中圖分類號:S662.1 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2025)06-1200-11
Abstract: 【Objective】Peach, which is rich in vitamin C,antioxidants,dietary fiber and other nutritional elements,is a favorite fruit of Chinese people.Peach is grown in a large area and is a kind of fruit with both nutritional and economic values. However, peach industry is sufering from serious restricts by continuous cropping obstacle.Due to the short economic life of peach trees,most peach orchards require annual renewal. Thus, we need to overcome the obstacles of peach tree replanting disease. Although deep tilage could expand the shallow tillage layer,facilitate deeper rooting and increase resource availability in the subsoil layer,subsoil may not undergo weathering and lack of available nutrients.Inaddition,the primary plant productivity is typically limited by bioavailability ofsoil P,despite the abundant total P,after soil was deeply tilled. The aim of the experiment is to reduce the effect of peach replant obstacle on the growth of newly planted peach trees,and understand the soil properties, soil properties-phosphorus microbial composition.【Methods】In this study, three treatments,including untreated old peach orchard (CK), deep tillage and one year fallowing (DT) and deep tillage combined with one year rice planting (DT +RP) were applied to evaluate the effect of different methods on soil physical and chemical properties,and phosphorus-dissolving microbial composition.We analyzed soil physical and chemical properties,fruit weight and sugar content of yellow-fleshed peach with different treatments after four years.In addition, Ilumina Miseq sequencing was applied to determine soil phosphorus-dissolving microbial composition and diversity by targeting phoD gene. In addition, the partial least squares path modeling was applied to analyze the relationship among soil physical and chemical properties,phosphorus-dissolving mirobial composition,and peach yield and quality. 【Results】 The results showed that diferent treatments changed the physical and chemical properties of soil, and increased soil pH by 4.2% and reduced soil EC value by 74.7% , compared with CK treatment, respectively. But we did not find that soil nutrients contents significantly changed among different treatments ( (pgt; 0.05). DT treatment did not significantly affect soil absolute abundance of phoD gene, while DT + PR treatment significantly reduced the abundance of phoD gene in soil by 51.8% compared to the CK. Correlation analysis showed that phoD gene abundance was significantly and positively correlated with EC value and available phosphorus content, while significantly and negatively correlated with soil organic matter content.The different improvement methods did not significantly change the soil phosphorus-dissolving microbial richness index (ACE and Chao) and Sobs,but significantly changed the diversity index.DT treatment reduced the soil Shannoneven index by 1.96% ,whileDT + PR treatment increased the Shannoneven index by 1.44% . Bradyrhizobium,Nocardioides,Cupriavidus and Rhizobacter as the dominant phoD were contained in the microorganisms,and the relative abundance of Bradyrhizobium and Cupriavidus increased. Diferent improved methods increased the yield of yellow-fleshed peach, with DT and DT + PR treatments increasing the yield by 7.1% and 13.8% than CK, respectively. DT treatment increased fruit sugar content by 18.8% ,while DT + PR treatment only increased by 5.4% , compared with CK treatment. Different improved methods decreased the titratable acid of yellowfleshed peach fruit,and DTand DT + PRfruitsdecreased by 21.5% and 27.9% compared with CK,respectively. Partial least squares path modeling showed that diferent improvement methods can directly change the yield and sugar content of yellow-fleshed peach by changing the soil physical and chemical properties ( R=-0.855 plt;0.05 ), or indirectly affect the abundance and composition of soil phosphorusdissolving microorganisms to afct the yield and sugar content of yellow-fleshed peach. In addition, soil physicochemical properties can directly change the abundance of microorganisms ( R=1.30 , plt; 0.05)and composition (R=-0.890,plt;0.05) , which in return, the abundance of soil phosphorus microorganisms R=-0.614 plt;0.05 )and composition (R=0.953 plt;0.05 ) significantly affected the yield and sugar degree of yellow-fleshed peach, respectively.【Conclusion】This study showed that the combination of deep tilage and rice plantation can changed soil physical and chemical properties,improved the microbial diversity of phoD containing microorganisms and changed the composition of phoD containing microorganisms. Different improvement methods changed the community composition of phosphorus microorganisms,and the deep tilage combined with planting rice improved the relative abundance of Bradyrhizobium and Cupriavidus, which may play an important role in improving soil nutrient content.In addition,our results also showed that the soil physical and chemical properties caused by different improvement methods directly aected the yield and sugar content of yellow- fleshed peach, which can be also affected indirectly by the changing of abundance and composition of phoD containing microorganisms caused by diffrent improvement methods. Our results provide reference for soil improvement of yelow-fleshed peach replanting,and provide a viable method for the sustainable development of yellow-fleshed peach industry.
Key words:Yellow-fleshed peach; Replant problem; Phosphorus-dissolving microbes; Soil improvement
桃富含維生素C、抗氧化劑以及膳食纖維等營養(yǎng)元素,是一種兼具營養(yǎng)價值和經(jīng)濟價值的水果,深受國人喜愛。鮮食桃消費量的上升促進(jìn)了其種植面積的持續(xù)擴大。然而,由于不合理的農(nóng)藝措施,如過量施用化肥、農(nóng)藥以及不合理的控產(chǎn)措施等,導(dǎo)致桃樹壽命普遍較短,一般10a(年)左右便需要更新種植。在土地資源緊缺的背景下,農(nóng)民往往在老桃園中種植新桃苗。然而,新種的樹往往生長遲緩、植株矮小、抗性降低甚至死亡,稱之為桃樹再植障礙[3]。
目前,針對桃樹再植障礙已有的調(diào)控措施主要包括深翻客土、土壤滅菌以及選用抗性砧木等。深翻客土常被看作是一種克服果樹再植障礙的有效措施,但此法費時費工,在生產(chǎn)上不易大面積應(yīng)用。土壤滅菌主要采用化學(xué)藥劑或物理方法(蒸汽、太陽能等),然而針對土傳病害的化學(xué)藥劑存在使用量偏大、防治效果不佳、藥劑高殘留等問題,且化學(xué)藥劑也會殺滅土壤中有益微生物,破壞土攘微生態(tài)環(huán)境。選用抗性砧木可能緩解再植桃園中桃樹生長過程中的某些問題,如提高桃樹對線蟲的抗性等,然而,桃樹再植障礙是多種原因引起的,而絕大多數(shù)砧木的抗病性只針對單一問題起作用,加上對引起桃樹再植障礙的原因還沒有完全了解,因此很難篩選出符合要求的抗性砧木。鑒于上述各種方式的缺陷,目前緩解桃樹再植障礙的合理措施依然短缺。
土壤深翻是農(nóng)業(yè)生產(chǎn)中重要的耕作方式,可以促進(jìn)土壤養(yǎng)分循環(huán)、調(diào)節(jié)養(yǎng)分利用效果、提高作物產(chǎn)量和品質(zhì)[8-9]。Hu等[]研究發(fā)現(xiàn)深翻可以降低深層土壤的緊實度、提高土壤的pH、促進(jìn)土壤微生物的均一性等。老桃園經(jīng)過深翻后若再種植一年水稻,土壤性質(zhì)可能因為淹水產(chǎn)生還原條件等因素而發(fā)生改變。水稻種植生產(chǎn)過程中,淹水為土壤提供了厭氧環(huán)境,能夠改善因長期作物種植導(dǎo)致的土壤劣化。Wang等研究表明,利用淹水能夠提高長期連作土壤的pH,降低土壤電導(dǎo)率(electricalconductivi-ty,EC)值,對土壤酸化和次生鹽漬化具有明顯的改良作用。另外,有研究表明,利用淹水創(chuàng)造厭氧環(huán)境可以改善土壤結(jié)構(gòu)[1-I2]。然而,土壤經(jīng)過深翻后,底層土壤因未經(jīng)過耕作,養(yǎng)分貧瘠,其中土壤中磷的有效性是影響作物生長的限制性因素[13]。盡管為促進(jìn)桃樹生長而施用大量磷肥,但是僅僅只有 13% 的磷被當(dāng)季作物吸收[4]。Peng等[15]分析指出,被人們忽略的自然溶磷作用對土壤有效磷的影響巨大。在自然界中影響磷素有效性的因素包括磷素浸出量低,磷對土壤礦物的親和力強,以及解磷微生物組成和豐度等。土壤中解磷微生物能夠分泌磷酸酶,促進(jìn)土壤磷素的釋放。研究表明, phoD 是編碼磷酸酶的重要基因,是指示土壤中解磷微生物組成和豐度的主要參考基因[17-19]。土壤深翻結(jié)合種植水稻會改變土壤性質(zhì)、微生物群落組成,然而,如何改變土壤解磷微生物以及對黃桃品質(zhì)的影響還有待于進(jìn)一步解析。
筆者利用深翻結(jié)合種植水稻的方式改良種植10a以上的黃桃園土壤,研究不同改良方式對黃桃再植土壤理化性質(zhì)與土壤中磷代謝相關(guān)的微生物組成的影響,并進(jìn)一步分析解磷微生物多樣性、豐度和組成與黃桃產(chǎn)量和品質(zhì)的關(guān)系,以期為后期改良黃桃再植土壤提供參考,同時為黃桃產(chǎn)業(yè)的可持續(xù)發(fā)展提供技術(shù)支撐。
1材料和方法
1.1 試驗地概況
試驗地位于市奉賢區(qū)青村鎮(zhèn)吳房村黃桃種植區(qū)內(nèi) (30°58′N,121°20′E) ,海拔 7m ,年降水量和年平均溫度分別為 1200mm 和 16°C 。吳房村種植黃桃的歷史悠久。所選試驗地于2006年開始種植黃桃,2016年出現(xiàn)老化癥狀:桃樹生長勢減弱,流膠嚴(yán)重,產(chǎn)量降低等。
1.2試驗設(shè)計
于2017年選取地勢平坦的老桃園(其初始理化性質(zhì)為 pH6.78 ;EC值 496μS?cm-1 ;堿解氮含量 (w 后同) 110.5mg?kg-1 ;速效鉀含量 783.5mg?kg-1 ;有效磷含量 116.9mg?kg-1 ;有機質(zhì)含量 2.48% ,選取20棵老桃樹挖掉,不進(jìn)行再植改良,閑置1a作為對照(CK)。選取40棵桃樹挖掉,將土壤進(jìn)行深度為 50cm 的深翻,并進(jìn)行土地平整,其中20棵桃樹的面積經(jīng)過深翻后閑置1a(DT),另外20棵桃樹種植1a水稻進(jìn)行淹水處理 [DT+RP] 。于2018年種植新桃苗。農(nóng)業(yè)管理措施主要依據(jù)當(dāng)?shù)毓r(nóng)的管理習(xí)慣。桃樹品種為錦繡黃桃,平均每 666.7m2 種植40棵。在生長第四年,為控制變量,對每棵桃樹進(jìn)行疏果(每棵桃樹留120個果實)。
1.3樣品采集
黃桃樣品于2022年10月采集。分別于3種不同處理中采集土壤。在黃桃樹滴水線左右 50cm 處,采集深度為 40cm ,采集同一處理3棵桃樹土壤混合作為1個土樣,因此每個處理采集6個重復(fù)。土壤采集后置于冰上運回實驗室,一部分保存于 -80°C 冰箱中,用于分子生物化學(xué)分析;一部分于室溫下自然風(fēng)干,用于測定土壤理化性質(zhì)。
1.4土壤理化性質(zhì)和果實品質(zhì)測定
土壤pH以土水質(zhì)量比1:2.5混合后測定[2];電導(dǎo)率(EC)以土水質(zhì)量比1:5混合后測定;土壤有機質(zhì)含量采用重鉻酸鉀容量法測定2;土壤堿解氮含量利用堿解擴散法進(jìn)行測定[2;土壤有效磷含量采用 0.5mol?L-1NaHCO3 浸提-鉬銻抗比色法測定[23];土壤速效鉀含量采用乙酸銨浸提-火焰光度法測定[24。平均單果質(zhì)量:果實成熟后,在每株桃樹上隨機摘取黃桃果實5個,同一處理的3株桃樹共摘取15個果實,稱質(zhì)量并計算每個重復(fù)的平均單果質(zhì)量;黃桃 666.7m2 產(chǎn)量采用單果質(zhì)量 × 留果數(shù) x 每666.7m2 株數(shù)進(jìn)行換算;可溶性固形物含量采用手持糖量計測定;可滴定酸含量采用滴定法測定。
1.5土壤總DNA提取與高通量測序
土壤總DNA提取采用PowerMaxSoilDNAIsolationKit試劑盒(MOBIO,USA),每個樣品稱取0.25g 土壤,按照試劑盒說明步驟進(jìn)行。提取的土壤總DNA分別經(jīng)過 1% 瓊脂糖凝膠電泳和NanoDrop測定DNA完整性、純度和濃度。土壤解磷微生物的擴增引物為phoD-F733(TGGGAYGATCAYGARGT)/phoD-R1083(CTGSGCSAKSACRTTCCA)[13]。擴增引物連接接頭A、B和樣品識別序列。擴增體系為5μL 10× Pyrobest緩沖液, 4μL dNTPs(2號 (2.5mmol?L-1) ,上下游引物各 2μL(10μmol?L-1) .
0.75UPyrobestDNA聚合酶和 30ng 模板DNA。使用ABIGeneAmp 9700型PCR儀進(jìn)行擴增,擴增程序為: 95°C 預(yù)變性 5min,27 個循環(huán)包括 95°C 變性 30s,55°C 退火
延伸30s,最后 72°C 延伸 10min[25-26] 。全部PCR產(chǎn)物經(jīng) 2% 瓊脂糖凝膠電泳檢測,并利用AxyPrepDNA凝膠回收試劑盒(AXY-GEN公司)切膠回收。制備Amplicon文庫后,應(yīng)用IlluminaMiSeqPE250平臺測序。
1.6熒光定量PCR測定解磷微生物絕對豐度
解磷微生物絕對豐度采用SYBRGreen法測定,反應(yīng)在羅氏LightCycler480II PCR(RocheDiagnostics,Indianapolis,IN,USA儀器上進(jìn)行。反應(yīng)體系為FastFireqPCRPreMix 上下游引物,ROXReference Dye 0.4μL,1μL1 DNA,補加
至終體積為 20μL 。以含有phoD基因的重組pGEMR-T載體為標(biāo)準(zhǔn)質(zhì)粒,質(zhì)粒制備和后續(xù)方法參照文獻(xiàn)[27]。
1.7 數(shù)據(jù)處理和分析
通過IlluminaMiseq平臺測序所得的原始數(shù)據(jù)經(jīng)過QIIME(v1.8.0)軟件進(jìn)行質(zhì)量控制。根據(jù)文獻(xiàn)[28]所示具體過程為:1)過濾reads尾部質(zhì)量值20以下的堿基,設(shè)置 50bp 的窗口,如果窗口內(nèi)的平均質(zhì)量值低于20,從窗口開始截去后端堿基,過濾質(zhì)控后50bp 以下的reads,去除含N堿基的reads;2)根據(jù)PEreads之間的overlap關(guān)系,將成對reads拼接(merge)成一條序列,最小overlap長度為 10bp ,最大錯配率不超過 20%;3) 根據(jù)序列首尾兩端的bar-code和引物區(qū)分樣品,并調(diào)整序列方向,barcode允許的錯配數(shù)為0,最大引物錯配數(shù)為2;去除引物序列,并根據(jù)GenBank數(shù)據(jù)庫檢測并去除嵌合體,獲得高質(zhì)量序列。利用CROP軟件將核苷酸相似度大于 97% 的序列作為一個分類操作單元(ASV)[29],利用GenBank數(shù)據(jù)庫對物種進(jìn)行注釋,并去除所有處理中只有一條序列的ASV,將所有樣品序列進(jìn)行抽平。利用Mothur軟件(V1.31.2)計算樣品 α 多樣性。
利用Excel2020、SPSS24和R語言等進(jìn)行數(shù)據(jù)分析。利用單因素方差分析(ANOVA,Tukey’stest)分析不同改良方式解磷微生物 α 多樣性、豐度、不同分類水平下解磷微生物相對豐度以及功能變化的差異?;趙eightedFastUniFrac距離矩陣,運用非度量多維標(biāo)度(non-metricmultidimen-sionalsealing,NMDS)對不同改良方式解磷細(xì)菌 β 多樣性進(jìn)行分析。利用偏最小二乘路徑對土壤理化性質(zhì),解磷微生物豐度、組成和多樣性以及黃桃產(chǎn)量、品質(zhì)等指標(biāo)的相關(guān)性進(jìn)行分析。該分析利用R語言中“plspm”程序包,模型的擬合度利用GOF(goodness-of-fit)進(jìn)行評估,當(dāng)GOF gt;0.7 可認(rèn)為擬合度較好[30]。
2 結(jié)果與分析
2.1不同改良方式對再植黃桃土壤理化性質(zhì)的影響不同改良方式改變了再植黃桃土壤的理化性質(zhì)。如表1所示,再植桃園深翻(DT)和深翻結(jié)合種植水稻( ΔDT+RP 兩種改良方式均顯著提高了土壤pH,DT處理使土壤pH提高了 8.7% ,而 DT+PR 處理使土壤pH提高了 4.2% 。兩種改良方式均顯著降低了土壤的EC值,DT和 DT+PR 處理分別降低了21.2% 和 74.7% 。對土壤養(yǎng)分而言,兩種改良方式均降低了土壤的有機質(zhì)和有效養(yǎng)分含量。
2.2不同改良方式對解磷微生物豐度的影響
不同改良方式改變了再植桃園土壤解磷微生物的豐度(圖1)。DT處理對土壤中解磷微生物豐度沒有顯著影響,而 DT+PR 處理顯著降低了王壤中解磷微生物豐度,比CK處理降低了 51.8% (圖1-A)。相關(guān)性分析表明,土壤中解磷微生物豐度與土壤的EC值和有效磷含量呈顯著正相關(guān),而與土壤中有機質(zhì)含量呈顯著負(fù)相關(guān)(圖1-B)。
2.3不同改良方式對再植桃園土壤解磷微生物多樣性的影響
不同改良方式對再植桃園土壤微生物多樣性的影響見表2。由表2可知,不同改良方式對土壤中解磷微生物豐富度指數(shù)(ACE和Chao)和Sobs的影響不顯著 (pgt;0.05) ,但顯著改變了解磷微生物的均勻性指數(shù)和多樣性指數(shù)。與CK相比,不同改良方式對Shannoneven均勻度指數(shù)和Shannon多樣性指數(shù)影響不顯著,而與DT相比, DT+RP 顯著提高了Shannoneven均勻度指數(shù)和Shannon多樣性指數(shù)。與CK相比,DT處理使土壤Shannoneven指數(shù)降低了 1.96% ,而 DT+PR 處理使Shannoneven指數(shù)提高了 1.44% ;同樣,DT處理使土壤Shannon指數(shù)降低了1.68% ,而 DT+PR 處理使Shannon指數(shù)提高了 1.68% 。
2.4不同改良方式對再植黃桃土壤解磷微生物群落組成的影響
不同改良方式對解磷微生物 β 多樣性的影響見圖2,其中第一排序軸解釋了解磷微生物 48.27% 群落組成變異,而第二排序軸解釋了 27.33% 群落組成變異。不同改良方式改變了黃桃土壤解磷微生物群落組成,其中 DT+RP 處理解磷微生物主要在第一排序軸上顯著差異,而DT處理解磷微生物組成與CK在第二排序軸上顯著差異,說明DT+PR處理對解磷微生物群落組成的影響大于DT處理。
2.5不同改良方式對黃桃產(chǎn)量和品質(zhì)的影響
不同改良方式改變了黃桃果實產(chǎn)量和果實品質(zhì)(圖4)。不同改良方式提高了黃桃產(chǎn)量,DT和 DT+ PR處理使黃桃產(chǎn)量比CK分別提高了 7.1% 和 13.8% (圖4-A)。對果實可溶性固形物含量而言,DT處理影響最大,比老桃園果實顯著提高 18.8% ,而 DT+PR 處理僅顯著提高了 5.4% (圖4-B)。不同改良方式都顯著降低了黃桃果實的可滴定酸含量,DT和 DT+ PR處理果實可滴定酸含量比CK分別降低了 21.5% 和 27.9% (圖4-C)。
2.6土壤理化性質(zhì)、解磷微生物結(jié)構(gòu)以及黃桃產(chǎn)量和品質(zhì)的相關(guān)性分析
通過偏最小二乘路徑分析影響黃桃產(chǎn)量和品質(zhì)的因素發(fā)現(xiàn)(圖5),不同改良方式通過改變土壤
Fig.5PLS-PMdescribing the bioticandabiotic factors thataffectyellow peachyieldandquality理化性質(zhì)直接改變黃桃的產(chǎn)量和品質(zhì) (R=-0.855 ,plt;0.05) ,也可以間接通過影響土壤中解磷微生物的豐度和組成改變黃桃產(chǎn)量和品質(zhì)。土壤理化性質(zhì)可以直接改變土壤中解磷微生物豐度 (R=1.30 plt;0.05) 和群落組成 (R=-0.890,plt;0.05) ,土壤解磷微生物豐度 (R=-0.614,plt;0.05. 和群落組成( R=0.953 業(yè) plt;0.05 )又分別顯著影響黃桃的產(chǎn)量和可溶性固形物含量。
3討論
本研究結(jié)果表明,不同改良方式顯著提高了再植桃園土壤 pH ,其中深翻處理使土壤pH提高了
8.7% ,而深翻結(jié)合種植1a水稻處理僅使土壤pH提高了 4.2% 。前人研究表明,土壤深翻有助于土壤pH上升[3]。在本研究中,新種桃苗前經(jīng)過 50cm 的深翻,使原先因施肥等原因酸化的土壤得到改良。而DT+PR處理比DT處理土壤pH低,可能是因為淹水處理促進(jìn)了枯枝、落葉的腐解,加速了有機酸等物質(zhì)的釋放,進(jìn)而降低了土壤的 pH[32] 。對于土壤EC值而言,不同改良措施顯著降低了土壤EC值,其中DT處理降低到 405μS?cm-1 ,而DT+PR處理降低到130μS?cm-1 。這可能是因為深翻使土壤鹽漬化土壤進(jìn)入下層,從而使上層土壤的EC值降低;而DT+PR處理可能使鹽分溶解到水中,使土壤的EC值進(jìn)一步降低。根據(jù)土壤次生鹽漬化程度標(biāo)準(zhǔn)[33],深翻處理使黃桃園土壤次生鹽漬化程度降低,但還處于中鹽度水平;而深翻結(jié)合種植水稻處理使土壤次生鹽漬化水平顯著降低,達(dá)到低鹽度水平。本研究表明,通過深翻和種植水稻等措施能夠降低老桃園土壤的酸化和鹽漬化程度,有利于桃園的更新?lián)Q代。然而,不同桃園改良措施,包括深翻和種植水稻,均降低了土壤中養(yǎng)分含量,包括土壤中有效磷含量,這可能是因為深翻導(dǎo)致深層養(yǎng)分含量低的土壤上移,使耕層土壤養(yǎng)分降低。因此,深翻改良老桃園應(yīng)配合有機物料等的施用,以促進(jìn)有機質(zhì)等養(yǎng)分的積累。
在本研究中,筆者發(fā)現(xiàn)不同改良措施沒有顯著改變再植桃園解磷微生物的豐度指數(shù)(Chao和ACE指數(shù)) (pgt;0.05) ,但顯著改變了解磷微生物的多樣性指數(shù)(Shannon和Simpson指數(shù)),其中深翻結(jié)合種植水稻比單獨深翻顯著提高了土壤中解磷微生物多樣性,該研究結(jié)果說明不同改良方式通過改變解磷微生物的均勻度而改變其多樣性。筆者的研究也表明,深翻結(jié)合種植水稻比單獨深翻顯著改變了土壤解磷微生物的Shannoneven均勻度指數(shù),說明不同改良方式通過改變不同種類解磷微生物的相對豐度,從而使解磷微生物的多樣性發(fā)生改變。
不同改良方式改變了解磷微生物的群落組成,其中深翻結(jié)合種植水稻提高了Bradyrhizobium, Cu priavidus的相對豐度。Bradyrhizobium除了與大豆共生為植物提供氮素外,還具有顯著的溶磷作用[4]。在本研究中,淹水改良再植桃園土壤顯著提高了慢生根瘤菌屬豐度,說明淹水有助于土壤中根瘤菌屬的生長,促進(jìn)土壤中磷元素的活化,提高植物可利用養(yǎng)分含量。最近研究同樣表明,根瘤菌屬的微生物含有與磷代謝相關(guān)的基因,并在土壤有機磷和磷活化方面發(fā)揮重要作用[35]。在本研究中, DT+ PR處理使Cupriavidus的相對豐度顯著提高,可能促進(jìn)了土壤中磷的代謝。該研究結(jié)果表明不同改良方式改變了土壤中與磷代謝相關(guān)微生物的群落組成,可能對黃桃生長、產(chǎn)量和品質(zhì)產(chǎn)生影響。
土壤微生物豐度、群落組成以及多樣性等對土壤功能改善具有重要意義。在本研究中,不同土壤改良方式提高了黃桃產(chǎn)量和可溶性固形物含量,顯著降低了可滴定酸含量,使黃桃品質(zhì)得到改善。利用偏最小二乘路徑分析表明,不同改良方式可以直接改變土壤理化性質(zhì)從而對黃桃產(chǎn)量和品質(zhì)產(chǎn)生影響,也可以間接通過影響土壤中解磷微生物豐度和組成對其產(chǎn)生影響。Fan等3研究表明,微生物群落結(jié)構(gòu)改變可以改變植物生長狀態(tài),可能是因為微生物群落結(jié)構(gòu)的改變對土壤元素循環(huán)產(chǎn)生影響,如與磷元素相關(guān)微生物的增多可以促進(jìn)土壤磷素的釋放以被植物利用。
4結(jié)論
相較于不改良處理,深翻結(jié)合種植水稻使土壤pH顯著提高了 4.2% ,EC值顯著降低了 74.7% ,但降低了土壤養(yǎng)分的含量;深翻結(jié)合種植水稻雖然使土壤解磷微生物絕對豐度顯著降低了 51.8% ,但提高了解磷微生物多樣性(Shannon指數(shù))。不同改良方式可以通過直接改變土壤理化性質(zhì)影響黃桃的產(chǎn)量和品質(zhì),也可以間接通過影響土壤中解磷微生物的豐度和組成改變黃桃產(chǎn)量和品質(zhì)。
參考文獻(xiàn)References:
[1] 劉燕德,吳明明,孫旭東,朱丹寧,李軼凡,張智誠.黃桃表面缺 陷和可溶性固形物光譜同時在線檢測[J].農(nóng)業(yè)工程學(xué)報, 2016,32(6):289-295. LIUYande,WUMingming,SUNXudong,ZHUDanning,LIYifan,ZHANG Zhicheng.Simultaneous detection of surface deficiencyand soluble solidscontent forAmygdaluspersica byonlinevisible-near infrared transmittance spectroscopy[J].Transactionsof the Chinese Society ofAgricultural Engineering,2016, 32(6):289-295.
[2] 葉正文,蘇明申,杜紀(jì)紅,周慧娟,吳鈺良,莊恩及.晚熟鮮食黃 桃新品種‘錦花'的選育[J].果樹學(xué)報,2012,29(5):952-953. YEZhengwen,SUMingshen,DUJihong,ZHOU Huijuan,WU Yuliang,ZHUANG Enji.A new late ripening yellow peach cultiVar:‘Jinhua'[J].JournalofFruitScience,2012,29(5):952-953.
[3] 范潔群,王偉民,吳淑杭,褚長彬,周德平,宋衛(wèi)國.生物質(zhì)炭對 老桃園再植障礙的土壤調(diào)理機制初探[J].農(nóng)業(yè)學(xué)報, 2017,33(2):48-51. FANJiequn,WANG Weimin,WU Shuhang,CHU Changbin, ZHOU Deping,SONG Weiguo.Preliminary study of biochar on the soil conditioning mechanism of replant problem in old peach orchard[J]. Acta Agriculturae Shanghai,2017,33(2):48-51.
[4] 王海燕,盛月凡,李前進(jìn),王玫,潘鳳兵,陳學(xué)森,沈向,尹承苗, 毛志泉.蔥、芥菜和小麥輪作對老齡蘋果園土壤環(huán)境的影響[J]. 園藝學(xué)報,2019,46(11):2224-2238. WANG Haiyan,SHENG Yuefan,LI Qianjin,WANG Mei,PAN Fengbing,CHEN Xuesen,SHEN Xiang,YIN Chengmiao, MAO Zhiquan. Effects of Allium fistulosum, Brassica juncea and Triticum aestivum rotation on soil environment of old apple orchard[J].Acta Horticulturae Sinica,2019,46(11):2224-2238.
[5] WANGQF,CHU CB,ZHAO Z,WU S H,ZHOU D P. Preflooding soil used in monocropping increased strawberry biomass and altered bacterial community composition[J]. Soil Science and Plant Nutrition,2021,67(6):643-652.
[6]SENNETT L,BURTON D L,GOYER C,ZEBARTH B J. Influence of chemical fumigation and biofumigation on soil nitrogen cycling processes and nitrifier and denitrifier abundance[J]. Soil Biology and Biochemistry,2021,162:108421.
[7] 王力榮,王新衛(wèi),朱更瑞,方偉超,陳昌文,曹珂,李勇,吳金龍, 王玲玲,牛棚.桃抗再植病障礙砧木中桃抗砧1號的選育[J]. 果樹學(xué)報,2023,40(8):1766-1770. WANG Lirong,WANG Xinwei,ZHU Gengrui,F(xiàn)ANG Weichao, CHEN Changwen,CAO Ke,LI Yong,WU Jinlong,WANG Lingling,NIU Peng.A replantation disease resistant new peach rootstock cultivar Zhong Tao Kang Zhen No.1[J]. Journal of Fruit Science,2023,40(8):1766-1770.
[8] XUYZ,NIELX,BURESHRJ,HUANGJL,CUIKH,XUB, GONG W H,PENG S B. Agronomic performance of late-season rice under different tilage,straw,and nitrogen management[J]. Field Crops Research,2010,115(1):79-84.
[9]YIN H J, ZHAO W Q,LI T,CHENG X Y,LIU Q. Balancing straw returning and chemical fertilizers in China:Role of straw nutrient resources[J]. Renewable and Sustainable Energy Reviews,2018,81:2695-2702.
[10]HU R W,ZHENG B F,LIU Y J,PENG S G,GONG J,LI JH, QINT,LIANGJS,XIONGKL,SHAOLJ,ZHENGZY,YI Z X,ZHOU QM,LI J.Deep tillage enhances the spatial homogenization of bacterial communities by reducing deep soil compaction[J].Soil and Tillage Research,2024,239:106062.
[11]HUANG X Q,LIU L L, WEN T, ZHANG JB,WANG F H, CAIZC.Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation[J]. Applied Microbiology and Biotechnology,2016,100(12):5581- 5593.
[12]MENG T Z,WEI Q,YANG YJ,CAI ZC. The influences of soil sulfate content on the transformations of nitrate and sulfate during the reductive soil disinfestation (RSD) processJl. Science of the Total Environment,2022,818:151766.
[13] XU L,LI X Z,LIC N,KOUYP,LI JB,YAO MJ,ZHANG B C,WANGLX,XUHW,YOUCM,LIH,LIUSN,ZHANG L,LIUY,TAN B,XU ZF.Disentangling the relative importance of precipitation,biocrust succession,and shrub cover in mediating soil phoD-harbouring communities and organic phosphorusmineralisation[J]. Soil Biology and Biochemistry,2023, 186:109165.
[14]HUO WG,PENG Y,MAIMAITIAILI B,BATCHELOR W D, FENGG.Phosphorus fertilizer recommendation based on minimum soil surplus for cotton growing in salt- affected soils[J]. Field Crops Research,2023,291:108799.
[15]PENG Y,HUO WG,F(xiàn)ENG G.Maximising cotton phosphorus utilisation forzero surplusand high yields:A reviewof innovativeP management strategies[J].Field Crops Research,2024, 313:109429.
[16]ELSER JJ.Phosphorus:A limiting nutrient for humanity?[J]. Current Opinion in Biotechnology,2012,23(6):833-838.
[17]WAN WJ,HE DL,LI X,XING Y H,LIU S,YE LP,YANG Y Y.Linking rare and abundant phoD-harboring bacteria with ecosystem multifunctionality in subtropical forests:From community diversity to environmental adaptation[J]. Science of the Total Environment,2021,796:148943.
[18]WEI X M,HUYJ,RAZAVIB S,ZHOU J,SHENJL,NANNIPIERIP,WUJS,GETD.Raretaxaofalkalinephosphomonoesterase-harboring microorganisms mediate soil phosphorusmineralization[J].Soil Biology and Biochemistry,2019, 131:62-70.
[19]XUL,CAO HL,LIC N,WANG CH,HE NP,HU SY,YAO MJ,WANG CT,WANGJM,ZHOU SG,LI X Z. The importanceof rareversusabundantphoD-harboring subcommunities indrivingsoilalkalinephosphataseactivityand availablePcontent in Chinese steppe ecosystems[J].Soil Biology and Biochemistry,2022,164:108491.
[20]LIXY,DENGY,LIQ,LUCY,WANGJJ,ZHANGHW, ZHU JG,ZHOU J Z,HE Z L. Shifts of functional gene representation in wheat rhizosphere microbial communities under elevated ozone[J].The ISME Journal,2013,7(3):660-671.
[21]STRICKLAND T C,SOLLINS P. Improved method for separating light-and heavy-fraction organic material from soil[J].Soil Science Society of America Journal,1987,51(5):1390-1393.
[22] ZHANG X X,ZHANG R J,GAO J S,WANG X C,F(xiàn)AN F L, MA X T, YIN HQ,ZHANG C W,F(xiàn)ENG K,DENG Y. Thirtyone years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria[J]. Soil BiologyandBiochemistry,2017,104:208-217.
[23]OLSEN S R,COLE CV,WATANABEF S,DEANLA. Estimation of available phosphorus in soils by extraction with sodium bicarbonate[J]. United States Department of Agriculture,1954, 939:19.
[24]SPARKDL,PAGEAL,HELMKEPA,LOEPPERTRH.Lithium,sodium,potassium,rubidium,and cesium[M].SSSA-ASA, 1973:791-796.
[25]ZHOUJ,JIANGX,ZHOUBK,ZHAOBS,MAMC,GUAND W,LI J,CHEN SF,CAOFM,SHENDL,QINJ. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in NorthEast China[J].Soil Biology and Biochemistry,2016,95:135-143.
[26]ZHOUJ,GUANDW,ZHOUBK,ZHAOBS,MAMC,QIN J,JIANGX,CHENSF,CAOFM,SHENDL,LIJ.Influence of34-yearsof fertilizationon bacterial communitiesinan intensively cultivated black soil in NorthEast China[J]. Soil Biology and Biochemistry,2015,90:42-51.
[27]LI H,WENG B S,HUANG F Y,SU JQ,YANG X R. pH regulatesammonia-oxidizing bacteriaand archaeain paddy soils in Southern China[J].Applied Microbiology and Biotechnology, 2015,99(14):6113-6123.
[28]BOKULICHNA,SUBRAMANIAN S,F(xiàn)AITHJJ,GEVERS D,GORDONJI,KNIGHTR,MILLSDA,CAPORASOJG. Quality-filtering vastly improves diversity estimates from llumina amplicon sequencing[J].Nature Methods,2013,10(1):57-59.
[29]EDGARR C.UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,2013,10(10): 996-998.
[30] ZHOU G P,F(xiàn)ANK K,GAO S J,CHANG D N,LIGL,LIANG T,LIANGH,CAOWD.Green manuringrelocates microbiomes in driving the soil functionality of nitrogen cycling to obtainpreferable grain yields in thirty years[J]. Science China Life Sciences,2024,67:596-610.
[31]張凱歌,蘭摯謙,付玉芳,王曉卓,張雪艷.檸條堆肥與耕作深 度對連作黃瓜土壤細(xì)菌群落組成與代謝功能的影響[J].植物 營養(yǎng)與肥料學(xué)報,2022,28(3):460-469. ZHANGKaige,LAN Zhiqian,F(xiàn)U Yufang,WANGXiaozhuo, ZHANG Xueyan.Effects of Caragana compost and tillage depth on bacterial community composition and metabolic functions in continuous cucumber soils[J].Journal of Plant Nutrition and Fertilizers,2022,28(3):460-469.
[32]LIU X,LIU H,ZHANG Y,CHEN G,LI Z,ZHANGM. StraW return drives soil microbial community assemblage to change metabolic processesforsoil qualityamendment ina rice-wheat rotation system[J].Soil Biology and Biochemistry,2023,185: 12.
[33] 西安市市場監(jiān)督管理局.設(shè)施栽培土壤次生鹽漬化改良技術(shù) 規(guī)范:DB6101/T195—2022[S].北京:中國標(biāo)準(zhǔn)出版社,2022. Xi'an Administration For Market Regulation. Technical specifications for secondary salinization improvement ofprotected cultivation soil: DB6101/T195—2022[S].Beijing:Standards Press of China,2022.
[34]馬鳴超,劉麗,姜昕,關(guān)大偉,李俊.膠質(zhì)類芽孢桿菌與慢生大 豆根瘤菌復(fù)合接種效果評價[J].中國農(nóng)業(yè)科學(xué),2015,48(18): 3600-3611. MAMingchao,LIULi,JIANGXin,GUANDawei,LI Jun. Evaluationof theeffectofco-inoculant ofPaenibacillusmucilaginosusand Bradyrhizobium japonicuminapplication[J].Scientia Agricultura Sinica,2015,48(18):3600-3611.
[35]CHENQQ,ZHAOQ,XIEBX,LUX,GUOQ,LIUGX, ZHOUM,TIANJH,LUWG,CHENK,TIANJ,LIANGCY. Soybean (Glycine max) rhizosphere organic phosphorus recyclingrelies on acid phosphatase activity and specific phosphorus-mineralizing-related bacteria in phosphate deficient acidic soils[J]. Journal of Integrative Agriculture,2024,23(5):1685- 1702.
[36]FANKK,DELGADO-BAQUERIZO M,GUO X S,WANG D Z,ZHU Y G,CHU HY. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment[J].TheISME Journal,2021,15(2):550-561.