亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        激光對(duì)提高設(shè)施草莓產(chǎn)量的調(diào)控效應(yīng)

        2025-07-14 00:00:00雷康琦楊晗程鳳雷雨夢(mèng)李建偉戚燁通李志濤戚行江
        果樹學(xué)報(bào) 2025年6期
        關(guān)鍵詞:產(chǎn)量

        圖分類號(hào):S668.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)06-1234-1

        Abstract: 【Objective】Facility cultivation is one of the primary modes for strawberry cultivation. However,the shading effect of glass,shading nets,and plastic films limits the yield and economic benefits of greenhouse- grown strawberries due to reduced light intensity. Supplementing with artificial light sources like Light Emiting Diode (LED) is an effective strategy to address low-light conditions.Previous LED supplementation has predominantly used long-term high-intensity modes,leading to increased energy consumption and economic costs.Laser technology amplifies light through stimulated emission but has safety limitations in horticultural settings,particularly with short-term high-intensity helium-neon lasers due to their high energy output. Semiconductor lasers,characterized by high photoelectric conversion efficiency,offer potential energy savings.In this study,the semiconductor lasers were utilized to investigate the regulatory effects of long-term low-intensity laser modes on strawberry yield in facility cultivation,aiming to provide new insights into addressing issues such as limited yield due to low light and high energy consumption of supplemental lighting.【Methods】In this study,the facility cultivated Hongyan strawberres served as materials and soil cultivation experiments were carried out in plastic greenhouses.From the strawberry seedling stage to maturity,low-intensity[O,O.25,0.5,and 1μmol?m-2?s-1 (PPFD)] semiconductor laser treatments were performed daily from 6:00 to 18:00 for 5 months.The lasers were positioned 3m above the ground with a diffuser to ensure uniform distribution over a 30m2 area.During the mature stage, the gas exchange parameters of strawberry leaves (net photosynthetic rate, intercellular CO2 concentration, stomatal conductance,and transpiration rate),aboveground nutrient accumulation (abundant and moderate nutrient elements such as nitrogen, phosphorus, potassium, magnesium,and calcium), growth morphology indicators (plant height, biomass,leaf area, and specific leaf weight),fruit yield and its constituent factors (fruit quantity and single fruit weight), fruit sugar and acid content (soluble solids,total soluble sugar, titratable acid and sugar/acid ratio),and other indicators were measured to explore the effects of low-intensity long-term laser irradiation mode on strawberry photosynthesis,nutrient accumulation, growth and development, yield,and flavor quality. 【Results】Low intensity laser treatment with 0.25,0.5,and 1 PPFD increased the yield of strawberries. The yield enhancement showed an increasing trend followed by stability with increasing laser intensity, with no significant difference between 0.5 and 1 PPFD treatments, indicating optimal eectiveness. Compared with the control, 0.5 and 1 PPFD laser treatments significantly increased the number of fruits and single fruit weight.Low intensity laser improved strawberry fruit yield by increasing single fruit weight and fruit quantity. Under laser iradiation conditions,the number of strawberry fruits increased by 12.3%-14.0% ,the weight of individual fruits increased by 19.8%-23.3% , and the overall yield increased by 34.5%-40.6% .The O.5 and1PPFD laser treatments increased the plant height,aboveground nutrient organ biomass,and leaf area of strawberry plants, promoting plant nutritional growth, while the 0.25 PPFD laser treatment did not significantly improve plant height, biomass,and leaf area.The comparison of leaf weight between O.5 and 1 PPFD laser treatments indicated that laser treatment did not affect leaf thickness.The 0.25 PPFD laser treatment had no significant effect on the gas exchange parameters of the leaves.The 0.5 and 1 PPFD laser treatments significantly increased the net photosynthetic rate by 8.9% to 9.4% , without affecting stomatal conductance and transpiration rate, but reducing intercellular CO2 concentration.Laser enhanced photosynthetic capacity, and the increase in net photosynthetic rate was related to non-stomatal factors.The laser treatments at 0.25,0.5,and 1 PPFD significantly affected the accumulation of aboveground nutrient elements in strawberry plants.With the increase of laser intensity, the accumulation of large elements such as nitrogen, phosphorus,and potassium showed a trend of first increasing and then stabilizing,while the accumulation of medium elements like magnesium and calcium showed an increasing and unchanged trend, respectively. Laser treatment was beneficial for the accumulation of elements such as nitrogen, phosphorus, potassium,and magnesium, but had no influence on the accumulation of calcium. According to correlation analysis,strawberry fruit yield was significantlyand positively correlated with leaf area,net photosynthetic rate,as well as nitrogen, phosphorus, potassum and magnesium accumulation, with strawberry fruit yield showing the highest correlation with phosphorus accumulation. Under laser irradiation conditions,larger leaf area, higher net photosynthetic rate,and accumulation of nutrients (nitrogen,phosphorus,potassium,and magnesium)were beneficial for increasing fruit yield. In addition,compared to the control,laser treatment had no effect on soluble solids, total soluble sugar,titratable acid,and sugar/acid ratio.【Conclusion】 Long term treatment with low-intensity laser (O.5 and 1 PPFD) could promote biomass accumulation by improving photosynthetic and nutrient absorption abilities while balancing fruit quality,efectively increasing fruit quantity,single fruit weight, and comprehensive yield. Unlike traditional fillights,semiconductor lasers can induce and promote plant growth, development, and yield increase in a low-intensity mode,providing a low-cost and high-efficiency“l(fā)ight fertilizer” for facility agriculture.

        Key words:Strawberries; Laser; Yield; Photosynthesis; Nutrient accumulation

        草莓(Fragaria × ananassaDuch.)是薔薇科草莓屬的一種鮮食水果,深受廣大消費(fèi)者喜愛。聯(lián)合國FAO數(shù)據(jù)顯示,近年來草莓產(chǎn)業(yè)發(fā)展迅速,中國草莓栽培面積居世界第一(https://www.fao.org/fao-stat/zh/#data/QCL)。設(shè)施栽培是草莓種植的主要模式之一,但由于玻璃、遮陽網(wǎng)與塑料薄膜的遮擋,造成了弱光環(huán)境,進(jìn)而降低了植株光合作用效率,限制了設(shè)施草莓的產(chǎn)量形成與經(jīng)濟(jì)效益[-2]。利用人造光源對(duì)作物施用“光肥”是解決弱光的有效措施之一。以往常用的“光肥”如植物補(bǔ)光燈通過增加對(duì)植物的有效輻射如藍(lán)光或紅光照射,促進(jìn)作物根系與莖葉生長,實(shí)現(xiàn)增產(chǎn)提質(zhì)的調(diào)控效應(yīng)。因此,人造光源的研發(fā)與高效模式應(yīng)用以提高設(shè)施栽培經(jīng)濟(jì)效益是研究的熱點(diǎn)方向。

        發(fā)光二極管(LED)是研究最多的發(fā)光器件。研究表明,紅藍(lán)混合 LED[50μmol?m-2?s-1(PPFD) ,12h d]全生育期補(bǔ)光顯著提高了番茄(Solanumly-copersicumL.)植株的光合作用效率與生物量,加大LED強(qiáng)度(175PPFD, 16h?d-1) 顯著提高了番茄產(chǎn)量。紅藍(lán)混合LED全生育期補(bǔ)光(200PPFD,11h?d-1) 促進(jìn)了草莓植株?duì)I養(yǎng)吸收,提高了果實(shí)產(chǎn)量與品質(zhì)。增大補(bǔ)光強(qiáng)度并進(jìn)行動(dòng)態(tài)LED補(bǔ)光(367PPFD, 10h?d-1) 顯著提升了草莓產(chǎn)量并提前采收時(shí)間[。這些研究證明了LED補(bǔ)光對(duì)草莓具有增產(chǎn)提質(zhì)的重要作用,但由于目前LED補(bǔ)光以長期高強(qiáng)度模式為主,能源消耗較大,導(dǎo)致經(jīng)濟(jì)成本增加,限制了大面積推廣應(yīng)用。

        激光是通過受激輻射而產(chǎn)生放大的光,在信息技術(shù)、醫(yī)療、工業(yè)等領(lǐng)域有著廣泛的應(yīng)用。氨氛(He-Ne)激光器作為在生命科學(xué)領(lǐng)域中使用較早的激光器,發(fā)射出波長為 632.8nm 的紅光。前人研究表明,高強(qiáng)度He-Ne激光 照射種子85~127min ,提高了茄子(SolanummelongenaL.)幼苗的凈光合速率[]。Yang等[]發(fā)現(xiàn)He-Ne激光(5.43W?cm-2,4min?d-1) 處理緩解了UV-B對(duì)小麥(TriticumaestivumL.)幼苗的脅迫效應(yīng)。這些研究證實(shí)激光具有促進(jìn)作物生長的調(diào)控效應(yīng),而短期高強(qiáng)度的激光模式因有高能量等安全問題在設(shè)施農(nóng)業(yè)中的應(yīng)用存在局限性。

        隨著現(xiàn)代產(chǎn)業(yè)和激光技術(shù)的快速發(fā)展,半導(dǎo)體激光器逐步成為主要的激光器類型,可激發(fā)出比He-Ne激光器多樣的光質(zhì)如紅光與藍(lán)光等。相比

        LED,半導(dǎo)體激光具有單色性好、方向性強(qiáng)、相干性好等特點(diǎn),且其光電轉(zhuǎn)換效率更高,從而實(shí)現(xiàn)節(jié)能降耗。筆者在本研究中擬利用半導(dǎo)體激光,以長期低強(qiáng)度(1PPFD以內(nèi))激光模式誘導(dǎo)光合作用與營養(yǎng)吸收,以促進(jìn)植株生長發(fā)育,實(shí)現(xiàn)設(shè)施草莓栽培低耗增產(chǎn)。因此,于草莓苗期至成熟期,進(jìn)行低強(qiáng)度(0.25、0.5、1PPFD)半導(dǎo)體激光處理,研究激光對(duì)草莓植株生長發(fā)育、產(chǎn)量形成、光合能力與營養(yǎng)積累的影響,明確激光對(duì)設(shè)施草莓產(chǎn)量的調(diào)控效應(yīng),以期為解決弱光造成的設(shè)施草莓產(chǎn)量受限、補(bǔ)光燈能耗大等產(chǎn)業(yè)問題提供一種新型的應(yīng)用模式。

        1材料和方法

        1.1試驗(yàn)設(shè)計(jì)

        試驗(yàn)于浙江省杭州市建德市大同西鄉(xiāng)草莓種植園區(qū) (119°3E,29°30N) 進(jìn)行。供試品種為紅顏草莓,種植密度為 9×104 株·?hm-2 。栽培措施與當(dāng)?shù)厣a(chǎn)保持一致,采用大棚草莓優(yōu)質(zhì)清潔栽培技術(shù),種植后約40d鋪設(shè)黑色地膜,采用肥水一體化技術(shù)進(jìn)行滴灌追肥。前期施用均衡型肥,結(jié)果期施用高鉀型肥,合理打葉整枝,并進(jìn)行病蟲害綠色防控。

        激光燈購買于杭州燦若星辰科技有限公司,每盞燈 15W 。通過擴(kuò)散片使激光光束擴(kuò)散,可均勻地照射在植物上。激光燈距離地面 3m ,燈下光強(qiáng)均勻分布的面積為 30m2 ,如場(chǎng)景圖(圖1-A)與模式圖(圖1-B)所示。試驗(yàn)設(shè)4個(gè)處理,強(qiáng)度分別為0.25PPFD(T1)、0.5PPFD(T2)、1PPFD(T3),不加激光為空白對(duì)照(CK)。激光燈的功率為 15W ,光質(zhì)為紅光( 660nm 與藍(lán)光 (450nm) ,紅藍(lán)比為1:1(圖1-C)。處理時(shí)間為苗期至成熟期,即草莓苗定植后(2023年9月10日)補(bǔ)加激光進(jìn)行輻照5個(gè)月,每日激光輻照時(shí)間為06:00一18:00。在外界光環(huán)境相同的區(qū)域中,每個(gè)處理設(shè)定5個(gè)生物學(xué)重復(fù),每個(gè)重復(fù)10株草莓苗。在處理周期內(nèi)共有兩茬草莓果實(shí)成熟,第一茬果與第二茬果的采摘時(shí)間分別為11月中旬至12月中旬、1月上旬至2月上旬,重點(diǎn)對(duì)第一茬果與第二茬果進(jìn)行定點(diǎn)觀測(cè)與取樣。

        1.2草莓果實(shí)產(chǎn)量和品質(zhì)指標(biāo)的測(cè)定

        第一茬與第二茬草莓成熟后分期對(duì)果實(shí)進(jìn)行收獲,測(cè)定各處理草莓果實(shí)數(shù)量、單果質(zhì)量和前期產(chǎn)量。在第二茬果收獲之后拍攝果實(shí)的表型照片。選取果實(shí)最大直徑處的兩個(gè)中心對(duì)稱部位,采用質(zhì)構(gòu)儀(SMS,英國)測(cè)定硬度;選取成熟度一致的果實(shí)用磨樣機(jī)磨成勻漿,采用手持式折光儀(陸恒生物,中國)測(cè)定可溶性固形物含量;分別利用蒽酮比色法[2]、酸堿滴定法[13]和pH示差法[4]測(cè)定果實(shí)總糖、可滴定酸和總花青素昔含量。

        圖1激光輻照設(shè)計(jì)與光譜圖Fig.1 Laser irradiationdesignandspectrogram

        1.3草莓生長指標(biāo)和光合參數(shù)的測(cè)定

        草莓的株高于第一茬果和第二茬果收獲之后在田間測(cè)定,測(cè)定距離為土壤到葉片頂部。挖取地上部草莓植株,烘箱 105°C 殺青 20min . 65°C 烘干至恒質(zhì)量后稱量。采用LA-S植物分析儀(萬深檢測(cè)科技有限公司,中國)測(cè)定葉面積,并計(jì)算比葉重(SLW Π= 葉片干質(zhì)量/葉片面積)。在第二茬果收獲之后拍攝植株的表型照片。

        使用LI-6800便攜式光合儀(LI-CORBioscienc-es,美國)于第二茬果收獲期間09:00至11:00測(cè)定各處理功能葉的凈光合速率 (Pn) 、氣孔導(dǎo)度 (Gs) 、細(xì)胞間隙二氧化碳濃度 (Ci) 與蒸騰速率 (Tr) ,每個(gè)處理測(cè)定5次重復(fù)。

        1.4營養(yǎng)元素含量的測(cè)定

        選用第二茬果收獲的植株樣品,測(cè)定營養(yǎng)元素含量。稱取 0.05g 樣品放入消煮管中,加入 5mL 濃硫酸, 190°C 消煮 30min 后加入 5mL30% 過氧化氫, 280°C 消煮 30min ,待消煮液完全澄清后取出,冷卻后定容到 100mL ,用 0.45μm 濾膜過濾后采用流式注射自動(dòng)分析儀(AA3,SealCo,德國)測(cè)定全氮含量。

        稱取 0.03g 樣品放入消煮管中,加入 6mL 的混合酸(濃硝酸、高氯酸體積比4:1),然后進(jìn)行溫度梯度消化 (60°C1h,120°C1h,150°C1h,190°C± 除酸),直到高氯酸分解并出現(xiàn)白煙,蒸發(fā)至干燥并冷卻。加入 20mL 去離子水中,定容到 50mL ,并通過 0.45μm 濾膜,用ICP-AES(Agilent710,AgilentTechnologies,美國)法測(cè)定磷、鉀、鈣、鎂含量。

        1.5 數(shù)據(jù)分析

        采用SPSS和GraphpadPrism軟件進(jìn)行數(shù)據(jù)分析與作圖。假設(shè)對(duì)照產(chǎn)量、生長指標(biāo)、光合指標(biāo)和營養(yǎng)指標(biāo)相對(duì)值為1,其他處理可求得一個(gè)相對(duì)值,則可分析產(chǎn)量與各個(gè)指標(biāo)之間的關(guān)系[15]。

        2 結(jié)果與分析

        2.1激光對(duì)草莓果實(shí)產(chǎn)量的影響

        由圖2可知,在第一茬果、第二茬果與兩茬果總和中,草莓果實(shí)產(chǎn)量、單果質(zhì)量和果實(shí)數(shù)量隨著激光強(qiáng)度的提高呈先增后穩(wěn)的趨勢(shì)。T1、T2、T3處理與對(duì)照相比,第一茬果的果實(shí)產(chǎn)量分別提高了 5.6% 、33.7% 和 41.4% ,第二茬果的果實(shí)產(chǎn)量分別顯著提高了 19.7%.35.1%.40.0% ,第一茬果與第二茬果的綜合產(chǎn)量分別顯著提高了 13.2%.34.5% 和 40.6% ,其中

        T2與T3處理間無顯著差異。T2與T3處理與對(duì)照相比,兩茬果累計(jì)的單果質(zhì)量分別顯著提高了19.8% 和 23.3% ,果實(shí)數(shù)量分別顯著提高了 12.3% 和14.0% 。以上結(jié)果表明,低強(qiáng)度激光增加了單果質(zhì)量和果實(shí)數(shù)量,進(jìn)而提高了草莓果實(shí)產(chǎn)量,其中T2與T3處理效果較優(yōu)。

        圖2激光對(duì)草莓果實(shí)產(chǎn)量的影響Fig.2Effectsof laser on fruit yieldof strawberry

        2.2激光對(duì)草莓果實(shí)品質(zhì)的影響

        從表1可知,與對(duì)照相比,激光處理對(duì)第一茬果和第二茬果的果實(shí)可溶性固形物含量、總糖含量、可滴定酸含量、糖酸比、總花青素苷含量與硬度無顯著影響,不同強(qiáng)度的激光處理之間均無顯著差異。以上結(jié)果表明,低強(qiáng)度激光不影響草莓的糖度、酸度、硬度與花青素含量等重要品質(zhì)性狀。

        2.3激光對(duì)草莓植株生長發(fā)育的影響

        由圖3可知,第一茬果與第二茬果收獲期的草莓植株地上部干物質(zhì)質(zhì)量、株高和葉面積隨著激光輻照強(qiáng)度的提高呈先增后穩(wěn)的趨勢(shì)。與對(duì)照相比,T2、T3處理顯著提高了植株地上部干物質(zhì)質(zhì)量、株高與葉面積,其中除了第二茬果收獲期的株高之外,T2與T3處理間無顯著差異。比葉重在組間無顯著差異,說明激光處理未影響葉片厚度。以上結(jié)果表明,低強(qiáng)度激光促進(jìn)了草莓植株的生長,其中T2與T3處理效果較優(yōu)。

        2.4激光對(duì)草莓植株光合參數(shù)的影響

        如圖4所示,草莓葉片 Pn 隨著激光輻照強(qiáng)度的提高呈現(xiàn)先增后穩(wěn)的趨勢(shì)。T1、T2和T3處理下凈光合速率分別提高了 4.9%8.9% 和 9.4% ,其中T2與T3處理間無顯著差異,說明T2與T3處理效果較優(yōu)。 Gs,Ci 和 Tr 隨著激光輻照強(qiáng)度的提高分別呈現(xiàn)不變、下降和不變的趨勢(shì),說明激光輻照不影響氣孔導(dǎo)度與蒸騰速率,而降低了細(xì)胞間隙 CO2 濃度。以上結(jié)果表明,低強(qiáng)度激光通過非氣孔因素促進(jìn)光合作用。

        表1激光對(duì)草莓果實(shí)品質(zhì)的影響Table1Effectsof laseronqualityofstrawberryfruit
        注:不同小寫字母代表處理間差異顯著 (plt;0.05) 。下同。 Note:Different small letters represent significant difference between treatments (plt;0.05 ).The same below.
        圖3激光對(duì)草莓植株生長指標(biāo)的影響Fig.3Effectsoflaser on growth indexes of strawberry plants
        圖4激光對(duì)草莓葉片光合參數(shù)的影響Fig.4Effects of photosynthetic parameters of strawberryplants

        2.5激光對(duì)草莓植株?duì)I養(yǎng)積累的影響

        由表2可知,隨著激光強(qiáng)度的提高,大量元素如氮、磷和鉀的積累量呈先增后穩(wěn)的趨勢(shì),中量元素鎂的積累量呈增加趨勢(shì),而鈣的積累量呈先減少后增加的趨勢(shì)。說明激光處理有利于吸收氮、磷、鉀和鎂等元素。T3相比T2處理,氮、磷和鉀的積累量無顯著差異,鎂積累量顯著提高。以上結(jié)果表明,低強(qiáng)度激光可有效提高草莓植株對(duì)氮、磷、鉀、鎂元素的積累。

        表2激光對(duì)草莓植株葉片營養(yǎng)積累的影響Table2 Effects oflaser on nutrient accumulation in strawberryleaves

        2.6草莓葉片葉面積、光合參數(shù)、營養(yǎng)元素積累量 與果實(shí)產(chǎn)量的相關(guān)性分析

        將草莓葉片葉面積、光合參數(shù)、營養(yǎng)元素積累量與果實(shí)產(chǎn)量進(jìn)行相關(guān)性分析的結(jié)果表明,草莓果實(shí)產(chǎn)量與葉面積、凈光合速率、氮積累量、磷積累量、鉀積累量、鎂積累量呈極顯著正相關(guān) (plt;0.01) ,其中草莓產(chǎn)量與磷積累量相關(guān)性最顯著(圖5)。草莓果實(shí)產(chǎn)量與細(xì)胞間隙 CO2 濃度、蒸騰速率、鈣積累量無相關(guān)性。因此,在激光輻照條件下,較大的葉面積、較高的凈光合速率及營養(yǎng)元素(氮、磷、鉀、鎂)積累量有利于果實(shí)產(chǎn)量的提高。

        3討論

        補(bǔ)光燈作為提高設(shè)施作物產(chǎn)量中的重要技術(shù)受到了廣泛關(guān)注。由于在草莓生長前期(秋冬季節(jié))氣溫較低,日照時(shí)長變短,對(duì)光照需求增加,且前期草莓經(jīng)濟(jì)效益高,筆者在本研究中重點(diǎn)研究了激光對(duì)草莓前期產(chǎn)量(第一茬與第二茬果)的影響。結(jié)果表明,0.5與1PPFD激光處理效果較優(yōu),通過提高果實(shí)數(shù)量與單果質(zhì)量,顯著增產(chǎn) 34.5% 與 40.6% 。說明利用長期低強(qiáng)度(1PPFD以內(nèi))激光輻照模式實(shí)現(xiàn)設(shè)施草莓低耗增產(chǎn)是可行的。1PPFD是這款激光燈能達(dá)到的最大強(qiáng)度,若需達(dá)到2PPFD,則需要兩盞燈合并,成本加倍,所以尚未使用。相比長期高強(qiáng)度LED補(bǔ)光模式[57],長期低強(qiáng)度激光輻照模式具有低功率(15W·盞)節(jié)能的優(yōu)勢(shì)。按照 15~ 20盞燈 ?666.7m-2 、照射 12h?d-1 計(jì)算,每天僅需 2.7~ 3.6度·666.7m-2 ,電費(fèi)成本可忽略不計(jì)。目前草莓產(chǎn)值為2萬~5萬元 ?666.7m-2 ,激光處理后產(chǎn)值每年可增加0.6萬~1.5萬元·666.7m-2 ,除去激光燈(壽命

        圖5草莓葉片葉面積、光合參數(shù)、營養(yǎng)元素積累量與果實(shí)產(chǎn)量的相關(guān)性分析

        為10年)每 666.7m2 投入成本1.5萬 ~2 萬元,最快第二年即可實(shí)現(xiàn)盈利。在本研究中,激光在促進(jìn)草莓增產(chǎn)的同時(shí),并未影響草莓風(fēng)味品質(zhì)。而谷樂等[發(fā)現(xiàn)紅藍(lán)激光夜間補(bǔ)光(55PPFD),顯著提高了草莓果實(shí)的糖度。夜晚LED綠光補(bǔ)光(81PPFD)可促進(jìn)番茄光合作用,改善番茄果實(shí)品質(zhì)[。說明不同補(bǔ)光周期與光質(zhì)對(duì)果實(shí)品質(zhì)的影響存在差異,可進(jìn)一步優(yōu)化半導(dǎo)體激光輻照模式以實(shí)現(xiàn)增產(chǎn)提質(zhì)。

        在本研究中,激光處理顯著提高了地上部生物量,增加了株高,說明激光能夠促進(jìn)植株生長發(fā)育。光合作用為植物生長提供必要的碳水化合物與能量。0.5與1PPFD激光處理顯著提高了草莓葉片的凈光合速率,增大了葉面積,且相關(guān)性分析表明葉面積、凈光合速率與草莓果實(shí)產(chǎn)量呈極顯著正相關(guān),說明激光的增產(chǎn)效應(yīng)與光合能力的提高有關(guān)。調(diào)控光合的因素可分為氣孔因素與非氣孔因素。筆者在本研究中發(fā)現(xiàn),低強(qiáng)度激光通過非氣孔因素促進(jìn)光合作用。而Swathy等報(bào)道高強(qiáng)度He-Ne激光提高茄子的凈光合速率與氣孔導(dǎo)度有關(guān)。紅藍(lán)混合LED補(bǔ)光提高了植株的凈光合速率,與氣孔、非氣孔因素均有關(guān)[5,18-19]。說明長期低強(qiáng)度激光調(diào)控光合作用的機(jī)制與高強(qiáng)度He-Ne激光、LED不同。非氣孔因素主要包括光合產(chǎn)物輸出能力、核酮糖-1.5-二磷酸羧化酶羧化能力與電子傳遞能力等[20。因此,可通過光合模型進(jìn)一步探究低強(qiáng)度激光提高光合作用的關(guān)鍵原因。

        除了地上部的光合作用,植株的生長發(fā)育與地下部營養(yǎng)吸收能力緊密相關(guān)。筆者在本研究中發(fā)現(xiàn),低強(qiáng)度激光處理顯著提高了草莓植株對(duì)氮、磷、鉀、鎂元素的積累量。這與前人研究結(jié)果相似。高強(qiáng)度He-Ne激光 (5.23mW?mm-2) 預(yù)處理種子提高了向日葵(HelianthusannuusL.)地上部與地下部的鉀與鎂等營養(yǎng)元素含量,促進(jìn)了營養(yǎng)吸收[2。紅藍(lán)混合LED補(bǔ)光同樣具有促進(jìn)草莓植株?duì)I養(yǎng)吸收的作用。相關(guān)性分析表明,營養(yǎng)元素(氮、磷、鉀、鎂)積累量與草莓果實(shí)產(chǎn)量呈極顯著正相關(guān),其中磷積累量與草莓產(chǎn)量相關(guān)性最顯著。磷是植物生長發(fā)育所需大量元素之一,以多種形式參與到植物體內(nèi)各種生理生化途徑,如光合作用、氮代謝、細(xì)胞壁合成等,對(duì)植物生長發(fā)育與產(chǎn)量形成具有重要影響[22]。紅光能通過光敏色素B及其下游轉(zhuǎn)錄因子直接激活磷素轉(zhuǎn)運(yùn)體PHT1;1的表達(dá),促進(jìn)磷吸收[23]。激光如何誘導(dǎo)營養(yǎng)元素吸收以促進(jìn)磷等營養(yǎng)元素積累還有待進(jìn)一步研究。

        在過去幾十年,光生物學(xué)領(lǐng)域的研究發(fā)展飛速,而激光生物學(xué)效應(yīng)(生物體由激光作用發(fā)生的生物學(xué)反應(yīng))發(fā)展緩慢。高強(qiáng)度激光可能通過共振效應(yīng)、異構(gòu)化作用、光解離效應(yīng)或者電磁效應(yīng)導(dǎo)致蛋白變性與基因突變,應(yīng)用于誘變育種[24。筆者在本研究中發(fā)現(xiàn)低強(qiáng)度激光的增產(chǎn)效應(yīng)可應(yīng)用于設(shè)施農(nóng)業(yè),而低強(qiáng)度激光如何激活生物分子以促進(jìn)植物生長發(fā)育仍知之甚少。由于 0.5~1 PPFD激光強(qiáng)度遠(yuǎn)小于自然光強(qiáng)度,筆者認(rèn)為低強(qiáng)度激光存在特殊的誘導(dǎo)調(diào)控機(jī)制,區(qū)別于以往通過增大有效輻射的補(bǔ)光機(jī)制。Li等[25]發(fā)現(xiàn) Nd3+YAG 激光脈沖照射水稻(Ory-zasativaL.)種子可誘導(dǎo)遺傳性DNA甲基化變化,并伴隨著轉(zhuǎn)座因子的轉(zhuǎn)座子激活。這啟示了研究者今后可從表觀遺傳調(diào)控、蛋白質(zhì)翻譯后修飾等生物學(xué)角度挖掘激光誘導(dǎo)的分子機(jī)制。

        4結(jié)論

        低強(qiáng)度激光(0.5與1PPFD)長期處理可在兼顧果實(shí)品質(zhì)的前提下,通過提高光合能力與養(yǎng)分吸收能力,促進(jìn)生物量積累,進(jìn)而有效提高果實(shí)數(shù)量、單果質(zhì)量與綜合產(chǎn)量。區(qū)別于以往補(bǔ)光燈,半導(dǎo)體激光以長期低強(qiáng)度的模式誘導(dǎo)促進(jìn)了植株生長發(fā)育與增產(chǎn),為設(shè)施農(nóng)業(yè)提供了一種低耗增效的“光肥”。

        參考文獻(xiàn)References:

        Science,2019,9:2002.

        [5] XIEBX,WEIJJ,ZHANGYT,SONGSW,SUW,SUNGW, HAO Y W,LIU H C. Supplemental blue and red light promote lycopene synthesis in tomato fruits[J].Journal of Integrative Agriculture,2019,18(3):590-598.

        [6] ROOSTA H R,BIKDELOO M,GHORBANPOUR M. The growth,nutrient uptake and fruit quality in four strawbery cultivarsunder different Spectra ofLED supplemental light[J].BMC Plant Biology,2024,24(1):179.

        [7] 張涵,張玉琪,黎景來,徐虹,李維環(huán),李濤.LED補(bǔ)光對(duì)日光 溫室基質(zhì)栽培草莓生產(chǎn)及葉片生理特性的影響[J].中國農(nóng)業(yè) 科學(xué),2025,58(5):975-990. ZHANG Han,ZHANG Yuqi,LI Jinglai,XU Hong,LI Weihuan, LI Tao.Effects of LED supplementary lighting on production and leafphysiological propertiesof substrate-cultivated strawberry in Chinese solar greenhouse[J]. Scientia Agricultura Sinica,2025,58(5):975-990.

        [8] HAN R,WANG XL,YUE M. Influence of He-Ne laser irradiation on the excision repair of cyclobutyl pyrimidine dimers in the wheat DNA[J]. Chinese Science Buletin,2002,47(10):818- 821.

        [9] SWATHYPS,RUPALG,PRABHUV,MAHATOKK,MUTHUSAMY A. In vitro culture responses,callus growth and organogenetic potential of brinjal(Solanum melongena L.)to He-Ne laser irradiation[J].Journal of Photochemistryand Photobiology B:Biology,2017,174:333-341.

        [10]YANG LY,HAN R,SUN Y. Damage repair effect of He-Ne laseron wheat exposed to enhanced ultraviolet-B radiation[J]. Plant Physiologyand Biochemistry,2012,57:218-221.

        [11]楊明來,王英,戚行江,徐宏翔,徐盛春,秦莉,賈鵬,梁雪梅,于 馨智.激光技術(shù)在農(nóng)業(yè)補(bǔ)光領(lǐng)域的應(yīng)用與發(fā)展前景[J].照明 工程學(xué)報(bào),2023,34(5):12-18. YANG Minglai,WANG Ying,QI Xingjiang,XU Hongxiang, XUShengchun,QINLi,JIA Peng,LIANGXuemei,YUXinzhi. Application and future prospects of laser technology in agricultural supplemental light[J]. China Illuminating Engineering Journal,2023,34(5):12-18.

        [12]FALES F. The assmilation and degradation of carbohydrates by yeast cells[J]. Journal of Biological Chemistry,1951,193(1): 113-124.

        [13]高俊鳳.植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M].北京:高等教育出版社, 2006. GAO Junfeng. Experimental guidance for plant physiology[M]. Beijing:Higher Education Press,2006.

        [14]CHENG G W,BREEN P J. Activity of phenylalanine ammonialyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit[J]. Journal of the American Society forHorticultural Science,1991,116(5):865-869.

        [15]REDDY KR,ZHAO D L. Interactive effects of elevated CO2 (204 and potassum deficiency on photosynthesis,growth,and biomass partitioning of cotton[J].Field CropsResearch,20o5,94(2/

        [] ZHENGJF,JIF,HEDX,NIUGH.Effectoflight intensityon rootingand growth ofhydroponic strawberryrunnerplantsina LED plant factory[J].Agronomy,2019,9(12):875.

        [2] NADALINIS,ZUCCHIP,ANDREOTTIC.Effectsofblueand redLED lights on soilless cultivated strawberry growth performancesand fruitquality[J].European Journal for Horticultural Science,2017,82(1):12-20.

        [3] SIPOSL,BOROSIF,CSAMBALIKL,SZEKELYG,JUNG A,BALAZS L. Horticultural lighting system optimalization:A review[J].ScientiaHorticulturae,2020,273:109631.

        [4] KAISER E,OUZOUNIS T,GIDAYH,SCHIPPER R, HEUVELINKE,MARCELISLFM.Addingblue tored supplemental light increases biomass and yield of greenhousegrowntomatoes,butonlytoanoptimum[J].Frontiersin Plant 3):201-213.

        [16]谷樂,蘭艷亭,王春林,陳曉棟,方煒,王瑞峰.智能激光植物 補(bǔ)光器的設(shè)計(jì)及應(yīng)用[J].農(nóng)業(yè)工程學(xué)報(bào),2023,39(18):211- 217. GU Le,LAN Yanting,WANG Chunlin,CHEN Xiaodong, FANGWei,WANG Ruifeng.Design and application of plant supplemental lightwiththe intelligent laser[J].Transactionsof the Chinese Society of Agricultural Engineering,2023,39(18): 211-217.

        [17] 胡莉,李建設(shè),高艷明,曹豪.夜間補(bǔ)照綠光對(duì)設(shè)施番茄光合 特性及品質(zhì)產(chǎn)量的影響[J].安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,50(3): 429-436. HULi,LI Jianshe,GAO Yanming,CAO Hao.Effectsof supplemental green lightat night on photosynthetic characteristics, quality and yield of greenhouse tomato[J]. Journal of Anhui AgriculturalUniversity,2023,50(3):429-436.

        [18]LAZZARIN M,MEISENBURG M,MEIJER D,VAN IEPERENW,MARCELISLFM,KAPPERSIF,VANDER KROLAR,VANLOONJJA,DICKEM.LEDsmakeitresilient:Effectson plant growthand defense[J].Trends inPlant Science,2021,26(5):496-508.

        [19]PALMITESSAOD,PANTALEO MA,SANTAMARIAP.Applicationsand development of LEDs as supplementary lighting for tomato at different latitudes[J].Agronomy,2021,11(5):835.

        [20]LONG S P,BERNACCHI C J.Gas exchange measurements, whatcan theytell usabout theunderlyinglimitationstophotosynthesis?Procedures and sources of error[J]. Journal ofExperimentalBotany,2003,54(392):2393-2401.

        [21]PERVEENR,JAMILY,ASHRAFM,ALIQ,IQBALM,AHMADMR.He-Nelaser-inducedimprovementinbiochemical, physiological,growth and yield characteristics in sunflower (Helianthus annuus L.)[J]. Photochemistry and Photobiology,2011, 87(6):1453-1463.

        [22]JOHNSTONAE,POULTONPR,F(xiàn)IXENPE,CURTIND. Chapter five phosphorusits efficient use in agriculture[J].Advances inAgronomy,2014,123:177-228.

        [23]SAKURABAY,KANNOS,MABUCHIA,MONDAK,IBAK, YANAGISAWA S.A phytochrome-B-mediated regulatory mechanismof phosphorus acquisition[J].Nature Plants,2018,4(12): 1089-1101.

        [24]向洋,丁志寶.激光生物學(xué)作用機(jī)理探討[J].光電子·激光, 1997,8(6):475-478. XIANG Yang,DING Zhibao.The inquiryin effect mechanism oflaser biology[J].Journal of Optoelectronics ??ε Laser,1997,8 (6):475-478.

        [25]LISY,XIAQ,WANGF,YUXM,MAJ,KOUHP,LINXY, GAOX,LIU B.Laser irradiation- induced DNA methylation changesare heritableand accompaniedwith transpositionalactivationof mPing in rice[J].Frontiers in Plant Science,2017,8: 363.

        猜你喜歡
        產(chǎn)量
        2022年11月份我國鋅產(chǎn)量同比增長2.9% 鉛產(chǎn)量同比增長5.6%
        今年前7個(gè)月北海道魚糜產(chǎn)量同比減少37%
        提高玉米產(chǎn)量 膜下滴灌有效
        夏糧再獲豐收 產(chǎn)量再創(chuàng)新高
        世界致密油產(chǎn)量發(fā)展趨勢(shì)
        海水稻產(chǎn)量測(cè)評(píng)平均產(chǎn)量逐年遞增
        2018年我國主要水果產(chǎn)量按?。▍^(qū)、市)分布
        2018年11月肥料產(chǎn)量統(tǒng)計(jì)
        2018年10月肥料產(chǎn)量統(tǒng)計(jì)
        2018年12月肥料產(chǎn)量統(tǒng)計(jì)
        日韩av东京社区男人的天堂| 久久成人精品国产免费网站| 久久av粉嫩一区二区| 高潮抽搐潮喷毛片在线播放| 18禁美女裸身无遮挡免费网站| 久久久国产精品免费无卡顿| 牛仔裤人妻痴汉电车中文字幕| 国产高清成人在线观看视频| 老熟妇仑乱视频一区二区| 久久精品国产99精品国偷| 日本一区二区在线看看| 亚洲综合av大全色婷婷| 亚洲伊人色欲综合网| 亚洲中文av一区二区三区| 色婷婷一区二区三区四| 中文无码av一区二区三区| 三级特黄60分钟在线观看| 久热香蕉av在线爽青青| 国产亚洲一区二区精品| 丰满少妇人妻久久久久久| 无尽动漫性视频╳╳╳3d| 亚洲av永久无码精品成人| 国产亚洲精品在线视频| 中文字幕乱码一区av久久不卡 | 色欲av永久无码精品无码蜜桃 | 91av视频在线| 天天综合色中文字幕在线视频| 欧美熟妇另类久久久久久多毛 | 国产精品亚洲在钱视频| 亚洲av高清一区二区三| 国产精品久久久久影院嫩草| 中文字幕第一页亚洲观看| 日本女优中文字幕亚洲| 亚洲国产精品久久电影欧美| 久久亚洲黄色| 自拍偷拍另类三级三色四色| 亚洲成熟女人毛毛耸耸多| 韩国精品一区二区三区无码视频 | 亚洲av成人一区二区三区网址| 国产免费网站在线观看不卡| 亚洲国产成人av在线观看|