中圖分類號(hào):S662.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)06-1162-10
Abstract: 【Objective】Peach (Prunus persica L.),a fruit crop native to China, is one of the most important cultivated fruit species globally,characterized by its rich germplasm resources. However,the predominant standard cultivars grown in peach production are characterized by large branch angles and dense branching.These traits significantly increase labor costs due to the need for extensive pruning and canopy management. Moreover, they impact fruit yield and quality negatively by reducing light penetration and air circulation within the canopy.These challenges highlight the emergent need to optimize tree architecture and develop labor-saving cultivars to address the developmental bottenecks in the peach industry.In this context,pillar peach germplasm,which exhibits smaller branch angles and fewer secondary branches, offers a promising alternative for improving tree structure. Optimizing tree architecture can enhance light interception,reduce labor inputs,and improve fruit quality,thereby contributing to sustainable peach production.Tree architecture is determined byseveral key factors,includingtree height,branch angle, branch number,leaf arrangement,and branch thickness.Among these, branch angle is a particularly important trait, as it drecty intluences canopy density and Iignt distribution.Branch angle is a complex trait influenced by genetic, hormonal,and environmental factors. Brasinosteroids (BRs), a classof plant steroid hormones, play a crucial role in regulating various agronomic traits during plant growth and development. These traits include seed germination, plant height, branch number, and branch angle. Brassinolides (BL),the most active form of BRs,are synthesized by enzymes such as DWF, CPD, BR6OX, and D2 .Previous studies have demonstrated that mutations in BR signaling pathway-related genes,such as Osdwarf4-1, CPD,and d61,can significantly affect plant branch angle. Understanding the genetic basis of branch angle formation is essential for developing peach cultivars with improved tree architecture. 【Methods】To investigate the role of PpD2 in branch angle formation, we used standard peach (Okubo) and pillr peach (Sahonglongzhu) as experimental materials. Okubo is a typical standard cultivar with large branch angles and dense branching, while Sahonglongzhu is a pillar-type cultivar with smaller branch angles and fewer secondary branches. We measured branch angles and endogenous brassinosteroid (BR) content in axillary buds and analyzed shoot tip transcriptome data to identify differentially expressed genes involved in BR synthesis.RNA was extracted from various tissues of Sahonglongzhu, including axillary buds, shoot tips, young leaves, upper and middle parts of annual branches,and upper and lower parts of the phloem at branch junctions. Reverse transcription was performed, and the expression levels of the PpD2 gene were analyzed using realtime quantitative PCR (qRT-PCR). The results showed that PpD2 expression was highest in the upper phloem at the branch junction of annual branches,followed by shoot tips and young leaves, with the lowest expresson in the upper phloem at the branch junction. The branch junction is a critical site for branch angle formation in peach,and PpD2 expression was significantly lower in the upper phloem than in the lower phloem at this junction.Next, we cloned PpD2 into the pSAK277 vector under the control of the 35S promoter and transformed it into Arabidopsis thaliana using Agrobacterium-mediated floral dip methods. Seven transgenic lines overexpressing PpD2 were obtained and identified via PCR. qRT-PCR was used to confirm the relative expression levels of PpD2 in these lines. We photographed the transgenic and wild-type (WT) Arabidopsis plants and measured their branch angles using the SC-K1 in situ living plant branch angle automatic measuring instrument system. Data were analyzed using ANOVA in SPSS.【Results】 The results revealed that the annual Okubo exhibited a significantly larger branch angle and higher endogenous BR content in axillry buds compared to Sahonglongzhu. Transcriptome analysis showed that the expression of the BR synthesis gene PpD2 was significantly higher in Okubo than in Sahonglongzhu. Tissue-specific expression profiling indicated that PpD2 (204號(hào) was most highly expressed in the upper phloem at the branch junction of annual branches,followed by shoot tips and young leaves, with the lowest expression in the upper phloem at the branch junction. The branch junction was a critical site for branch angle formation in peach,and PpD2 expression was significantly lower in the upper phloem than in the lower phloem at this junction. We constructed a 35S:PpD2 overexpresson vector and stably transformed it into Arabidopsis, obtaining seven transgenic lines. All transgenic lines exhibited higher PpD2 transcription levels than the wild-type(WT). Lines1,3,and 4, which showed the highest PpD2 expression,were selected for further analysis. Compared to WT, these transgenic lines exhibited significantly increased rosette leaf length and width,as well as a significantly larger branch angle. 【Conclusion】 These findings demonstrate that PpD2 plays a role in regulating branch angle formation in peach. The identification of PpD2 as a key regulator of branch angle provides a theoretical foundation for the genetic improvement of peach tree architecture.
Keywords:Peach;Branch angle;Brassinosteroids; PpD2
桃(PrunuspersicaL.)作為全球廣泛栽培的重要水果,深受消費(fèi)者喜愛。中國(guó)地處東亞,地域遼闊,生態(tài)氣候類型多樣,是優(yōu)質(zhì)桃的適宜產(chǎn)區(qū)。植物樹(株)型是重要的農(nóng)藝性狀之一。依據(jù)樹高與分枝角度兩個(gè)主要因素相結(jié)合的方法可將桃樹型分為普通型、直立型、帚型(包括柱型和盤龍型)、緊湊型、矮化型和垂枝型等[2]。
目前,桃生產(chǎn)上主栽品種以普通型為主,其樹形開張,隨著結(jié)果年限的延長(zhǎng),分枝角度變大,樹冠內(nèi)枝葉密集,中下部透光差,結(jié)果表面化,在一定程度上影響了果實(shí)品質(zhì)的提升[3]。而柱型桃的顯著特點(diǎn)是分枝數(shù)量少和分枝角度小,導(dǎo)致其樹冠小,是研究桃分枝形成的理想材料4。分枝角度作為果樹樹型建成的關(guān)鍵構(gòu)成要素,直接決定樹冠大小、栽培密度、果實(shí)產(chǎn)量等4。分枝角度是指主干與著生枝條的角度,包括基角(crotchangle)、腰角(equilibriumangle)和梢角(geotropicangle)。植物分枝角度的形成受遺傳因素、內(nèi)源激素、環(huán)境因素等共同影響[5]。其中,植物激素介導(dǎo)遺傳和環(huán)境信號(hào),對(duì)分枝角度的形成發(fā)揮至關(guān)重要的作用。
油菜素內(nèi)酯(brassinosteroids,BRs)是一類在植物生長(zhǎng)和發(fā)育過程中具有重要作用的甾體類激素,活性最高的油菜素內(nèi)酯(brassinolide,BL)以菜油甾醇為前體物質(zhì)經(jīng)DWF、CPD、BR6OX、D2等酶催化合成。BRs首次從植物花粉中分離和鑒定,在植物生長(zhǎng)發(fā)育進(jìn)程中發(fā)揮重要調(diào)控作用,廣泛參與調(diào)節(jié)植物種子萌發(fā)、外界環(huán)境脅迫、植物株高、分枝數(shù)量、分枝角度等眾多農(nóng)藝性狀[8-10]。在植物分枝形成過程中,BR信號(hào)通路相關(guān)基因突變體Osdwarf4- I[11] 、CPD[12],mIO7[13],d6I[14] 等均對(duì)植物分枝角度產(chǎn)生影響。外施BR合成抑制劑丙環(huán)唑可導(dǎo)致毛竹(Phyllostachysedulis)節(jié)間長(zhǎng)度增長(zhǎng)、植株變高、葉夾角顯著增大5]。過表達(dá)BR合成基因DWF4可顯著促進(jìn)水稻分藥數(shù)增加[1I-12],而BR合成或信號(hào)轉(zhuǎn)導(dǎo)基因突變體則呈現(xiàn)分蘗數(shù)顯著減少等表型[。此外,BR還可協(xié)同多激素途徑(獨(dú)腳金內(nèi)酯、細(xì)胞分裂素、生長(zhǎng)素、茉莉酸等)來調(diào)控植物分枝形成[9,17-18]。目前,BR合成相關(guān)基因在植物分枝中的研究主要集中在模式植物和農(nóng)作物,如擬南芥(Arabidopsisthali-ana)[9]、水稻(OryzasativaL.)[2o]和小麥(TriticumaestivumL.)[2]等,如水稻LEAFANDTILLERAN-GLEINCREASEDCONTROLLER基因編碼CCCH型鋅指蛋白并調(diào)節(jié)BR信號(hào)轉(zhuǎn)導(dǎo)[20]。
筆者在本研究中以普通型桃大久保和柱型桃灑紅龍柱為試驗(yàn)材料,分析兩種樹型桃1年生枝條分枝角度和內(nèi)源BR含量的差異;利用兩種樹型桃莖尖轉(zhuǎn)錄組數(shù)據(jù)篩選差異表達(dá)BR合成關(guān)鍵基因PpD2 ,對(duì) PpD2 的組織特異性表達(dá)進(jìn)行分析;克隆PpD2 基因并對(duì)其功能進(jìn)行驗(yàn)證,為后續(xù)通過分子育種手段培育桃新種質(zhì)提供理論支撐。
1材料和方法
1.1 試驗(yàn)材料
1年生普通型桃大久保和柱型桃灑紅龍柱定植于河南農(nóng)業(yè)大學(xué)毛莊科教園區(qū)。其中,大久保采集部位為腋芽;灑紅龍柱采集部位包括腋芽、莖尖、嫩葉、1年生枝條上部和中部、1年生枝條分枝連接處韌皮部上部和下部,所有樣品采集標(biāo)記后均用液氮速凍,并帶回實(shí)驗(yàn)室于 Ω-80°C 冰箱保存以備后續(xù)試驗(yàn)使用。
用于基因功能驗(yàn)證的哥倫比亞野生型擬南芥(ArabidopsisthalianaecotypeColumbia)為本實(shí)驗(yàn)室保存。
1.2大久保和灑紅龍柱1年生枝條分枝角度測(cè)定
為明確普通型桃大久保和灑紅龍柱分枝角度是否存在差異,利用SC-K1原位活體植物分枝角自動(dòng)測(cè)量?jī)x系統(tǒng)(杭州萬(wàn)深)對(duì)長(zhǎng)勢(shì)一致的1年生大久保和灑紅龍柱枝條基角角度進(jìn)行統(tǒng)計(jì),每處理選取2株,每株隨機(jī)選取3個(gè)枝條測(cè)定其分枝角度,3次重復(fù)。
1.3大久保和灑紅龍柱腋芽?jī)?nèi)源BR含量測(cè)定
內(nèi)源BR含量按照Xia等[18描述的方法進(jìn)行測(cè)定(南京瑞源科技有限公司,中國(guó)南京)。采集大久保和灑紅龍柱腋芽并用液氮研磨成粉末,用 1mL 冰凍的乙晴重新懸浮并在 4°C 下過夜孵育。收集上清液,并加入 0.3gMCX°ledcircBBII 和 一起渦旋 5min 。在 4°C 下 10000g 離心 1min 后,添加 5mL 含有 0.5% 甲酸的 90% 丙酮溶液重懸沉淀后高速離心 1min 。棄上清液,向含有沉淀物的離心管中加入1.2mL90% 丙酮和 20~50mg 乙酸銨,并渦旋 1min 后離心 3min 。氮?dú)飧稍锖笾匦氯芙庠?100μL 45% 乙腈中,用于BR含量測(cè)定分析。
1.4轉(zhuǎn)錄組數(shù)據(jù)分析
普通型桃大久保和柱型桃灑紅龍柱莖尖轉(zhuǎn)錄組數(shù)據(jù)參考譚彬等[22的報(bào)道。根據(jù)轉(zhuǎn)錄組數(shù)據(jù),使用
TBtools軟件對(duì)BR合成基因在兩個(gè)品種中莖尖的表達(dá)量進(jìn)行熱圖分析。
1.5PpD2組織特異性分析
柱型桃灑紅龍柱不同組織樣品包括腋芽、莖尖、嫩葉、1年生枝條上部、1年生枝條中部、1年生枝條分枝連接處韌皮部上部和1年生枝條分枝連接處韌皮部下部。RNA提取采用柱式植物總RNA提取試劑盒(Spin Column Plant total RNA Purification Kit)(上海生物工程股份有限公司),詳細(xì)操作步驟參考試劑盒說明書。使用Nanodrop2000分光光度計(jì)和瓊脂糖凝膠電泳對(duì)提取的總RNA的濃度、純度及完整性進(jìn)行檢測(cè)。用反轉(zhuǎn)錄試劑盒合成cDNA(TaKa-RaPrimeScriptTMRTreagentKit)。依據(jù)參考基因組中的 PpD2 編碼序列,利用PrimerPremier5.0軟件設(shè)計(jì)定量引物,以桃 PpGAPDH 為內(nèi)參基因,反轉(zhuǎn)錄獲得的cDNA為模板,用SYBRSelectMasterMix(AppliedBiosystems,Mardrid,CA,USA)熒光定量試劑盒進(jìn)行定量分析,每個(gè)樣品設(shè)置3個(gè)生物學(xué)重復(fù),并用 2-ΔΔCt 法計(jì)算基因 PpD2 在不同組織中的相對(duì)表達(dá)量。qRT-PCR反應(yīng)體系為: ,SYBR 10μL ,上下游引物各 1μL ,
補(bǔ)足至20μL 。qRT-PCR反應(yīng)程序?yàn)椋?95°C 預(yù)變性 2min
95°C 變性 30s,60°C 退火 延伸 30s ,共42個(gè)循環(huán)。引物序列詳見表1。
1.6PpD2基因克隆
依據(jù)桃基因組中 PpD2 的 CDS(coding se-quence,編碼序列)序列,利用軟件PrimerPremier5.0設(shè)計(jì)特異性PCR引物。灑紅龍柱葉片總RNA提取及反轉(zhuǎn)錄參照1.5。以獲得的cDNA為模板進(jìn)行PCR擴(kuò)增。PCR擴(kuò)增體系為:cDNA 2μL ,Prime-STARMaxPremix (2×)25μL ,上下游引物各 2μL 補(bǔ)足至 50μL 。PCR擴(kuò)增程序?yàn)椋?98°C3min 98°C10s,58°C10s,72°C40s,34 個(gè)循環(huán); 72°C 延伸 3min,4°C 保存。
PCR擴(kuò)增產(chǎn)物經(jīng)膠回收試劑盒(北京莊盟國(guó)際生物科技公司)純化后與連接pClone007-T并轉(zhuǎn)化DH5α大腸桿菌感受態(tài)。載體連接體系為:總體系為 10μL ,其pEASY@-Blunt Vector 1μL , Insert DNA30~50ng 補(bǔ)足至 10μL 。待單克隆長(zhǎng)出后進(jìn)行菌液PCR驗(yàn)證陽(yáng)性并送至上海生物科技股份有限公司進(jìn)行測(cè)序驗(yàn)證。
1.735S:PpD2過表達(dá)載體構(gòu)建
用軟件PrimerPremier5.0設(shè)計(jì)含同源臂的PpD2同源重組引物(表1)。以構(gòu)建成功的pClone007:PpD2 為模板進(jìn)行PCR擴(kuò)增。PCR擴(kuò)增體系和程序參照1.6。用限制性內(nèi)切酶XhoI和XbaI雙酶切空載質(zhì)粒pSAK-277。酶切反應(yīng)體系為:pSAK-277載體 10μL ,Cutsmart Buffer 5μL,XbaI 1μL,XhoI1μL,ddH2O 補(bǔ)足至 50μL 。
PCR反應(yīng)產(chǎn)物和酶切產(chǎn)物用膠回收試劑盒純化(北京莊盟國(guó)際生物科技公司),并于 -20°C 保存?zhèn)溆?。用同源重組酶(南京,諾唯贊)進(jìn)行重組反應(yīng)。重組反應(yīng)體系、轉(zhuǎn)化及陽(yáng)性鑒定參照1.6。將測(cè)序成功的 35:PpD2 過表達(dá)質(zhì)粒置于 -20°C 保存。
1.8穩(wěn)定轉(zhuǎn)化擬南芥及鑒定分析
將測(cè)序正確的 35S;PpD2 過表達(dá)載體轉(zhuǎn)化GV3101農(nóng)桿菌菌株,轉(zhuǎn)化后的農(nóng)桿菌接種于YEB液體培養(yǎng)基中( 50mg?L-1 壯觀霉素和利福平),并在 條件下培養(yǎng)至菌液濃度為 OD600= 0.7~0.8 。 12000r?min-1 離心棄上清液,沉淀用重懸液 (2.2g?L-1MS 鹽 ??50g?L-1 蔗糖、 .500μL ·L表面活性劑SilwetL-77)重懸 (OD600=0.7~0.8) 后用蘸花法穩(wěn)定轉(zhuǎn)化擬南芥。果莢成熟后收獲種子。在超凈工作臺(tái)中將晾干并 4°C 春化后的 T0 代種子用次氯酸鈉( 6.25% )消毒3\~4次,用滅菌的蒸餾水清洗5\~6次后將種子均勻鋪在MS固體培養(yǎng)基 ?50mg?L-1 硫酸卡那霉素)培養(yǎng)。在16h光照/8h黑暗下培養(yǎng)1周左右移栽綠苗。移栽后3周取擬南芥葉片用DNA提取試劑盒提取基因組DNA,并以DNA為模板進(jìn)行
PCR擴(kuò)增,對(duì) ΔT0 植株進(jìn)行陽(yáng)性鑒定。以擬南芥AtUBC為內(nèi)參基因,以鑒定為陽(yáng)性的擬南芥植株葉片提取RNA反轉(zhuǎn)錄得到的cDNA為模板對(duì)轉(zhuǎn)基因株系進(jìn)行 PpD2 相對(duì)表達(dá)量分析。PCR擴(kuò)增體系和程序參照1.6,擬南芥葉片RNA提取、反轉(zhuǎn)錄和qRT-PCR方法見1.5。引物序列詳見表1。
選取PCR檢測(cè)呈陽(yáng)性且 PpD2 相對(duì)表達(dá)量高的3個(gè)株系T代轉(zhuǎn)基因擬南芥進(jìn)行表型觀察和統(tǒng)計(jì)。 T2 代轉(zhuǎn)基因擬南芥和野生型擬南芥WT移栽3周后,用游標(biāo)卡尺統(tǒng)計(jì)其蓮座葉的長(zhǎng)度和寬度。待擬南芥抽2周后,利用SC-K1原位活體植物分枝角自動(dòng)測(cè)量?jī)x系統(tǒng)(杭州萬(wàn)深)分別對(duì)長(zhǎng)勢(shì)一致的轉(zhuǎn)基因株系和野生型擬南芥分枝角度(主臺(tái)上抽生的前兩個(gè)枝條基角角度)進(jìn)行統(tǒng)計(jì),每株系統(tǒng)計(jì)2株,每株擬南芥選取主臺(tái)上抽生的前2個(gè)枝條測(cè)定分枝角度,3次重復(fù)。
1.9 數(shù)據(jù)統(tǒng)計(jì)與分析
SPSS17.0軟件用于試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)及差異顯著性分析,AdobeIllustrator(AI用于作圖。
2 結(jié)果與分析
2.1普通型桃大久保分枝角度顯著大于柱型桃灑紅龍柱
對(duì)1年生普通型桃大久保和柱型桃灑紅龍柱1年生枝條分枝角度進(jìn)行統(tǒng)計(jì)。結(jié)果表明,大久保1年生枝條分枝角度顯著大于灑紅龍柱(圖1-A)。大久保和
灑紅龍柱腋芽?jī)?nèi)源BR含量測(cè)定結(jié)果顯示,大久保腋芽?jī)?nèi)源BR含量顯著高于灑紅龍柱(圖1-B),這與兩種樹型桃1年生枝條分枝角度差異一致。推測(cè)兩種樹型桃腋芽?jī)?nèi)源BR含量的差異可能導(dǎo)致兩種樹型桃1年生枝條分枝角度的差異。
2.2BR合成相關(guān)基因在兩種樹型桃中的表達(dá)分析
對(duì)普通型桃大久保和柱型桃灑紅龍柱莖尖轉(zhuǎn)錄組數(shù)據(jù)中BR合成相關(guān)基因表達(dá)趨勢(shì)進(jìn)行分析,結(jié)果發(fā)現(xiàn),BR合成相關(guān)基因中僅PpDET在柱型桃灑紅龍柱中表達(dá)量高于大久保;而 PpDWI 、PpBR6OX、PpDWF4、PpCPD和 PpD2 表達(dá)量在柱型桃灑紅龍柱中均低于普通型桃大久保,其中 PpD2 在灑紅龍柱中的表達(dá)量顯著低于大久保(圖2-A),這與BR含量在兩種樹型桃腋芽中的差異一致。進(jìn)一步的qRT-PCR結(jié)果發(fā)現(xiàn)BR合成相關(guān)基因在兩種樹型中的表達(dá)趨勢(shì)和轉(zhuǎn)錄組數(shù)據(jù)一致,且 PpD2 在兩個(gè)樹型中的表達(dá)量差異極顯著(圖2-B)。上述結(jié)果表明BR合成相關(guān)基因 PpD2 可能與桃分枝角度
形成相關(guān)。
2.3PpD2在兩種樹型桃1年生枝條分枝連接處韌皮部上部和下部的表達(dá)量存在顯著差異
為進(jìn)一步明確 PpD2 的表達(dá)模式,采集灑紅龍柱莖尖、嫩葉、1年生枝條上部、1年生枝條中部、1年生枝條分枝連接處韌皮部上部和1年生枝條分枝連接處韌皮部下部用于qRT-PCR分析。結(jié)果顯示,PpD2 在1年生枝條分枝連接處韌皮部下部的表達(dá)量最高,在莖尖和嫩葉中的表達(dá)量相對(duì)較高,在1年生枝條上、中部表達(dá)量次之,而在1年生枝條分枝連接處韌皮部上部的表達(dá)量最低(圖3)。分枝連接處是植物分枝角度形成的關(guān)鍵部位,而 PpD2 基因在1年生枝條分枝連接處韌皮部上部的表達(dá)量極顯著低于在分枝連接處韌皮部下部,進(jìn)一步表明 PpD2 可能與桃分枝角度的形成有關(guān)。
2.4PpD2轉(zhuǎn)基因擬南芥株系表型觀察與分析
為明確 PpD2 功能,將構(gòu)建好的 35S:PpD2 過表達(dá)載體穩(wěn)定轉(zhuǎn)化擬南芥。PCR結(jié)果顯示水和野生型擬南芥WT中均未擴(kuò)增出 PpD2 條帶,而在轉(zhuǎn)基因
株系L1~L7中均能擴(kuò)增出目標(biāo)條帶,表明轉(zhuǎn)基因株系L1~L7為陽(yáng)性植株(圖4-A)。qRT-PCR結(jié)果表明PpD2 基因在轉(zhuǎn)基因擬南芥株系L1~L7中的表達(dá)量均顯著高于野生型擬南芥WT(圖4-B),且轉(zhuǎn)基因株系L1、L3和L4中 PpD2 的表達(dá)量最高(圖4-B),故選L1、L3和L4株系做進(jìn)一步研究。
轉(zhuǎn)基因擬南芥株系L1、L3、L4和野生型擬南芥WT移栽到溫室中3周后,分別統(tǒng)計(jì)其蓮座葉葉長(zhǎng)和葉寬。結(jié)果表明,與野生型擬南芥WT相比,轉(zhuǎn)基因株系L1、L3和L4蓮座葉葉長(zhǎng)顯著增加(圖5-A),WT的蓮座葉葉長(zhǎng)平均值為 4.3cm ,而轉(zhuǎn)基因株系L1、L3和L4蓮座葉葉長(zhǎng)的平均值分別為6.4、6.1和6.5cm (圖5-B)。同時(shí)轉(zhuǎn)基因株系L1、L3和L4蓮座葉葉寬也明顯大于野生型擬南芥WT(圖5-C)。以上結(jié)果表明 PpD2 對(duì)擬南芥蓮座葉的生長(zhǎng)具有一定調(diào)控作用。
當(dāng)轉(zhuǎn)基因擬南芥株系L1、L3、L4和野生型擬南芥WT抽2周后,分別統(tǒng)計(jì)主上著生的前兩個(gè)分枝的基角。結(jié)果顯示轉(zhuǎn)基因株系L1、L3和L4的分枝角度顯著大于野生型擬南芥(圖6-A)。野生型擬南芥WT主臺(tái)上分枝的分枝角度平均值為 48.5° .
而轉(zhuǎn)基因擬南芥株系L1、L3、L4主臺(tái)上分枝的分枝角度的平均值分別為 89.7°?86.5° 和 82.4° (圖6-B)。
3討論
分枝角度是影響果樹樹型的一個(gè)重要農(nóng)藝性狀,直接決定植物的栽培密度及產(chǎn)量。普通型桃分枝角度大且分枝數(shù)量多,而柱型桃因分枝角度小且二級(jí)分枝數(shù)量少受到育種工作者的青睞4。
植物激素在調(diào)節(jié)分枝中起關(guān)鍵作用[23]。BR是繼生長(zhǎng)素(IAA)、細(xì)胞分裂素(CK)、赤霉素(GA)、脫落酸(ABA)和乙烯之后發(fā)現(xiàn)的第六種植物激素[24],在植物生長(zhǎng)發(fā)育進(jìn)程中發(fā)揮重要的調(diào)控作用,BR可影響植物葉片光合作用、調(diào)節(jié)植物根生長(zhǎng)發(fā)育、促進(jìn)細(xì)胞分裂與伸長(zhǎng)、調(diào)控植物分枝等[10.25]。水稻BR合成基因dwarf2突變呈現(xiàn)分藥角度顯著減小等表型,而外施BR能顯著恢復(fù)dwarf2突變體表型[2];miR6288b-3p通過靶定并剪切的方式抑制PpTCP4的表達(dá),進(jìn)而解除PpTCP4對(duì) PpD2 的轉(zhuǎn)錄抑制,增加內(nèi)源BR含量進(jìn)而促進(jìn)桃發(fā)枝[2;TaSPL8結(jié)合并激活BR合成基因啟動(dòng)子TaD2活性并調(diào)控小麥葉角,進(jìn)而影響其種植密度和產(chǎn)量[2]。本研究中對(duì)分枝角度大的普通型桃大久保和分枝角度小的柱型桃灑紅龍柱腋芽激素測(cè)定顯示,大久保BR含量顯著高于灑紅龍柱,且兩種樹型桃莖尖轉(zhuǎn)錄組和qRT-PCR分析發(fā)現(xiàn),BR合成基因 PpD2 在大久保中的表達(dá)量顯著高于灑紅龍柱,組織特異性表達(dá)結(jié)果表明 PpD2 在分枝連接處韌皮部上/下的表達(dá)量存在顯著差異,而分枝連接處的彎曲程度直接決定分枝角度[28]。上述結(jié)果表明 PpD2 可能通過影響內(nèi)源BR含量進(jìn)而參與桃分枝角度的形成。
本研究過表達(dá)桃BR合成基因 PpD2 可顯著增加擬南芥轉(zhuǎn)基因株系分枝角度,這與草本植物水稻、擬南芥、番茄中的研究結(jié)果相似。BR合成相關(guān)基因OsBR6ox、ebisudwarf(d2)突變直接影響水稻分?jǐn)?shù)量及角度[29-31];過表達(dá)BR合成基因DWF4顯著促進(jìn)擬南芥分枝形成[;水稻BR相關(guān)基因GSK3、GSK4、OsBZR4突變體直接影響水稻株高、葉夾角和水稻產(chǎn)量[33];OsPUB9、GSK2和OsOFP8形成一個(gè)調(diào)控網(wǎng)絡(luò),通過BR信號(hào)通路介導(dǎo)基因表達(dá)、葉片傾角和粒大小[34];番茄BR合成基因突變體dwf呈現(xiàn)發(fā)枝增多等表型,并且BR可通過影響赤霉素、細(xì)胞分裂素、獨(dú)腳金內(nèi)酯和糖等多條通路來調(diào)控番茄發(fā)枝[18.35];同時(shí)研究表明BR可能通過調(diào)節(jié)細(xì)胞質(zhì)膜上的ATP酶活性,并影響植物細(xì)胞細(xì)胞壁的可塑性,進(jìn)而調(diào)控植物分枝的形成[1;BR可促進(jìn)葉夾角處細(xì)胞的分裂與伸長(zhǎng)并導(dǎo)致葉夾角的變化[28]。本研究獲得的 PpD2 擬南芥過表達(dá)轉(zhuǎn)基因株系中 PpD2 的表達(dá)量顯著高于野生型擬南芥WT,且分枝角度也明顯大于野生型,表明 PpD2 是導(dǎo)致普通型桃大久保分枝角度大的關(guān)鍵基因,為桃樹型的遺傳改良提供了理論依據(jù)。
4結(jié)論
普通型桃大久保1年生枝條分枝角度顯著大于柱型桃灑紅龍柱且腋芽?jī)?nèi)源BR含量顯著高于灑紅龍柱; PpD2 在大久保莖尖中的表達(dá)量顯著高于灑紅龍柱,且在1年生枝條分枝連接處韌皮部下部的表達(dá)量顯著高于分枝連接處韌皮部上部;過表達(dá)PpD2能顯著增加轉(zhuǎn)基因擬南芥株系分枝角度,表明 PpD2 在分枝角度形成中發(fā)揮重要作用。
參考文獻(xiàn)References:
[1]王志強(qiáng),牛良,崔國(guó)朝,魯振華,曾文芳.我國(guó)桃栽培模式現(xiàn)狀 與發(fā)展建議[J].果農(nóng)之友,2015(9):3-4. WANG Zhiqiang,NIU Liang,CUI Guozhao,LU Zhenhua, ZENG Wenfang. Present situation and development suggestion of peach cultivation model in China[J]. Fruit Growers’Friend, 2015(9):3-4.
[2] 譚彬,程鈞,鄭先波,王志強(qiáng),馮建燦.桃樹型及其調(diào)控關(guān)鍵基 因研究進(jìn)展[J].果樹學(xué)報(bào),2020,37(4):599-605. TAN Bin,CHENG Jun,ZHENG Xianbo,WANG Zhiqiang, FENG Jiancan. Progress on tree architecture and key genes of its regulation in peach[J]. Journal ofFruit Science,2020,37(4): 599-605.
[3]李天豪,張杰,高紅珠,魏鵬程,鄭先波,連曉東,王小貝,張海 朋,程鈞,王偉,譚彬,馮建燦.桃熱激轉(zhuǎn)錄因子PpHSF18基 因的克隆及功能分析[J].果樹學(xué)報(bào),2023,40(5):852-860. LI Tianhao,ZHANG Jie,GAO Hongzhu,WEI Pengcheng, ZHENG Xianbo,LIAN Xiaodong,WANG Xiaobei, ZHANG Haipeng,CHENG Jun,WANG Wei,TAN Bin,F(xiàn)ENG Jiancan. Cloning and functional analysis of heat shock transcription factorPpHSF18 in peach(Prunuspersica)[J].Journal ofFruit Science,2023,40(5):852-860.
[4]BASSI D,DIMA A,SCORZA R. Tree structure and pruning response of six peach growth forms[J]. Journal of the American Society for Horticultural Science,1994,119(3):378-382.
[5]KOTOV A A, KOTOVA L M,ROMANOV G A. Signaling network regulating plant branching:Recent advances and new challenges[J].Plant Science,2021,307:110880.
[6] WANGWG,GAO HB,LIANG Y,LI JY,WANGYH. Molecular basis underlying rice tiller angle: Current progress and future perspectives[J].Molecular Plant,2022,15(1):125-137.
[7] DIVI UK,KRISHNA P.Brassinosteroid:A biotechnological target for enhancing crop yield and stress tolerance[J].New Biotechnology,2009,26(3/4):131-136.
[8] ZEBOSIB,VOLLBRECHTE,BESTNB.Brassinosteroid biosynthesis and signaling:Conserved and diversified functions of core genes across multiple plant species[J]. Plant Communications,2024,5(9):100982.
[9] YIN WC,DONGNN,LIXC,YANGY Z,LU ZF,ZHOU WB,QIAN Q,CHU C C,TONG HN. Understanding brassinosteroid-centric phytohormone interactions for crop improvement[J].Journal of IntegrativePlant Biology,2025,67(3):563- 581.
[10]CHENRZ,DENGYW,DINGYL,GUOJX,QIUJ,WANG B,WANGCS,XIEYY,ZHANG ZH,CHENJX,CHENLT, CHUCC,HEGC,HE ZH,HUANG XH,XINGYZ,YANG S H,XIE D X,LIU Y G,LI JY. Rice functional genomics : Decades’efforts and roads ahead[J]. Science China Life Sciences, 2022,65(1):33-92.
[11]SAKAMOTO T,MORINAKA Y, OHNISHI T, SUNOHARA H,F(xiàn)UJIOKA S,UEGUCHI-TANAKA M,MIZUTANI M, SAKATA K, TAKATSUTO S,YOSHIDA S, TANAKA H, KITANO H,MATSUOKA M.Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice[J]. Nature Biotechnology,2006,24(1):105-109.
[12]CHEN L S,XIONG G S,CUI X,YAN M X,XU T,QIAN Q, XUEY B,LIJY,WANG Y H. OsGRAS19 may be a novel component involved in the brassinosteroid signaling pathway in rice[J].Molecular Plant,2013,6(3):98-991.
[13]TANABE S,ASHIKARI M,F(xiàn)UJIOKAS,TAKATSUTO S,YOSHIDAS,YANOM,YOSHIMURAA,KITANOH,MATSUOKA M,F(xiàn)UJISAWA Y, KATO H,IWASAKI Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via thecharacterizationofaricedwarfmutant,dwarfl1,withreduced seed length[J].The Plant Cell,2005,17(3):776-790.
[14]YAMAMURO C, IHARAY,WU X,NOGUCHI T,F(xiàn)UJIOKA S, TAKATSUTO S, ASHIKARI M, KITANO H,MATSUOKA M.Loss of function of a rice brassinosteroid insensitivel homolog prevents internode elongation and bending of the lamina joint[J]. The Plant Cell,2000,12(9):1591-1605.
[15]ZHANG Z,YANG XL,CHENG L,GUO Z J,WANG HY,WU WH,SHINK,ZHUJY,ZHENGXL,BIANJH,LIYC,GU LF,ZHU Q,WANG ZY,WANG WF.Physiological and transcriptomic analyses of brassinosteroid function in moso bamboo (Phyllostachysedulis) seedlings[J].Planta,2020,252(2):27.
[16]FANG Z M,JIYY,HU J,GUO RK,SUN SY,WANG XL. Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 complex to determine FC1 expression in rice tillering[J]. Molecular Plant,2020,13(4):586-597.
[17]TIAN HY,LVB S,DING TT,BAI MY,DING ZJ. Auxin-BR interaction regulates plant growth and development[J].Frontiers in Plant Science,2018,8:256.
[18]XIAXJ,DONGH,YINYL,SONGXW,GUXH,SANG K Q,ZHOUJ,SHIK,ZHOUYH,F(xiàn)OYERCH,YUJQ.Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato[J].Proceedings of the National Academy of Sciences of the United States of America,2021,118(11): e2004384118.
[19]GUO Z X,F(xiàn)UJIOKA S,BLANCAFLOR E B,MIAO S,GOU X P,LIJ.TCP1 modulatesbrassinosteroid biosynthesisbyregulating the expression of the key biosynthetic gene DWARF4 inArabidopsisthaliana[J].ThePlantCell,2012,22(4):1161-1173.
[20] WANGL,XUYY,ZHANGC,MAQB,JOOSH,KIMSK, XU Z H,CHONG K. OsLIC,a novel CCCH-type zinc finger protein with transcription activation,mediates rice architecture via brassinosteroids signaling[J].PLoS One,2008,3(10):e3521.
[21]LIU KY,CAO J,YU KH,LIUXY,GAOY J,CHEN Q, ZHANGWJ,PENGHR,DUJK,XINMM,HUZR,GUOW L,ROSSIV,NIZF,SUNQX,YAOYY.Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling[J]. Plant Physiology,2019,181(1):179-194.
[22]譚彬,楊麗萍,陳立川,馮玫僑,連曉東,魏鵬程,程鈞,王小貝, 馮建燦.桃PIN蛋白基因家族鑒定及其在不同樹型桃中的表 達(dá)分析[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2020,28(10):1747-1760. TANBin,YANGLiping,CHENLichuan,F(xiàn)ENGMeiqiao,LIAN Xiaodong,WEI Pengcheng,CHENGJun,WANG Xiaobei, FENG Jiancan.Identification and expression analysis of PIN gene familyin different tree architectures of peach (Prunus persica)[J]. Journal of Agricultural Biotechnology,2020,28(10): 1747-1760.
[23]ONGARO V,LEYSER O. Hormonal control of shoot branching[J].Journal of Experimental Botany,2008,59(1):67-74.
[24]SASSE JM. Recent progress in brassinosteroid research[J]. Physiologia Plantarum,1997,100(3):696-701.
[25]陳晨,陳虹,倪銘,張子晗,喻方圓.油菜素內(nèi)酯調(diào)控植物生長(zhǎng) 發(fā)育的研究進(jìn)展[J].林業(yè)科學(xué),2022,58(7):144-155. CHEN Chen,CHEN Hong,NI Ming,ZHANG Zihan,YU Fangyuan. Research progress of brassinolide in regulating plant growth and development[J]. Scientia Silvae Sinicae,2022,58 (7):144-155.
[26]HONG Z,UEGUCHI-TANAKAM,F(xiàn)UJIOKAS,TAKATSUTOS,YOSHIDAS,HASEGAWAY,ASHIKARIM,KITANO H,MATSUOKAM.Thericebrassinosteroid-deficientdwarf2 mutant,defective in the rice homologof Arabidopsis DIMINUTO/DWARF1,is rescued by the endogenously accumulated alternative bioactive brassinosteroid,dolichosterone[J].The Plant Cell,2005,17(8):2243-2254.
[27]WANGXB,YANL X,LI T H,ZHANG J,ZHANGYJ, ZHANGJJ,LIANXD,ZHANGHP,ZHENGXB,HOUN, CHENGJ,WANGW,ZHANGLL,YEX,LIJD,F(xiàn)ENGJC, TANB.The lncRNA1-miR6288b-3p-PpTCP4-PpD2 module regulates peach branch numberbyaffecting brassinosteroid biosynthesis[J].New Phytologist,2024,243(3):1050-1064.
[28]ZHANG LY,BAI MY,WUJX,ZHU JY,WANG H,ZHANG ZG,WANGWF,SUNY,ZHAOJ,SUNXH,YANGHJ,XU Y Y, KIM S H,F(xiàn)UJIOKA S,LIN W H,CHONG K,LU T G, WANGZY.Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant developmentin riceandArabidopsis[J].ThePlantCell,2010,21 (12):3767-3780.
[29]MORIM,NOMURAT,OOKAH,ISHIZAKAM,YOKOTAT, SUGIMOTOK,OKABEK,KAJIWARAH,SATOHK,YAMAMOTOK,HIROCHIKAH,KIKUCHI S. Isolationand characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis[J].PlantPhysiology,2002,130(3):1152-1161.
[30]HONG Z,UEGUCHI-TANAKA M,UMEMURA K,UOZU S, FUJIOKAS,TAKATSUTOS,YOSHIDAS,ASHIKARIM,KITANOH,MATSUOKA M.A ricebrassinosteroid-deficient mutant,ebisu dwarf (d2),iscaused bya loss of function of a new member of cytochromeP450[J].ThePlant Cell,2003,15(12): 2900-2910.
[31]DONG HJ,ZHAO H,XIE WB,HAN ZM,LIG W,YAO W, BAI X F,HU Y,GUO Z L,LU K,YANG L,XING Y Z. A novel tiller angle gene,TAC3 together with TAC1 and D2 largely determinethenatural variationof tiller angle inricecultivars[J]. PLoS Genetics,2016,12(11):e1006412.
[32]LIQF,YUJW,LUJ,F(xiàn)EIHY,LUOM,CAOBW,HUANG L C,ZHANG CQ,LIU QQ. Seed-specific expression of OsDWF4,a rate-limiting gene involved in brassinosteroids biosynthesis,improves both grain yield and quality in rice[J].Journal ofAgricultural and Food Chemistry,2018,66(15):3759-3772.
[33]LIUDP,YUZK,ZHANGGX,YINWC,LILL,NIU M, MENG WJ,ZHANGXX,DONGNN,LIUJH,YANGY Z, WANG S M,CHU C C,TONG HN. Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice[J].Plant Physiology,2021,187(4):2563- 2576.
[34]XIEYH,F(xiàn)ANZP,LIANGXY,TENGKC,HUANGZJ, HUANGMY,ZHAOH,XUKZ,LIJX.OsPUB9 modulates leaf angle and grain size through the brassinosteroid signaling pathway in rice[J].The Plant Journal,2025,121(3):e17230.
[35]DONG H,WANGJC,SONG XW,HU CY,ZHUCG,SUN T,ZHOU ZW,HUZJ,XIAXJ,ZHOUJ,SHIK,ZHOUYH, FOYERCH,YUJQ.HY5 functionsasasystemic signal by integrating BRC1-dependent hormone signaling in tomato bud outgrowth[J]. Proceedings of the National Academy of Sciences of theUnited StatesofAmerica,2023,120(16):e2301879120.