Asin(ωt+φ).
從動(dòng)力學(xué)視角來(lái)看:當(dāng)物體所受力呈現(xiàn)出 F =-kx 這種形式時(shí),該物體便會(huì)做簡(jiǎn)諧運(yùn)動(dòng).具體來(lái)講,只要物體在其運(yùn)動(dòng)方向上,所受到的力與它偏離平衡位置的位移大小成正比例關(guān)系,而且此力始終指向平衡位置,那么該物體的運(yùn)動(dòng)即為簡(jiǎn)諧運(yùn)動(dòng).
2.2簡(jiǎn)諧運(yùn)動(dòng)周期公式推導(dǎo)
高二數(shù)學(xué)已經(jīng)學(xué)習(xí)了求導(dǎo)(變化率),沒(méi)有學(xué)積
分,采用逆推法,位移對(duì)時(shí)間的導(dǎo)數(shù)是速度,速度對(duì)
時(shí)間的導(dǎo)數(shù)為加速度,由 x=Asin(ωt+φ) ,得 v=x′=Aωcos(ωt+φ) 又 a=v′=-Aω2sin(ωt+φ) 由牛頓第二定律,有 F=ma ,又有 F=-kx ,即有 -mAω2sin(ωt+φ)=-kAsin(ωt+φ),
(204號(hào)得到 ,又得到
2.3勻速圓周運(yùn)動(dòng)投影法
設(shè)質(zhì)點(diǎn)以角速度 ω 作勻速圓周運(yùn)動(dòng),其水平投影位移 x=Acosωt 水平投影加速度 a=-ω2x ;對(duì)比牛頓定律 ,得
,又 T=
,得到
3簡(jiǎn)諧運(yùn)動(dòng)的\"三步判斷法”與多場(chǎng)景突破解題方法
3.1 簡(jiǎn)諧運(yùn)動(dòng)的“三步判斷法”
步驟1:確定平衡位置,分析回復(fù)力是否滿足 F ω=-kx 的形式;
步驟2:求解等效勁度系數(shù) 步驟3:代入周期公式
3.2多場(chǎng)景突破解題方法
(1)單擺:重力的分力 F=mgsinθ 提供回復(fù)力,又θ很小,sinθ≈0=, ,則有F=mg 可得 K= mg,將K代人T=2π
,得到
(2)彈簧振子:彈簧彈力提供回復(fù)力, F=-kx ,
(3)電場(chǎng)中的“類彈簧振動(dòng)”.
例1粒子質(zhì)量為 ?m ,電荷量為 q 的負(fù)電粒子,在場(chǎng)強(qiáng) 的電場(chǎng)中,從 x 軸上 x=-a 處由靜止釋放,粒子僅受電場(chǎng)力作用,求從 [-α,α] 運(yùn)動(dòng)的時(shí)間.
第一步:回復(fù)力為所受電場(chǎng)力, A第二步:等效勁度系數(shù)
(204號(hào)第三步:周期
,所求時(shí)間為半個(gè)周期
4磁場(chǎng)中的\"電磁彈簧”振動(dòng)(阻尼可忽略)
例2如圖2所示,兩根平行的軌道固定在水平面上,其中 MN,M′N′"這兩小段是由絕緣材料制成的,軌道的其余部分為金屬材質(zhì).軌道之間的距離為 d ,在軌道所圍區(qū)域內(nèi)存在著磁感應(yīng)強(qiáng)度大小為B 、方向豎直向下的勻強(qiáng)磁場(chǎng),并且軌道的右側(cè)連接著一個(gè)自感系數(shù)為 L 的電感線圈.一根質(zhì)量為 Ψm"、電阻可忽略不計(jì)的金屬棒 b 垂直放置在絕緣材料部分的軌道上,在這個(gè)問(wèn)題中,不考慮其他電阻,所有的摩擦也都忽略不計(jì),同時(shí)不考慮電磁輻射的影響.已知電感線圈產(chǎn)生的自感電動(dòng)勢(shì)與電流的變化率成正比,現(xiàn)在給金屬棒 b 一個(gè)初速度,此時(shí),有人推測(cè)金屬棒 b 在磁場(chǎng)中的運(yùn)動(dòng)過(guò)程是簡(jiǎn)諧運(yùn)動(dòng),那么請(qǐng)計(jì)算出金屬棒 b 運(yùn)動(dòng)的周期.
分析第一步:力為安培力,設(shè)在 t~t+Δt 時(shí)間內(nèi), b 棒以速度 v 運(yùn)動(dòng),電流變化量為 ΔI .有 ,解得
,對(duì)該式兩邊積分可得
.那么 b 棒所受安培力為 F=BId=
.又由楞次定律可知,安培力的方向一直和 b 棒位移 x 的方向相反,有
,故 b 做簡(jiǎn)諧運(yùn)動(dòng).
第二步:由簡(jiǎn)諧運(yùn)動(dòng)回復(fù)力與位移的關(guān)系 (20F=-kx 得等效勁度系數(shù)
第三步:由簡(jiǎn)諧運(yùn)動(dòng)的周期公式有 得
5 結(jié)語(yǔ)
簡(jiǎn)諧運(yùn)動(dòng)的周期公式本質(zhì)是動(dòng)力學(xué)規(guī)律的統(tǒng)一表達(dá).通過(guò)三步法,學(xué)生可快速識(shí)別復(fù)雜場(chǎng)景中的簡(jiǎn)諧特征,實(shí)現(xiàn)從“機(jī)械套用”到“模型遷移”的思維升級(jí),為后續(xù)學(xué)習(xí)波動(dòng)與量子理論奠定基礎(chǔ).
參考文獻(xiàn):
[1]王偉民,于方超.木板的運(yùn)動(dòng)是簡(jiǎn)諧運(yùn)動(dòng)嗎[J].物理教師,2024,45(02):63-65.
[2]許衛(wèi)國(guó),姜付錦.簡(jiǎn)諧運(yùn)動(dòng)的實(shí)現(xiàn)及其周期[J.物理教師,2024,45(10):65-68.