中圖分類號:S662.1;S436.621 文獻標(biāo)志碼:A 文章編號:1009-9980(2025)06-1281-11
Abstract: 【Objective】 Brown rot is a destructive disease in peach production, which directly threatens thesustainable development of peach industry.This disease not only causes fruit spoilage,but also leads to significant economic losses during postharvest storage and transportation. This has become a critical bottleneck restricting the quality improvement, eficiency enhancement,and marketcompetitiveness in the peach industry. Chlorogenic acid (CGA) is a phenolic secondary metabolite, a phenylpropanoid synthesis synthesized by shikimic acid pathway during respiration of plants,and exists in different tissues of most Rosaceae fruit trees. Chlorogenic acid demonstrates antimicrobial activity to a variety of pathogenic species,including bacteria and fungi,and the extraction and research of chlorogenic acid have become a hot spot in the study on natural extracts.In this study,the extraction eficiency of
CGA from three peach strains with distinct flower colors (red,pink and white)was systematically investigated,and the inhibitory effect ofthese CGA extracts and chlorogenic acid standard on growth of Monilinia fructicola, a major pathogen of peach brown rot, was evaluated. The results are expected to provide scientific basis for the comprehensive utilization of peach blossom resource and the development of eco-friendly strategies for brown rot disease control.【Methods】Peach blossoms were picked from diferent peach strains with distinct flowercolors,including R-2 (red flower),P-3 (pink flower),and W7(white flower). Fresh peach flower petals were dried in an oven at 42°C to a constant weight, and then crushed into powder. CGA was extracted from dried peach flower powder using an ultrasound-assisted methanol extraction method.The key extraction parameters,such as solid-to-liquid ratio (1:10,1: 20,and 1:30), methanol concentration ( 60% 5 70% ,and 80% ),ultrasonic power (200W) , extraction temperature (40°C) , and extraction time ( (60min ), were systematically optimized through the single-factor experiment.Two extraction cycles were performed to maximize the yield.The CGA content in the extracts was quantified via the high performance liquid chromatography (HPLC) under the following chromatographic conditions: a C18 column, gradient elution with 0.1% formic acid (mobile phase A) and methanol (mobile phase B), flow rate of 1mL?min-1 ,detection wavelength of 280nm ,and injection volume of 20μL .The fungal infection assay on peach callus tissues was conducted in the early stage of this study.The results showed that the white mycelium (pathogen of peach brown rot) could be firmly attched to the surface of the peach callus tissues,and the color of the peach callus began to change from normal color to brownor dark browncolor.The texture of the tissuealso changed,fromrelatively dense to soft status,stained by water. The pathogens had obvious ability to infectcalus and maintained good radial growth ability on the surface of callus.At the same time,the strain was identified as M. fructicola.The antifungal activity of the extracts was assessed through in vitro inhibition assays.M.fructicola was cultured on potato dextrose agar (PDA) medium, and mycelium plugs ( 7mm diameter) were treatedwith varyingconcentrationsofCGA extracts (O.2, 0.3 or 0.4mg?mL-1 )orchlorogenic acid standard. The control group received PDA only. Mycelium growth was monitored for 5 days, and inhibition rateswere calculated using the formula below:
Inhibition were Dplug. (204號 Dcontrol 0 Dtreatment repret plu siameter,control colony diameter,and treated colony diameter,respectively.By observing the fungus growth and the inhibition rate of pathogenic fungus,the inhibition of chlorogenic acid standard and peach blossom extracts with different concentrations on peach brown rot fungus was judged.【Results】 Under optimized conditions (ratio of solid to liquid
, 80% methanol, 20o W ultrasonic power, 40°C 0 60min ,and 2 cycles),the CGA contents in red (R-2),pink (P-3),and white (W-7) peach blossom extractswere 0.44,0.324,and 0.417mg?mL-1 ,respectively.By HPLC analysisand comparison with the peak time of chlorogenic acid standard,chlorogenic acid was identified as the main phenolic compound in the peach blossom extract.In vitro antifungal assays demonstrated dose-dependent and time-dependent inhibition of M. fructicola.After 5 days of treatment at a concentration of 0.3 or 0.4mg?mL-1 ,both CGA standard and peach blossom extracts showed the greatest inhibitory effect, significantly reducing mycelial expansion compared to control (plt;0.001 ),andtheinhibitionratesofred,pink,and white strain extracts were 34.65% , 21.47% ,and 21.38% ,respectively,highlightingtheinhibitoryefficacyof three peach blossom extracts.The inhibitory effects showed the same trend as the extraction effects of chlorogenic acid from red, pink and white peach blossoms.Notably,lower concentrations (0.2mg?mL-1, ) also showed measurable inhibition,although less pronounced.Morphological observation showed that mycelial integrity was destroyed and sporulation was inhibited in the treatment group, which was consistent with quantitative data.【Conclusion】In this research,theultrasonic assisted methanol extraction method of chlorogenic acid extracted from peach blossom was successfully established and optimized. The content of chlorogenic acid was the highest when the ratio of solid to liquid was 1:1Oand the concentration of extraction solvent was 80% methanol. The extracts demonstrated antifungal activity against M. fructicola,underscoring their potential as natural alternatives to synthetic fungicides.These findings not only advance the understanding of peach blossom phytochemistry but also offer practical insights for valorizing agricultural by-products and mitigating postharvest losses caused by brown rot. Future research should focus on field trials,mechanism elucidation (e.g.,oxidative stress induction), and synergistic combinations with other bioactive compounds to enhance commercial applicability.
Key words:Peach blossom; Chlorogenic acid; Peach brown rot; Inhibition rate
綠原酸(chlorogenicacid,CGA)作為一種重要的次生代謝物質(zhì)廣泛存在于植物中,因其較強的生物活性和藥理作用,在植物的生長發(fā)育、抵御生物和非生物脅迫等方面發(fā)揮著重大的作用。綠原酸是咖啡酸和奎寧酸形成的酯,是植物通過苯丙烷途徑合成的羥基肉桂酸,化學(xué)名3-O-咖啡???,其分子式為 C16H18O9 ,系統(tǒng)命名為1,3,4,5-四羥基環(huán)己烷羧酸3-(3,4-二羥基肉桂酸酯)。綠原酸也是一種對植物病原真菌有活性的殺菌劑2。研究表明,外源施加綠原酸對果蔬的病害防治和果實品質(zhì)保持有積極作用。櫻桃番茄果實采后外源施加綠原酸可以明顯抑制病害鐮刀菌腐爛病菌(Fusariumfujikuroi)分生孢子萌發(fā)、芽管伸長、細(xì)胞活力和菌絲生長,顯著抑制腐爛病的發(fā)生。外源綠原酸可以有效保護桃果實在儲存期間免受擴展青霉(Penicilliumexpansum)的感染4。綠原酸對桃果實灰霉病也具有防治效果,可以抑制真菌孢子萌發(fā)、芽管伸長、細(xì)胞活力和菌絲穿透,有效降低桃果實上灰霉病菌(Botrytisci-nerea)在 25°C 下貯藏的病斑直徑和孢子產(chǎn)量,降低桃的自然腐爛率,延緩果實的成熟和衰老,保持桃果實的貯藏品質(zhì)。綠原酸還可以通過影響采后油桃防御相關(guān)蛋白的變化并減少ROS的產(chǎn)生,來減少油桃成熟過程中的氧化損傷,提高其抗氧化能力,同時也可通過降低乙烯產(chǎn)量,減少丙二醛(MDA)的積累,延遲果實軟化,維持桃果實的采后品質(zhì)[6]。在弼猴桃中,綠原酸可通過誘導(dǎo)線粒體氧化應(yīng)激有效抑制間座殼菌(Diaporthesp.)的侵染,顯著減少果實腐爛8。同樣,在煙草(Nicotiana tobacum)中施加綠原酸能顯著減輕煙草疫霉(Phytophthoranicotianae)的生長,減少煙草黑脛病造成的損失,且抑制作用隨著綠原酸施加濃度的遞增而增強。此外,綠原酸的積累也有助于提高植物的抗寒性、抗旱性、耐鹽性以及抵御強光照射或紫外輻射的能力[10-1]。由此可見,綠原酸在植物的生長發(fā)育、抗病、抗蟲以及抵御外界脅迫環(huán)境中扮演著重要的角色。
桃(PrunuspersicaL.)為薔薇科果樹,桃花提取物具有強大的抗氧化和酪氨酸酶抑制活性[12-14]。有研究利用HPLC-PDA方法在不同開花階段的桃花中發(fā)現(xiàn)6種酚類化合物,綠原酸作為主要成分占其總量的 62.08%~71.09% ,桃花抗氧化能力與總酚含量和總黃酮含量以及綠原酸、肉桂酸和山奈酚-3-O-半乳糖苷含量之間存在顯著相關(guān)性,而酪氨酸酶抑制活性與總酚、總黃酮、綠原酸、槲皮素-3-O-鼠李糖苷、山奈酚-3-O-半乳糖苷和肉桂酸的相關(guān)性較低。桃花的抗氧化活性比酪氨酸酶抑制活性更依賴于酚類化合物[15。進一步研究桃花中篩選出的25種化合物,發(fā)現(xiàn)其中包括8種酚酸和17種黃酮類化合物,并且不同栽培條件下桃花定量成分中綠原酸的濃度均為最高,表明桃花綠原酸含量與外界環(huán)境之間沒有相關(guān)性。有研究發(fā)現(xiàn),乙醇回流可以浸提綠原酸,其方法操作簡單,成本低,但其選擇性差,雜質(zhì)成分多,后續(xù)純化困難[]。蒸汽爆破輔助超聲法提取金銀花綠原酸可以縮短提取時間,提高提取效率,但其設(shè)備成本高,可能有效成分會被破壞[18]。筆者在本研究中采用甲醇輔助超聲法提取桃花中的綠原酸,區(qū)別于常見單一的乙醇回流浸提,也不同于蒸汽爆破輔助超聲這種側(cè)重物理作用的提取方式,該技術(shù)將甲醇作為輔助試劑與超聲法相結(jié)合,甲醇具有獨特的溶解性能,與超聲的空化、機械等作用協(xié)同,開辟了一種新的提取路徑。
桃褐腐病主要引起果實腐爛,也可危害花、葉及枝條等,已給桃產(chǎn)業(yè)帶來嚴(yán)重經(jīng)濟損失[19-20]。有研究表明,植物天然提取物對桃褐腐病菌絲體生長有抑制效果[2I-23]?;谝陨闲枨?,本試驗通過建立和優(yōu)化一套利用超聲輔助甲醇浸提桃花中綠原酸的方法,獲得桃花綠原酸浸提液,并利用該提取液體外處理桃褐腐病的主要致病菌-美澳型核果鏈核盤菌(Mon-iliniafructicola),測定其抑菌效果,以期為桃花價值的開發(fā)利用和褐腐病菌的防治提供數(shù)據(jù)支撐。
1 材料和方法
1.1 試驗材料
1.1.1供試材料桃花采摘于河北省秦皇島市昌黎縣石橋營基地( (119.23°E,39.73°N) 。選擇不同花色的桃品系,R-2(紅花)、P-3(粉花)和W-7(白花)如圖1所示。取新鮮桃花花瓣,置于烘箱 42°C 烘干至恒質(zhì)量,將桃花花瓣粉碎,得到桃花粉末,密封保存?zhèn)溆谩?/p>
1.1.2培養(yǎng)基及供試藥劑馬鈴薯葡萄糖瓊脂(PDA)培養(yǎng)基:馬鈴薯 200g,D. -葡萄糖 20g ,瓊脂粉20g ,蒸餾水 1000mL 。綠原酸標(biāo)準(zhǔn)品(純度 98% 北京譜析標(biāo)準(zhǔn)技術(shù)有限公司);甲醇(色譜純,北京藍弋生物有限公司)以及甲酸(色譜純,北京藍弋生物有限公司)。
1.1.3供試的病原菌桃褐腐病菌(M.fructicola)由江西農(nóng)業(yè)大學(xué)保存并提供。
1.2 試驗方法
1.2.1桃花浸提液的制備方法確定料液比。以75% 甲醇為溶劑,按照桃花粉末與溶劑質(zhì)量比為1:10、1:20和1:30,將混合物于 4°C 浸提過夜,然后用超聲波處理2次,每次 60min ,超聲頻率 20kHz ,超聲功率 200W ,超聲溫度 40°C ,以 10000r?min-1 離心10min ,取上清液;將第二次超聲處理和第一次超聲處理所得上清液合并,經(jīng) 0.22μm 濾膜抽濾后,采用HPLC測定樣品中綠原酸的含量,比較并確定最佳料液比。根據(jù)確定的最佳料液比,在3種桃花色粉末中加入不同濃度 (φ ,后同)的甲醇 (60%.70% 和 80% ),按照上述操作確定浸提溶劑甲醇的最佳濃度。
1.2.2高效液相色譜測定桃花浸提液中綠原酸的含量采用高效液相色譜法對桃花浸提液進行成分分析。高效液相色譜儀分析的色譜條件為:使用以十八烷基硅烷鍵合硅膠為填充劑的色譜柱,以 0.1% 甲酸水溶液為流動相A,以甲醇為流動相B進行梯度洗脫;流速為 1mL?min-1 ;檢測波長為 280nm ;進樣量 20μL ;梯度洗脫條件為: 0~10min ,流動相A的濃度變化為 70%~55% ,流動相B的濃度變化為 30%~ 45%;10~20min ,流動相A的濃度變化為 55%~49% .流動相B的濃度變化為 45%~51%;20~35min ,流動相A的濃度變化為 49%~20% ,流動相B的濃度變化為 51%~80%;35~36min ,流動相A的濃度變化為20%~0 ,流動相B的濃度變化為 80%~100%
1.2.3桃花綠原酸浸提液對桃褐腐病菌菌絲生長的抑制試驗筆者在本研究中從第20天的桃褐腐病菌菌株中取直徑 7mm 的果孢菌塞備用。PDA培養(yǎng)基經(jīng)高壓蒸汽滅菌處理后,自然冷卻至適宜溫度,向其中加入不同濃度 (ρ ,后同)桃花浸提液或者綠原酸標(biāo)準(zhǔn)品(0.2、0.3或 0.4mg?mL-1, ,混勻,隨后制備平板,以PDA為對照。將 7mm 菌塞置于平板的中心,25°C 培養(yǎng),觀察處理不同時間(0、1、3、5d)桃褐腐病菌的生長情況,每個處理設(shè)3次重復(fù)。使用ImageJ測量并記錄桃褐腐病菌菌落直徑。菌絲生長抑制率 (Y)%= [(對照組菌落直徑一菌塞直徑)一(處理組菌落直徑一菌塞直徑)]/(對照組菌落直徑一菌塞直徑) ×100 。
2 結(jié)果與分析
2.1 不同品系桃花的盛花期
為了研究不同顏色桃花浸提液中綠原酸的含量差別,對花色不同的桃品系的盛花期進行了調(diào)查,并確定最佳取樣時間。通過對白色(W-7)、粉色(P3)、紅色(R-2)3個顏色桃花的盛花期進行連續(xù)觀測(表1),分別在3個桃品系的盛花期采集桃花花瓣樣品,用于后續(xù)浸提物的制備。
2.2不同品系桃花綠原酸提取條件的確定
采用超聲波輔助甲醇浸提法提取桃花中的綠原酸,HPLC測定R-2、P-3和W-7品系桃花浸提液中綠原酸的含量,確定從3種桃花色中提取綠原酸的最優(yōu)條件均為料液質(zhì)量比1:10,浸提溶液為 80% 甲醇(圖2)。
在最優(yōu)條件下,紅色桃花(R-2)、粉色桃花(P-3)及白色桃花(W-7)中綠原酸含量 (ρ; 后同)分別為0.440,0.324 和 0.417mg?mL-1 (圖3),3個不同花色桃品系綠原酸含量無明顯差別。
2.3 桃褐腐病菌的形態(tài)
桃褐腐病菌及其對桃愈傷組織侵染表型如圖4所示,褐腐病菌白色菌絲體能夠穩(wěn)固地黏附在愈傷組織的表面,并且在局部區(qū)域桃愈傷組織開始出現(xiàn)變色現(xiàn)象,由原本正常的顏色逐漸變?yōu)楹稚虬岛稚?。組織質(zhì)地也發(fā)生了變化,從原本相對緊實變得松軟、水漬狀。由此可見,桃褐腐病菌對愈傷組織具有明顯的侵染能力,在愈傷組織表面保持良好的徑向生長能力。
2.4桃花綠原酸浸提液對桃褐腐病菌的抑制效果
采用不同濃度 (0,0.2,0.3 或 0.4mg?mL-1) 的綠原酸標(biāo)準(zhǔn)品及桃花綠原酸浸提液處理桃褐腐病菌,不同時間(0、1、3、5d)對桃褐腐病菌的生長以及抑菌情況見圖5,同時通過測定菌落直徑計算抑菌率,采用統(tǒng)計學(xué)方法對不同處理組間的抑菌效果進行比較分析。對照組中, 0.2mg?mL-1 和 0.4mg?mL-1 綠原酸標(biāo)準(zhǔn)品對桃褐腐病菌均有抑制效果。試驗組不同濃度桃花綠原酸浸提液對桃褐腐病菌均顯示出抑制作用。當(dāng)濃度為0.3或 0.4mg?mL-1 時,綠原酸標(biāo)準(zhǔn)品和桃花綠原酸浸提液抑制效果均為最佳,第5天時抑菌率分別為 67.21% (綠原酸標(biāo)準(zhǔn)品) 21.38% (W-7)、 21.47% (P-3)以及 34.65%(R-2) (表2)。桃花浸提液對目標(biāo)病原菌生長具有顯著的抑制作用,且抑菌效果具有時間依賴性和濃度依賴性。
2.5桃花綠原酸浸提工藝及對桃褐腐病菌的抑制流程
筆者在本研究中通過系統(tǒng)化的試驗流程,探究不同品種桃花花瓣中活性物質(zhì)的提取方法及其對桃褐腐病菌的抑制效果。首先,在樣品制備階段,采集不同品種的桃花,取花瓣并在 42°C 烘箱中烘干。經(jīng)研磨
成粉末,并進行精確稱質(zhì)量。在浸提階段,通過單因素試驗確定最佳料液比,并確定 80% 的甲醇作為浸提溶劑,結(jié)合超聲波輔助提取技術(shù),以提高提取效率。浸提過程在 4°C 條件下過夜進行,以確?;钚晕镔|(zhì)的充分釋放。隨后,通過離心分離上清液,抽濾處理后采用HPLC進行成分及含量分析,以定量測定目標(biāo)活性物質(zhì)綠原酸。最后,在浸提物質(zhì)應(yīng)用效果評估階段,將提取物以不同濃度(0.2、0.3或 0.4mg?mL-1 加入PDA培養(yǎng)基中,觀察其對桃褐腐病菌生長的抑制效果。試驗在 25°C 培養(yǎng)箱中進行,分別于0、1、3、
5d觀測病菌的生長情況,測定菌落直徑,計算菌絲生長抑制率,以評估提取物的抑菌效果(圖6)。
3討論
綠原酸屬于一種酚類次生代謝產(chǎn)物,是植物體在有氧呼吸過程中經(jīng)莽草酸途徑合成的一種苯丙素類物質(zhì),存在于大多薔薇科果樹不同組織中。綠原酸的提取和研究也成為天然提取物研究熱點。綠原酸水溶性好,易溶于熱水、乙醇及丙酮等極性溶劑,在植物中提取劑大多采用水、醇、酮類等極性較強的溶劑。綠原酸的提取方法主要有浸提法、乙醇回流法、超聲波提取法、超濾法、樹脂吸附法等提取法[24-5]。桃是薔薇科重要的經(jīng)濟果樹,桃花作為重要的生殖器官,含有豐富的綠原酸[2。其提取方法主要采用超聲輔助乙醇方法2],以甲醇作為浸提溶劑提取桃花綠原酸的研究尚未見報道。本試驗建立和優(yōu)化了一套超聲波輔助甲醇浸提桃花綠原酸的方法,綜合現(xiàn)有的試驗數(shù)據(jù),利用單因素法確定了桃花中提取綠原酸的最優(yōu)條件均為料液比1:10,浸提溶液為 80% 的甲醇。利用此提取方法,得到的桃花中綠原酸濃度分別為 0.44,0.324 和 0.417mg?mL-1 ,從提取效率和節(jié)約成本上來說具有重要意義。
綠原酸對多種生物體表現(xiàn)出抗菌活性,包括細(xì)菌和真菌[2.28-29]。對于不同細(xì)菌,綠原酸的作用機制是主要包括抑制細(xì)菌生物膜形成、增加細(xì)胞膜通透性和破壞細(xì)胞完整性、擾亂細(xì)胞代謝及調(diào)控信號轉(zhuǎn)導(dǎo)通路等2]。而對于真菌而言,綠原酸可通過抑制孢子萌發(fā)、芽管伸長、菌絲生長,降低細(xì)胞活力和菌絲體滲透性以及干擾真菌細(xì)胞完整性來抑制病原真菌的生長[2,25.30]。桃褐腐病主要引起果實腐爛,也可危害花、葉及枝條等,作為一種在中國廣泛分布的病害,具有發(fā)病癥狀嚴(yán)重、傳染力強的特點,給桃產(chǎn)業(yè)帶來巨大的經(jīng)濟損失[19-20]。有研究表明,植物天然提取物花椒、薄荷和大蒜提取物對桃褐腐病菌絲體生長有抑制效果[2I-23]。綠原酸對該病致病菌的作用尚未見研究。本試驗中采用不同濃度的綠原酸及桃花綠原酸浸提液處理桃褐腐病菌(M.fructicola),系統(tǒng)評估了綠原酸的抑菌效果。抑菌效果具有時間依賴性和濃度依賴性,當(dāng)濃度為 0.4mg?mL-1 時,標(biāo)準(zhǔn)品和桃花綠原酸浸提液抑制效果為最佳。有研究發(fā)現(xiàn),當(dāng)綠原酸濃度為 15mg?mL?1 時,真菌(Sclerotin-iasclerotiorum、Fusariumsolani、Verticilliumdahli-ae、Botrytiscinerea和Cercosporasojina)的孢子萌發(fā)均被完全抑制,對部分菌絲的抑制率超過 96% ,具體情況因真菌種類而異[2。筆者在本研究中使用 0.2~ 0.4mg?mL-1 浸提液處理桃褐腐病菌,使用的綠原酸濃度低于上述研究,其對桃褐腐病菌的生長也具有顯著的抑制作用,但強度受到限制。
4結(jié)論
本試驗建立了一套超聲輔助甲醇浸提提取桃花中綠原酸的方法,采用超聲波浸提功率 200W ,超聲溫度 40°C ,浸提時間 60min ,在料液質(zhì)量比1:10,浸提溶劑為 80% 甲醇溶液條件下,浸提2次效果最佳。將桃花綠原酸浸提液處理桃褐腐病菌后病菌生長受到抑制,具有較好的抑制效果。
參考文獻References:
[1] LALLEMANDLA,ZUBIETAC,LEESG,WANGYC,ACAJJAOUIS,TIMMINSJ,MCSWEENEYS,JEZJM,MCCARTHYJG,MCCARTHY AA.A structural basis for the biosynthesisof the major chlorogenic acids found incoffee[J].Plant Physiology,2012,160(1):249-260.
[2] MARTINEZG,REGENTEM,JACOBIS,DELRIOM,PINEDO M,DE LA CANAL L. Chlorogenic acid is a fungicide activeagainst phytopathogenic fungi[J].Pesticide Biochemistry and Physiology,2017,140:30-35.
[3] KAIK,WANGR,BIWL,MAZT,SHIW,YEYW,ZHANG DF.Chlorogenic acid induces ROS-dependent apoptosis in Fusariumfujikuroi and decreases the postharvest rot of cherry tomato[J].World Journal of Microbiology and Biotechnology, 2021,37(6):93.
[4] JIAOWX,LIXX,WANGXM,CAOJK,JIANGWB.Chlorogenic acid induces resistance against Penicillum expansum in peach fruit by activating the salicylic acid signaling pathway[J]. Food Chemistry,2018,260:274-282.
[5] DAIBE,WANG Y X,ZHOUHJ,WANGLF,ZHOUL,MAO J X,ZHANG SY,SHEN SL,ZHENGXL,HUAN C.Control efficiency and potential mechanisms of chlorogenic acid against postharvest graymold caused by Botrytis cinerea on peach fruit[J].Postharvest Biologyand Technology,2024,218:113134.
[6]XIY,JIAO W X,CAO JK,JIANG WB.Effects of chlorogenic acid on capacity of free radicals scavenging and proteomic changesin postharvest fruit of nectarine[J].PLoS One,2017,12 (8):e0182494.
[7] XIY,F(xiàn)ANXG,ZHAOHD,LIXH,CAOJK,JIANGWB. Postharvest fruitqualityand antioxidantsofnectarine fruit asinfluenced by chlorogenic acid[J].LWT-Food Science and Technology,2017,75:537-544.
[8] ZHANGDF,BIWL,KAIK,YEYW,LIUJ.Effect of chlorogenic acid on controlling kiwifruit postharvest decay caused by Diaporthe sp.[J].LWT-Food Science and Technology,2020, 132:109805.
[9] 張豫丹,馬曉寒,李俊領(lǐng),許自成,賈瑋,石秋環(huán).綠原酸對煙草 疫霉的抑制作用及對煙草黑脛病的防治效果研究[J].作物雜 志,2022(2):230-236. ZHANG Yudan,MA Xiaohan,LI Junling,XU Zicheng,JIA Wei,SHI Qiuhuan. Inhibitory effect of chlorogenic acid on Phytophthora nicotiana and its control effect on tobacco black shank disease[J].Crops,2022(2):230-236.
[10]馬志桃.綠原酸對草莓采后灰霉病的抑制作用機理研究[D]. 合肥:合肥工業(yè)大學(xué),2022. MA Zhitao.Inhibitory mechanism of chlorogenic acid on postharst Botrytiscinerea of strawberry[D].Hefei: Hefei University of Technology,2022.
[11]辛邵南.灘涂適生菊芋綠原酸合成途徑相關(guān)基因響應(yīng)高溫與 鹽脅迫的機理分析[D].南京:南京農(nóng)業(yè)大學(xué),2017. XIN Shaonan. Analysis of mechanism of relative gene responses of high temperature and salt stresses to chlorogenic acid synthesis pathway in Jerusalem artichoke growth in tidal flats[D]. Nanjing:Nanjing Agricultural University,2017.
[12]LI C M,WANG M H. Antioxidant activity of peach blossom extracts[J].Journal of the Korean Society for Applied Biological Chemistry,2011,54(1):46-53.
[13]劉杰超,張巧蓮,焦中高,張春嶺,呂真真,劉慧,王思新.桃花 提取物對酪氨酸酶的抑制作用及其動力學(xué)分析[J].果樹學(xué)報, 2014,31(5):836-841. LIUJiechao,ZHANG Qiaolian,JIAO Zhonggao,ZHANG Chunling,LU Zhenzhen,LIUHui,WANG Sixin.Inhibitory effect of peach flower extract on tyrosinaseand its kinetics analysis[J]. Journal ofFruit Science,2014,31(5):836-841.
[14]劉杰超,張春嶺,呂真真,劉慧,焦中高.桃花中總酚和總黃酮 的提取及抗氧化活性研究[J].食品安全質(zhì)量檢測學(xué)報,2013,4 (6):1750-1756. LIU Jiechao,ZHANG Chunling,LU Zhenzhen,LIU Hui, JIAO Zhonggao.Extraction of total phenolics and flavanoids from peach blossoms and their antioxidant activity[J]. Journal of Food Safetyamp; Quality,2013,4(6):1750-1756.
[15]LIU JC,JIAO ZG,YANG W B,ZHANG C L,LIU H,LU Z Z. Variation in phenolics,flavanoids,antioxidant and tyrosinase inhibitory activity of peach blossoms at different developmental stages[J]. Molecules,2015,20(11):20460-20472.
[16]FUY,SUNRQ,YANGJF,WANGLL,ZHAO P,CHEN SQ.Characterization and quantification of phenolic constituents in peach blossombyUPLC-LTQ-Orbitrap-MSand UPLC-DAD[J].NaturalProductCommunications,2020,15(1):1934578X19884437.
[17]劉丹赤,楊建華,李鵬.牛蒡葉中綠原酸提取工藝研究[J].江 蘇農(nóng)業(yè)科學(xué),2009,37(4):305-306. LIU Danchi,YANG Jianhua,LI Peng. Study on extraction technology of chlorogenic acid from burdock leaves[J]. Jiangsu Agricultural Sciences,2009,37(4):305-306.
[18]王麗,胡付俠,張明,李曉桐,王崇隊,范祺,馬超.蒸汽爆破輔 助超聲提取金銀花綠原酸及其抗氧化、抗炎活性研究[J].食品 科技,2025,50(3):225-234. WANG Li,HU Fuxia,ZHANG Ming,LI Xiaotong,WANG Chongdui,F(xiàn)AN Qi,MA Chao. Extraction of chlorogenic acid from Lonicera japonica Thunb.by steam explosion assisted ultrasonography and its antioxidant and anti-inflammatory activities[J].Food Science and Technology,2025,50(3):225-234.
[19]薛璐,李勇,方偉超,楊英軍,王力榮.150份桃種質(zhì)資源果實褐 腐病抗性評價[J].植物遺傳資源學(xué)報,2025,26(1):148-156. XUELu,LI Yong,F(xiàn)ANG Weichao,YANG Yingjun,WANG Lirong.Evaluation of resistant to brown rot in peach fruits for 150 peach germplasm resources[J]. Journal of Plant Genetic Resources,2025,26(1):148-156.
[20]紀(jì)兆林,談彬,朱薇,董京萍,朱峰,徐敬友,童蘊慧.我國不同 產(chǎn)區(qū)桃褐腐病病原鑒定與分析[J].微生物學(xué)通報,2019,46 (4):869-878. JI Zhaolin,TAN Bin,ZHU Wei,DONG Jingping,ZHU Feng, XU Jingyou,TONG Yunhui. Identification and analysis of the peach brown rot pathogens from diferent peach- growing areas in China[J].Microbiology China,2019,46(4):869-878.
[21]莫熙禮,趙同貴,鄧偉,吳彤林,楊云彩,趙應(yīng)婉.花椒提取物對 桃褐腐病菌的抑制作用及酶活性的影響[J].北方園藝,2014 (20):129-132. MO Xili,ZHAO Tonggui,DENGWei,WU Tonglin,YANG Yuncai,ZHAO Yingwan. Effect of extract of Zanthoxylum bungeanum on pathogen inhibition and activities of antioxidative enzymeofMoniliniafructicolaininpeach[J].NorthernHorticulture,2014(20):129-132.
[22] 莫熙禮,趙同貴,鄧偉,吳彤林,楊云彩,趙應(yīng)婉,李本華.植物 提取物對桃褐腐病菌的抑制作用[J].江蘇農(nóng)業(yè)科學(xué),2015,43 (6):124-126. MOXili,ZHAO Tonggui,DENGWei,WUTonglin,YANG Yuncai,ZHAO Yingwan,LI Benhua.Inhibitory efect of plant extracts onMonilinia fructicola in peach[J]. Jiangsu Agricultural Sciences,2015,43(6):124-126.
[23]張瑤.茶葉提取物對桃采后軟腐病菌的抑菌活性及作用機 制[D].武漢:華中農(nóng)業(yè)大學(xué),2013. ZHANG Yao.Antifungal activityof tea extract against Rhizopus nigricans on harvested peaches and the mechanism[D]. Wuhan: Huazhong Agricultural University,2013.
[24] YUE Y Y,HUANG Q W,F(xiàn)UY,CHANG J. A quick selection of natural deep eutectic solvents for the extraction of chlorogenic acid from herba artemisiae scopariae[J]. RSC Advances,2020, 10(39):23403-23409.
[25] MANGIAPELO L,BLASIF,IANNI F,BAROLAC,GALARINIR,ABUALZULOFGW,SARDELLAR,VOLPIC,COSSIGNANI L. Optimization of ultrasound-assisted extraction of chlorogenic acid from potato sprout waste and enhancement of the in vitro total antioxidant capacity[J].Antioxidants,2023,12 (2):348.
[26]SU ZW,JIAHR,SUNM,CAI ZX,SHEN ZJ,ZHAOB T,LI JY,MARJ,YU ML,YANJ. Integrative analysis of the metabolomeand transcriptomereveals themolecular mechanism of chlorogenic acid synthesisin peach fruit[J].Frontiersin Nutrition,2022,9:961626.
[27]ZENG G M,RAN Y J,HUANG X,LIY,ZHANG ML,DING H,MAYG,MAHS,JINLB,SUN D. Optimization of ultrasonic-assisted extraction of chlorogenic acid from tobacco waste[J]. International Journal of Environmental Research and Public Health,2022,19(3):1555.
[28]李陽昱,李慶蓉,陳孝紅,薛麗,和平安,呂梅,楊旭.綠原酸抗 菌作用及機制的研究進展[J].中國抗生素雜志,2024,49(2): 141-150. LI Yangyu,LI Qingrong,CHEN Xiaohong,XUE Li,HE Ping' an,LU Mei,YANG Xu.Advances inresearch on the antibacterialeffects and mechanism of chlorogenic acid[J].Chinese Journal of Antibiotics,2024,49(2):141-150.
[29]LOU Z X,WANG HX,ZHU S,MA CY,WANG Z P. Antibacterial activityand mechanism of action of chlorogenicacid[J]. Journal ofFood Science,2011,76(6):M398-M403.
[30]ZHANG DF,MAZ T,KAI K,HU TT,BI WL,YANGYY, SHI W,WANG ZS,YEYW. Chlorogenic acid induces endoplasmicreticulum stressin Botrytiscinerea and inhibits gray mold on strawberry[J].Scientia Horticulturae,2023,318:112091.