亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        17份櫻桃種質(zhì)資源花粉掃描電鏡觀察

        2025-07-14 00:00:00周君蔓段續(xù)偉張開(kāi)春張曉明閆國(guó)華周宇王晶馮琛王未王乃玉袁暉吳傳寶
        果樹(shù)學(xué)報(bào) 2025年6期
        關(guān)鍵詞:資源

        中圖分類號(hào):S662.5 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)06-1181-09

        Abstract: 【Objective】Morphological characteristics of pollen grains of different cherry germplasm resources were observed under a scanning electron microscope.The similarities and differences in pollen among diferent germplasm resources were analyzed,so as to provide a scientific basis for the identification of diffrent cherry germplasm resources. At present, scanning electron microscopy (SEM) technology has opened up a new perspective for the study on pollen structure with its excellent high resolution and the ability to observe three-dimensional morphology. It can observe the microscopic characteristics of the surface of cherry pollen grains in detail,including complex surface decoration,pore structure and microscopic structure of pollen walls.Therefore,this technology is chosen to observe the morphological characteristics of pollen grains in the experiment.【Methods】Polen grains of 17 cherry germplasm resources from the Tongzhou Cherry Breeding Base,F(xiàn)orestry Fruit Research Institute of follows: Summit,Sunburst,Caihong,Rainier,Brooks,MashadBlack,Santina,Russian8,MinieRoyal, Royal Lee, Chelan,Katalin, Tieton,7-2-9,7-5-30,Duiying and Landing 1. During the blooming period of cherries,the pre-bloom flowers were collected,the anthers were completely peeled off with small tweezers,placed in a sulfuric acid paper box,and irradiated with a desk lamp to help loose powder. Then the dried pollen was collected in a bottle of Xilin,stuffed with rubber plugs,labeled and stored in a refrigerator at -20°C for later use. The experiment was conducted in the electron microscope room of the Institute ofFood Science and Technology,CAAS.First,a cottn swab was dipped into asample of dried pollen grains,and they were gently flicked on the sulphate paper,and appropriate amount of pollen was takenwith 1cm×1 cm double-sided conductive tape,and then affixed to the metal platform and gold-plated in the Eiko IB5 Ion Coater ion spater. Finally, the pollen grain morphology of 17 cherry germplasm resources was observed under the Hitachi SU-8010 scanning electron microscope. The population status of pollen grains was photographed and observed under the field of view of 500× ,and20 pollen grains were selected from each cherry germplasm resource to investigate the uniformity of pollen.Image Jwas used to measure the polar axis length (P)and equatorial axis length (E) of selected pollen grains respectively and the polar equatorial ratio (P/E ) was calculated. The polar erythroid ratio indicates the shape of pollen grains, P/Egt;2 indicates that the pollen grains are ultra-elliptic shape, and 1.14

        . The polar declination ratio was .The appearance of pollen grains was mostly elliptic shape or ultra-elliptic shape, of which 12 germplasm resources were ultra-eliptic shape.By observing the morphology of pollen grains under a scanning electron microscope, it was found that most of the pollen grains were elliptical on the equatorial plane,and 3 germination channels were observed in the polar axis direction with circular distribution, belonging to N3P4C5 type pollen. These germination grooves extended to both ends of the pollen, but no joint grooves were formed in the polar region. The outer wall patern was striped,and there were obvious differences in stripe width,spacing,slope,clarity,andouter wallhole densityamong different germplasm resources.【Conclusion】 In the tested cherry germplasm resources, there were 14 pollen uniformity greater than 70% . Concurrently, a significant positive correlation was observed between the pollen viability and the length of the polar axis in 17 cherry germplasm resources. The morphological characteristics of pollen grains can be used as a basis for different cherry germplasm resources. Scanning electron microscopy is crucial for the classification and phylogeny of cherry. Analyzing the morphological characteristics of pollen grains enables the effective distinction of cherry germplasm resources,as wellas the revelation of teir interrelationships.The study of these characteristics provides a basis for genetic research,and also helps to explore the genetic mechanisms that control polln morphology.However,there are stillfew reports on the systematic identification and classification of different cherry germplasm resources based on morphological characteristics of pollen grains,and further studies areneeded.

        Key words: Cherry; Germplasm resources; Pollen; Scanning electron microscopy (SEM)

        櫻桃(CerasuspseudocerasusLindl.)作為重要的經(jīng)濟(jì)果樹(shù),其花粉形態(tài)特征在品種鑒定、親緣關(guān)系分析及遺傳多樣性研究中具有重要價(jià)值。然而,不同櫻桃品種花粉在大小、形狀及外壁紋飾等方面的差異尚缺乏系統(tǒng)研究[2-3],尤其在高分辨率微觀結(jié)構(gòu)解析方面的研究存在不足。傳統(tǒng)光學(xué)顯微鏡技術(shù)受分辨率限制,難以清晰揭示花粉表面的精細(xì)特征,而掃描電子顯微鏡(ScanningElectron Microscopy,SEM技術(shù)以其高分辨率和立體成像優(yōu)勢(shì),為花粉形態(tài)學(xué)研究提供了更精確的觀察手段。前人已利用SEM技術(shù)對(duì)部分果樹(shù)品種的花粉形態(tài)進(jìn)行了觀察,但在櫻桃種質(zhì)資源的系統(tǒng)性研究及分類鑒定方面仍有待深入[4。筆者利用SEM技術(shù)對(duì)17份櫻桃種質(zhì)資源的花粉粒形態(tài)特征進(jìn)行系統(tǒng)分析,利用相關(guān)性分析和聚類分析,全面揭示花粉形態(tài)的變異規(guī)律,以優(yōu)化櫻桃品種鑒定體系,揭示其微觀結(jié)構(gòu)特征,為品種鑒定及遺傳分類提供科學(xué)依據(jù)。同時(shí),也為豐富植物分類學(xué)與生殖生物學(xué)領(lǐng)域關(guān)于櫻桃花粉形態(tài)的基礎(chǔ)數(shù)據(jù),以及櫻桃種質(zhì)資源保護(hù)與品種選育提供參考。

        1材料和方法

        1.1植物材料

        試驗(yàn)所用花粉均取自北京市農(nóng)林科學(xué)院林業(yè)果樹(shù)研究所通州櫻桃育種基地,包括薩米特(Sum-mit)、艷陽(yáng)(Sunburst)、彩虹(Caihong)、雷尼(Raini-er)、布魯克斯(Brooks)、馬什哈德(MashadBlack)、桑緹娜(Santina)、俄八(Russian8)、羅亞明(MinieRoyal)、羅亞李(RoyalLee)、秦林(Chelan)、卡塔琳(Katalin)、美早(Tieton)、7-2-9、7-5-30、對(duì)櫻(Duiy-ing)、蘭丁1號(hào)(Landing1)。

        1.2 采集花粉

        在櫻桃盛花期(通常為4月上中旬),在通州櫻桃育種基地采集17份櫻桃種質(zhì)資源含苞待放的花蕾。采集時(shí)間選在清晨至上午的溫度適宜時(shí)段(大約08:00—10:00),以避免花粉在高溫或強(qiáng)光下提前脫落。收集后,用小鑷子輕輕地將花藥完全剝?nèi)∠聛?lái),避免破壞花粉粒。將花藥置于干燥的硫酸紙盒中,放置于溫度為 18~22°C 的室內(nèi)避風(fēng)環(huán)境中,用臺(tái)燈(光源溫度約為 25°C? 照射,促進(jìn)花粉散發(fā)?;ǚ弁耆稍锖?,將其小心收集至西林瓶中,塞上橡皮塞,貼好標(biāo)簽,標(biāo)明采集時(shí)間和種質(zhì)資源信息。最終,將收集到的花粉存放于 -20°C 冰箱中保存,以保持其活力和形態(tài)特征,為后續(xù)試驗(yàn)提供可靠的材料。

        1.3掃描電子顯微鏡觀察

        試驗(yàn)在中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)產(chǎn)品加工研究所電鏡室進(jìn)行。先用棉棒蘸取干燥好的花粉粒樣品,輕輕彈在硫酸紙上,再用剪裁好的 1cm×1cm 雙面導(dǎo)電膠帶蘸取適量花粉,貼在金屬載臺(tái)上,放入EikoIB5IonCoater離子濺射儀中鍍金,最后置于日本日立公司SU-8010掃描電子顯微鏡下觀察?;ǚ蹣悠返挠^測(cè):選取有代表性的視野,即在 500× 視野下對(duì)花粉粒群體狀態(tài)拍攝,在 1500× 視野下對(duì)花粉粒個(gè)體形態(tài)拍攝。

        1.4相關(guān)數(shù)據(jù)分析

        首先調(diào)查17份櫻桃種質(zhì)資源的花粉整齊度,該指標(biāo)用于評(píng)估花粉的生長(zhǎng)狀態(tài),具體表現(xiàn)為花粉粒是否飽滿、形態(tài)是否正常以及是否存在畸形或褶皺。高整齊度的花粉粒通常較為規(guī)則,而低整齊度的花粉粒則可能表現(xiàn)為不規(guī)則形狀或形態(tài)不佳。利用掃描電子顯微鏡在 500× 視野下拍攝花粉粒群體狀態(tài)照片,并觀察記錄花粉整齊度。利用ImageJ軟件分別測(cè)量17份櫻桃種質(zhì)資源花粉粒的極軸長(zhǎng)(P)、赤道軸長(zhǎng)(E)和極赤比(P/E)。每份種質(zhì)資源設(shè)置5次生物學(xué)重復(fù),每次重復(fù)隨機(jī)選取20?;ǚ邸T囼?yàn)所得數(shù)據(jù)均使用SPSS27.0統(tǒng)計(jì)軟件進(jìn)行分析,采用Duncan新復(fù)極差檢驗(yàn)法進(jìn)行顯著性檢驗(yàn)?;ǚ坌螤畹姆诸惙椒跋嚓P(guān)學(xué)術(shù)用語(yǔ)參照《孢粉學(xué)概論》5:極軸長(zhǎng)和赤道軸長(zhǎng)之比(P/E)表示花粉粒形狀 (P/Egt;2 表示花粉粒為超長(zhǎng)球形, 1.14lt; P/E?2 表示花粉粒為長(zhǎng)球形)。對(duì)17份櫻桃種質(zhì)資源的花粉粒進(jìn)行聚類分析,并對(duì)其花粉整齊度和極軸長(zhǎng)度進(jìn)行相關(guān)性分析。分別調(diào)查記錄17份櫻桃種質(zhì)資源的花粉粒形狀和外壁紋飾的相關(guān)性狀,即花粉粒外壁紋飾的條紋寬度、條紋間距、條紋傾斜度、條紋清晰度和花粉粒紋孔密度。

        2 結(jié)果與分析

        2.1花粉整齊度

        圖1統(tǒng)計(jì)了17份櫻桃種質(zhì)資源的花粉整齊度。

        2.2 花粉粒大小

        圖117份櫻桃種質(zhì)資源的花粉整齊度Fig.1Seventeencherry germplasmresources'pollenuniformity

        櫻桃花粉粒通常呈長(zhǎng)球形或超長(zhǎng)球形,赤道面觀多為橢圓形,三條萌發(fā)溝且呈環(huán)狀分布,屬于N3P4C5 型花粉(圖2)。通過(guò)掃描電子顯微鏡觀察17份櫻桃種質(zhì)資源的花粉,發(fā)現(xiàn)其在極軸方向上具有三條萌發(fā)溝,延伸至花粉兩端,且在極區(qū)未形成合溝。表1統(tǒng)計(jì)了17份櫻桃種質(zhì)資源的花粉粒形態(tài)大小,其極軸長(zhǎng)度分布在 41.53~48.57μm ,赤道軸長(zhǎng)分布在 21.30~25.29μm ,極赤比分布在 1.67~2.17 ?;ǚ哿O軸長(zhǎng)度可分為 40~45μm 和 45~50μm 兩類,第一類包括雷尼、桑緹娜、羅亞李、秦林、卡特琳、美早、7-5-30和蘭丁1號(hào),第二類包括薩米特、艷陽(yáng)、彩虹、布魯克斯、馬什哈德、俄八、羅亞明、7-2-9、對(duì)櫻。其中,7-2-9的極軸長(zhǎng)度最大,為 48.57μm ;美早的極軸長(zhǎng)度最小,為 41.53μm 。分析結(jié)果顯示,17份櫻桃種質(zhì)資源中部分品種的赤道軸長(zhǎng)度存在顯著差異。此外,通過(guò)計(jì)算17份櫻桃種質(zhì)資源的極赤比發(fā)現(xiàn),其花粉粒的外觀形態(tài)均呈長(zhǎng)球形或超長(zhǎng)球形。其中,桑緹娜、羅亞明、卡塔琳、美早和7-5-30為 1.14lt; P/E?2 (長(zhǎng)球形),其他櫻桃種質(zhì)資源均為 P/Egt;2 (超長(zhǎng)球形)。

        表117份櫻桃種質(zhì)資源花粉大小指標(biāo)Table1 Pollen size indicators of seventeencherry germplasmresources
        注:Duncan顯著性檢驗(yàn),不同字母代表差異顯著 ,=0.05, Note:Duncanpsmultipletest,differentletterindicated thesignificant differenceat plt;0.05 level.

        根據(jù)花粉整齊度、極軸長(zhǎng)度以及極赤比對(duì)17份櫻桃種質(zhì)資源進(jìn)行聚類分析(圖3)。根據(jù)花粉整齊度,可將17份櫻桃種質(zhì)資源分為兩個(gè)大類:第一大類為花粉整齊度 gt;70% ,第二大類為花粉整齊度 ? 70% 。根據(jù)花粉整齊度和極赤比將第一大類又分為兩個(gè)亞群。第一亞群為花粉整齊度 gt;70%.P/Egt;2 ,包括羅亞李、蘭丁1號(hào)、雷尼、7-2-9、對(duì)櫻、俄八、馬什哈德、布魯克斯、彩虹、艷陽(yáng)和薩米特;第二亞群為花粉整齊度 gt;70%.1.14在 40~45μm 。

        圖317份櫻桃種質(zhì)資源的聚類分析

        對(duì)17份櫻桃種質(zhì)資源的花粉整齊度與極軸長(zhǎng)度進(jìn)行相關(guān)性分析(表2,圖4)。結(jié)果表明,花粉整齊度和極軸長(zhǎng)度存在顯著的相關(guān)關(guān)系, plt;0.05 ,兩者相關(guān)系數(shù)是0.271。由此可知,花粉整齊度與極軸

        表217份櫻桃種質(zhì)資源花粉整齊度與極軸長(zhǎng)度的相關(guān)性分析
        圖417份櫻桃種質(zhì)資源花粉整齊度與極軸長(zhǎng)度的相關(guān)性分析Fig.4Correlationanalysisofpollenuniformityandpolar axislength inseventeen cherry germplasmresources

        長(zhǎng)度之間存在較強(qiáng)的正相關(guān)關(guān)系。

        2.3花粉粒外壁紋飾

        對(duì)17份櫻桃種質(zhì)資源花粉粒外壁紋飾的相關(guān)性狀進(jìn)行觀察(圖5)。結(jié)果表明,不同櫻桃種質(zhì)資

        圖517份櫻桃種質(zhì)資源的掃描電子顯微鏡花粉形態(tài)

        源的花粉粒外壁紋飾的相關(guān)性狀既有相似性也有差 異性(表3)。薩米特、艷陽(yáng)、彩虹、桑緹娜、俄八、秦 林、美早、7-2-9、7-5-30和蘭丁1號(hào)的條紋寬度較??; 布魯克斯、馬什哈德、羅亞明、卡塔琳和對(duì)櫻的條紋 寬度適中;而羅亞李的條紋寬度較大。薩米特、艷 陽(yáng)、彩虹、雷尼、秦林、美早、7-5-30和蘭丁1號(hào)的條 紋間距?。徊剪斂怂?、馬什哈德、桑緹娜、俄八、羅亞 明、羅亞李、卡塔琳、7-2-9和對(duì)櫻的條紋間距適中。 彩虹、桑緹娜、羅亞明、羅亞李、秦林、卡塔琳、美早和 蘭丁1號(hào)的條紋較平行;薩米特、雷尼、布魯克斯、馬 什哈德、俄八、7-2-9、7-5-30和對(duì)櫻的條紋稍有交叉; 艷陽(yáng)的條紋交叉最為明顯。薩米特、艷陽(yáng)、彩虹、雷 尼、桑緹娜、俄八、秦林、美早、7-2-9、7-5-30和蘭丁1 號(hào)的條紋較為明顯,而布魯克斯、馬什哈德、羅亞明、 羅亞李、卡塔琳和對(duì)櫻的條紋卻非常明顯。薩米特、 艷陽(yáng)、彩虹、雷尼、馬什哈德、桑緹娜、俄八、羅亞明、 羅亞李、秦林、美早、卡塔琳、7-2-9、7-5-30和蘭丁1 號(hào)的紋孔密度?。徊剪斂怂沟募y孔密度較為適中;而對(duì)櫻的紋孔密度較大。

        表317份櫻桃種質(zhì)資源花粉粒外壁紋飾相關(guān)性狀Table3Analysis of correlated traits of pouteran exine sculpture in seventeen cherry germplasm resources

        3討論

        近年來(lái),掃描電子顯微鏡技術(shù)因能清晰揭示花粉的形態(tài)特征而被廣泛應(yīng)用于多種植物,包括葫蘆科、核桃[-]、楊梅、蘋(píng)果、榛子、枸杞]、弼猴桃、枇杷屬、番荔枝等。覃麗祿等利用普通高真空掃描電鏡在低電壓條件下對(duì)不同種類的花粉進(jìn)行了顯微結(jié)構(gòu)觀察。但當(dāng)花粉被花粉囊等其他物質(zhì)覆蓋時(shí),其表面細(xì)節(jié)會(huì)變模糊,從而影響觀察結(jié)果[12]。為解決這一問(wèn)題,Ermolaev等[13]通過(guò)HMDS技術(shù)改進(jìn)了掃描電鏡花粉樣本制備,大幅縮短了研究時(shí)間,提高了效率。這些技術(shù)不僅可以更清晰地觀察花粉表面紋飾,還可以增強(qiáng)對(duì)花粉形態(tài)特征的理解,對(duì)植物分類和系統(tǒng)學(xué)研究意義重大。

        花粉粒的形狀和外壁紋飾由于遺傳上的穩(wěn)定性,對(duì)植物分類和演化研究具有極其重要的價(jià)值[1]。這些特征不僅有助于鑒定植物的種類,而且對(duì)揭示植物間的親緣關(guān)系也極為關(guān)鍵。Lindau通過(guò)綜合分析花粉的形狀、外壁紋飾和開(kāi)孔數(shù)等性狀,確定了花粉類型的范圍,揭示了這些特征與物種間的聯(lián)系,突出了它們?cè)谙到y(tǒng)學(xué)研究中的重要性[。通過(guò)觀察發(fā)現(xiàn),供試17份櫻桃種質(zhì)資源的花粉整齊度和花粉粒形態(tài)表現(xiàn)出豐富的多樣性。在花粉整齊度方面,大部分櫻桃種質(zhì)資源的花粉整齊度大于70% 。在花粉粒形態(tài)方面,以花粉粒形狀及外壁紋飾差異最為明顯。有研究表明,較為原始的被子植物花粉體積較大,隨著進(jìn)化花粉體積趨向減小[],花粉粒形狀由長(zhǎng)球形向超長(zhǎng)球形演化。本試驗(yàn)中17份櫻桃種質(zhì)資源的花粉粒表面紋飾均為條紋狀,除桑緹娜、羅亞明、卡塔琳、美早和7-5-30為長(zhǎng)球形之外,其他櫻桃種質(zhì)資源均為超長(zhǎng)球形,說(shuō)明大多數(shù)櫻桃種質(zhì)資源較為進(jìn)化[18]。此外,花粉的形態(tài)特征與其活力之間也具有密切相關(guān)性。花粉表面紋飾的完整性及花粉壁的結(jié)構(gòu)會(huì)影響花粉的萌發(fā)能力和生理活性,表面光滑、無(wú)缺陷的花粉通常具有較高的活力,因此花粉形態(tài)特征可以作為花粉活力的一個(gè)參考指標(biāo)。掃描電子顯微鏡在櫻桃分類和系統(tǒng)發(fā)育研究中發(fā)揮著關(guān)鍵作用。通過(guò)分析花粉粒的形態(tài)特征,可以有效區(qū)分櫻桃種質(zhì)資源,揭示它們之間的親緣關(guān)系。這些特征的研究也有助于探索控制花粉形態(tài)的遺傳機(jī)制,為遺傳學(xué)研究提供基礎(chǔ)。

        4結(jié)論

        在供試櫻桃種質(zhì)資源中, 82.35% 的種質(zhì)資源花粉整齊度超過(guò) 70%,70.59% 的種質(zhì)資源花粉粒形狀為超長(zhǎng)球形。花粉粒整齊度與極軸長(zhǎng)呈正相關(guān)關(guān)系,外壁紋飾多為條紋狀。盡管目前利用花粉粒形態(tài)對(duì)櫻桃種質(zhì)資源進(jìn)行系統(tǒng)鑒定的研究較少,但本研究表明,花粉粒外壁紋飾的條紋寬度、間距、傾斜度及紋孔密度等特征在不同櫻桃種質(zhì)資源間存在顯著差異,可作為種質(zhì)資源鑒定的依據(jù),但仍需深入研究。

        參考文獻(xiàn)References:

        [1]陳曉靜,劉婷婷,李好先,胡林,樊景超,曹尚銀.2012—2017年 優(yōu)勢(shì)產(chǎn)區(qū)落葉果樹(shù)部分農(nóng)家品種花粉掃描電鏡觀察數(shù)據(jù)集[J] 農(nóng)業(yè)大數(shù)據(jù)學(xué)報(bào),2023,5(2):75-79. CHEN Xiaojing,LIU Tingting,LI Haoxian,HU Lin,F(xiàn)AN Jingchao,CAO Shangyin. Data set of pollen scanning electron microscope observation of some farm varieties of deciduous fruit treesin advantageous production areas from 2012 to 2017[J]. Journal ofAgricultural Big Data,2023,5(2):75-79.

        [2]齊秀娟,王然,蘭彥平,陳錦永,顧紅,方金豹.3個(gè)獼猴桃栽培 種花粉形態(tài)掃描電鏡觀察[J].果樹(shù)學(xué)報(bào),2017,34(11):1365- 1373. QI Xiujuan,WANG Ran,LAN Yanping,CHEN Jinyong,GU Hong,F(xiàn)ANG Jinbao.Morphologic study of pollensof three cultivated Actinidia species by scanning electron microscopy[J]. Journal ofFruit Science,2017,34(11):1365-1373.

        [3]方仁,安振宇,黃偉雄,白先進(jìn),堯金燕,龍興,周雙云,張繼.8 個(gè)番荔枝栽培品種的花粉形態(tài)掃描電鏡觀察[J].南方農(nóng)業(yè)學(xué) 報(bào),2020,51(7):1553-1559. FANG Ren,AN Zhenyu,HUANG Weixiong,BAI Xianjin, YAO Jinyan,LONG Xing,ZHOU Shuangyun,ZHANG Ji.Morphology of pollens of eight Annona squamosa L. varieties by scanning electron microscope[J]. Journal of Southern Agriculture,2020,51(7):1553-1559.

        [4] 陸敏,李西林,陸雄.花粉塊內(nèi)花粉粒形態(tài)觀察的掃描電鏡樣 品制備方法[J].植物研究,2021,41(5):836-840. LU Min,LI Xilin,LU Xiong. SEM sample preparation of observation pollen grains morphology in pollinium[J]. Bulletin of BotanicalResearch,2021,41(5):836-840.

        [5]王開(kāi)發(fā),王憲曾.孢粉學(xué)概論[M].北京:北京大學(xué)出版社, 1983:21-25. WANG Kaifa. WANG Xianzeng. Palynology introduction[M]. Beijing:Peking University Press,1983:21-25.

        [6]ALHOMAIDI E. Scanning electron microscopic exploration of intricate pollen morphology and antimicrobial potentials of gourd family[J]. Microscopy Research and Technique,2024,87 (5):999-1008.

        [7]冶倩,樊正炎,季傳雅,郭眾仲,魚(yú)尚奇,潘志勇,張建良,張銳, 虎海防.18個(gè)核桃品種花粉形態(tài)掃描電鏡觀察[J/OL].分子植 物育種,2023:1-17.(2023-03-28). https://kns.cnki.net/kcms/detail/46.1068.S.20230328.1134.010.htm. YEQian,F(xiàn)AN Zhengyan,JI Chuanya,GUO Zhongzhong,YU Shangqi,PAN Zhiyong,ZHANG Jianliang,ZHANG Rui,HU Haifang. Observation on pollenmorphology of18 walnut varietiesby scanning electron microscope[J/OL]. Molecular Plant Breeding,2023:1-17.(2023-03-28).https://kns.cnki.net/kcms/ detail/46.1068.S.20230328.1134.010.htm.

        [8] 唐貴敏,劉丙花,舒秀閣,梁靜,趙登超,侯立群.山東雞爪綿 核桃花粉形態(tài)的掃描電鏡觀察[J].山東林業(yè)科技,2021,51 (5):45-48. TANGGuimin,LIUBinghua,SHUXiuge,LIANG Jing,ZHAO Dengchao,HOU Liqun. Observation of pollen morphologies in Jizhaomian Walnut in Shandong by SEM[J]. Journal of ShandongForestryScienceand Technology,2021,51(5):45-48.

        [9] 李京璟,張日清,馬慶華,王貴禧.榛屬植物花粉形態(tài)掃描電 鏡觀察[J].電子顯微學(xué)報(bào),2017,36(4):404-413. LIJingjing,ZHANG Riqing,MAQinghua,WANG Guixi.SEM observation on the pollen morphology in Corylus[J].Journal of Chinese Electron Microscopy Society,2017,36(4):404-413.

        [10]吳佳豫,郭有燕,張小菊,陳凡.黑果枸杞花期劃分及花粉形 態(tài)的掃描電鏡觀察[J].河西學(xué)院學(xué)報(bào),2018,34(5):52-56. WU Jiayu,GUO Youyan,ZHANG Xiaoju,CHENFan. SEMobservation on flowering stages and pollen morphology of lyciumruthenicum[J].Journal ofHexi University,2018,34(5):52-56.

        [11]覃麗祿,劉瑩瑩,張露.高真空掃描電鏡低電壓條件下花粉的 顯微組織研究[J].分析儀器,2014(1):69-72. QINLilu,LIU Yingying,ZHANGLu.Application of high-vacuum low-voltage scanning electron microscope for pollen microstructure[J].Analytical Instrumentation,2014(1):69-72.

        [12]MCLAUGHLIN D J,BECKETT A. Low temperature scanning electron microscopy of discharged basidiospores of Coprinuscinereus[J].Mycologia,1987,79(1):158-161.

        [13]ERMOLAEV A,MARDINI M,BURAVKOV S,KUDRYAVTSEVAN,KHRUSTALEVAL.A simple and user-friendly methodfor high-qualitypreparation of pollen grains for scanning electron microscopy (SEM)[J].Plants,2024,13(15):2140.

        [14]RASHIDN,ZAFARM,AHMADM,MALIKK,SHAHSN, SULTANA S,ZAHID N,NOSHAD Q,SIDDIQ Z. Use of scanning electron microscopy to analyze sculpturing pattern and internal features of pollen grain wall in some members of Astragaleae(Subfamily:Papilionoidae)[J].Microscopy Research and Technique,2022,85(5):1631-1642.

        [15]焦云,汪國(guó)云,柴春燕,賈慧敏,高中山.不同性別類型楊梅花 粉形態(tài)掃描電鏡觀測(cè)及生活力測(cè)定[J].中國(guó)南方果樹(shù),2013, 42(1):12-16. JIAO Yun,WANG Guoyun,CHAI Chunyan,JIA Huimin,GAO Zhongshan.Morphologyof pollen grainsfrom theplantswith different type of sex by scanning electron microscope (SEM) and the viability of pollens inred bayberry[J].South China Fruits,2013,42(1):12-16.

        [16]PAUL P,DHAR S,DAS D,CHOWDHURY M. Light and scanning electron microscopic characterization of pollen grains of somewetland angiosperms from India[J].Microscopy Research and Technique,2022,85(7):2628-2650.

        [17]楊向暉,吳穎欣,林順權(quán).6種枇杷屬植物花粉形態(tài)掃描電鏡 觀察[J].果樹(shù)學(xué)報(bào),2009,26(4):572-576. YANGXianghui,WU Yingxin,LINShunquan.SEMobservation on the pollen morphology of six Eriobotrya plants[J].Journal of Fruit Science,2009,26(4):572-576.

        [18]魏國(guó)芹,李芳東,孫玉剛,孫楊,楊興華.甜櫻桃20個(gè)品種花粉 粒形態(tài)掃描電鏡觀察[J].果樹(shù)學(xué)報(bào),2014,31(增刊1):41-47. WEIGuoqin,LI Fangdong,SUN Yugang,SUN Yang,YANG Xinghua.Observation of pollen grains of twenty sweet cherry cultivars with scanning electron microscope[J]. Journal of Fruit Science,2014,31(Suppl.1):41-47.

        猜你喜歡
        資源
        讓有限的“資源”更有效
        污水磷資源回收
        基礎(chǔ)教育資源展示
        崛起·一場(chǎng)青銅資源掠奪戰(zhàn)
        一樣的資源,不一樣的收獲
        我給資源分分類
        資源回收
        做好綠色資源保護(hù)和開(kāi)發(fā)
        資源再生 歡迎訂閱
        資源再生(2017年3期)2017-06-01 12:20:59
        激活村莊內(nèi)部治理資源
        決策(2015年9期)2015-09-10 07:22:44
        99精品欧美一区二区三区| 无码中文字幕专区一二三| 欧美在线观看一区二区| 国产精品制服一区二区| 人妻少妇偷人精品久久人妻| 一本色道加勒比精品一区二区| 日韩精品一区二区三区人妻在线| 国产精品亚洲三级一区二区三区| 强开小婷嫩苞又嫩又紧视频| 野狼第一精品社区| 国产激情久久99久久| 国产av天堂亚洲国产av麻豆| 一个人午夜观看在线中文字幕| 所有视频在线观看免费| 欲香欲色天天综合和网| 国产又滑又嫩又白| 中文字幕在线免费| 国产精品久久这里只有精品| 亚洲国产精品成人一区| 在线观看一区二区三区在线观看| 亚洲av无码国产综合专区| 97影院在线午夜| 人妻精品丝袜一区二区无码AV| 日本精品国产1区2区3区| 亚洲熟女一区二区三区250p| 无套内谢老熟女| 国产操逼视频| 亚洲乱码视频在线观看| 亚洲国产欧美另类va在线观看 | 亚洲av成人无码一二三在线观看 | av免费在线手机观看| 亚洲中文字幕久久精品品| 免费国产成人肉肉视频大全| 成在人线av无码免费| 国产三级在线看完整版| 日本免费一区二区三区影院 | 一区五码在线| 96中文字幕一区二区| 3d动漫精品啪啪一区二区免费| 久久亚洲精品成人av| 最新日韩av在线不卡|