亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        激素抵抗型腎病綜合征發(fā)病機(jī)制的研究現(xiàn)狀

        2025-03-14 00:00:00段淑丁照然劉燦戴恩來(lái)
        醫(yī)學(xué)信息 2025年3期

        摘要:激素抵抗型腎病綜合征(SRNS)經(jīng)足量激素治療8~12周無(wú)效,文獻(xiàn)調(diào)研顯示腎病綜合征發(fā)生激素抵抗的機(jī)制與激素的藥代動(dòng)力學(xué)受損和腎臟自身結(jié)構(gòu)、功能受損相關(guān)。本文將從糖皮質(zhì)激素受體、伴侶蛋白,及足細(xì)胞相關(guān)基因和蛋白的角度對(duì)SRNS發(fā)病機(jī)制的研究成果進(jìn)行綜述,以期對(duì)SRNS的臨床研究及新藥研發(fā)提供思路。

        關(guān)鍵詞:激素抵抗型腎病綜合征;發(fā)病機(jī)制;糖皮質(zhì)激素受體;基因;蛋白

        中圖分類(lèi)號(hào):R692" " " " " " " " " " " " " " " " " "文獻(xiàn)標(biāo)識(shí)碼:A" " " " " " " " " " " " " " " " "DOI:10.3969/j.issn.1006-1959.2025.03.034

        文章編號(hào):1006-1959(2025)03-0165-05

        Research Status of Pathogenesis of Steroid-resistant Nephrotic Syndrome

        DUAN Shuwen, DING Zhaoran, LIU Can, DAI Enlai

        (College of Integrated Traditional Chinese and Western Medicine, Gansu University

        of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China)

        Abstract: Steroid-resistant nephrotic syndrome (SRNS) is ineffective after 8-12 weeks of sufficient hormone therapy. Literature research shows that the mechanism of hormone resistance in nephrotic syndrome is related to the impaired pharmacokinetics of hormones and the impaired structure and function of the kidney itself. This article will review the research results of the pathogenesis of SRNS from the perspectives of glucocorticoid receptors, chaperone proteins, and podocyte-related genes and proteins, in order to provide ideas for the clinical research and new drug development of SRNS.

        Key words: Steroid-resistant nephrotic syndrome; Pathogenesis; Glucocorticoid receptor; Genes; Proteins

        腎病綜合征(nephrotic syndrome, NS)的治療以糖皮質(zhì)激素、細(xì)胞毒藥物、環(huán)孢素為主,其中糖皮質(zhì)激素是其首選治療藥物。不同人群對(duì)糖皮質(zhì)激素治療的反應(yīng)存在差異,經(jīng)足量激素治療8~12周無(wú)效者為激素抵抗型腎病綜合征(steroid resistant nephrotic syndrome, SRNS),大約20%的兒童和50%的成人屬于SRNS[1],其發(fā)病機(jī)制至今尚不完全清楚。本綜述將對(duì)SRNS發(fā)病機(jī)制的最新研究成果進(jìn)行綜合分析,以期為該疾病的診斷和治療提供新的思路和方法。

        1藥代動(dòng)力學(xué)異常

        1.1糖皮質(zhì)激素受體表達(dá)水平的異常" 近年來(lái),越來(lái)越多的研究發(fā)現(xiàn)糖皮質(zhì)激素(glucocorticoids, GCs)的作用主要是通過(guò)GR介導(dǎo)的。Postel S等[3]的研究表明糖皮質(zhì)激素抵抗的哮喘患者體內(nèi)可用于與DNA結(jié)合的GR數(shù)量明顯減少;梁玉婷等[4]的研究表明腎臟病患者的GR表達(dá)量與GCs療效相關(guān);黃爽等[5]的研究表明,NS患者外周血及腎臟組織中GR表達(dá)水平高者對(duì)GC治療敏感性更高。這些研究均提示GR的表達(dá)水平與SRNS密切相關(guān),異常的GR表達(dá)水平會(huì)影響激素療效。

        1.2糖皮質(zhì)激素受體亞型比例的失調(diào)" GRα和GRβ是GR的常見(jiàn)亞型。正常狀態(tài)下,GRα和GRβ保持動(dòng)態(tài)平衡,但隨著GRα表達(dá)的減少和(或)GRβ表達(dá)的增加,該平衡被打破,從而導(dǎo)致激素抵抗。田清華等[6]的研究表明GRβ的過(guò)度表達(dá)與大皰性皮膚病激素耐藥密切相關(guān);Li Y等[7]的研究發(fā)現(xiàn)對(duì)GCs耐藥的鼻息肉病患者體內(nèi)GRα與GRβ表達(dá)異常。GR亞型比例的失調(diào)可以導(dǎo)致多系統(tǒng)疾病的糖皮質(zhì)激素抵抗。炎癥因子會(huì)導(dǎo)致激素抵抗的機(jī)制也與GRα和GRβ比例失調(diào)相關(guān),Li X等[8]發(fā)現(xiàn)炎性因子可以通過(guò)增加足細(xì)胞中GRβ的表達(dá)降低GRα/GRβ,誘導(dǎo)足細(xì)胞對(duì)類(lèi)固醇的抗性。

        1.3糖皮質(zhì)激素受體的結(jié)構(gòu)突變" GR的結(jié)構(gòu)突變是糖皮質(zhì)激素產(chǎn)生抵抗的又一機(jī)制。GR相關(guān)基因NR3C1、CREBBP、WHSC1等的突變失活或缺失,可以導(dǎo)致GR結(jié)構(gòu)的不穩(wěn)定性,是促使靶組織對(duì)GCs不敏感的又一主要原因[9,10]。Monteiro LLS等[11]利用GR配體結(jié)合域三維結(jié)構(gòu)對(duì)已知引起該臨床癥狀的8種變體(I559 N、V571A、D641V、G679S、F737L、I747 M、L753F和L773P)進(jìn)行了計(jì)算分析,發(fā)現(xiàn)突變產(chǎn)生了對(duì)激素的親和力降低,從而導(dǎo)致糖皮質(zhì)激素抗性表型。GR的結(jié)構(gòu)與功能緊密相連,對(duì)細(xì)胞和機(jī)體的生理活動(dòng)具有重要影響。

        1.4糖皮質(zhì)激素受體伴侶蛋白異常" 伴侶蛋白序列的突變會(huì)影響糖皮質(zhì)激素的效應(yīng)。熱休克蛋白90(heat shock proteins 90, Hsp90)是GR重要的伴侶蛋白,是調(diào)節(jié)糖皮質(zhì)激素效應(yīng)的關(guān)鍵因子[12]。Hsp90高表達(dá)后細(xì)胞核中積累過(guò)量的HSP90-GR復(fù)合物會(huì)阻止GR與靶基因的DNA結(jié)合和轉(zhuǎn)錄,導(dǎo)致患者對(duì)糖皮質(zhì)激素產(chǎn)生抵抗[13]。又有研究表明[14],患者的Hsp90過(guò)表達(dá)會(huì)導(dǎo)致GCs負(fù)反饋受損,從而影響其效應(yīng)。研究發(fā)現(xiàn)[15,16],GCs聯(lián)合雷公藤多苷可以下調(diào)HSP90表達(dá),同時(shí)改善NS患者的腎功能及GCs抵抗。Hsp90輔助因子的變化也會(huì)引起糖皮質(zhì)激素效應(yīng)的變化,如:P23促進(jìn)Hsp90與受體的結(jié)合[17];Aha1刺激Hsp90的酶活性[18];FK506降低激素親和力,延遲核易位[19];FKBPL以細(xì)胞系依賴(lài)的方式影響GR的水平、核易位和轉(zhuǎn)錄活性[20];PP5能使Hsp90去磷酸化,過(guò)表達(dá)會(huì)降低哺乳動(dòng)物細(xì)胞中的GR活性[21]。當(dāng)伴侶蛋白的序列發(fā)生突變時(shí),可能導(dǎo)致伴侶蛋白與糖皮質(zhì)激素受體的結(jié)合能力、穩(wěn)定性或功能發(fā)生變化,進(jìn)而影響糖皮質(zhì)激素受體的轉(zhuǎn)錄調(diào)控功能和信號(hào)傳導(dǎo)途徑。

        1.5糖皮質(zhì)激素轉(zhuǎn)運(yùn)蛋白" 對(duì)P-糖蛋白(P-glycoprotein, P-gp)的調(diào)控也可以改善糖皮質(zhì)激素的抵抗。Prasad N等[22]對(duì)36例腎病綜合征患兒(激素敏感20例,激素抵抗16例)進(jìn)行研究發(fā)現(xiàn),P-gp活性在激素耐藥的腎病綜合征患者中明顯高于激素敏感的腎病綜合征患者。Oberoi J等[23]發(fā)現(xiàn)系統(tǒng)性紅斑狼瘡患者血清P-gp高水平與激素抵抗相關(guān)。核孔復(fù)合體(nuclear pore complex, NPC)連接內(nèi)外核膜,形成跨越核膜的通道,是大分子進(jìn)出核的唯一雙向通道[24]。有研究表明[25],NPC的幾個(gè)組成部分的突變可以導(dǎo)致SRNS的發(fā)生。當(dāng)糖皮質(zhì)激素轉(zhuǎn)運(yùn)蛋白的功能發(fā)生改變時(shí),可能會(huì)影響GC的內(nèi)外轉(zhuǎn)運(yùn)過(guò)程,導(dǎo)致細(xì)胞內(nèi)糖皮質(zhì)激素水平的變化。

        2腎臟結(jié)構(gòu)及功能異常

        2.1足細(xì)胞相關(guān)蛋白及基因" 腎小球?yàn)V過(guò)屏障是腎小球發(fā)揮功能的重要防線,由足細(xì)胞、內(nèi)皮細(xì)胞和腎小球基底膜構(gòu)成,相鄰足細(xì)胞的足突交錯(cuò)形成裂孔隔膜[26]。足細(xì)胞的病理變化是腎病綜合征的重要病理基礎(chǔ),因此與足細(xì)胞相關(guān)基因的變異及蛋白異常導(dǎo)致足細(xì)胞及其裂孔隔膜結(jié)構(gòu)、功能異常是SRNS發(fā)病的重要因素。

        Nephrin是足細(xì)胞維持正常裂孔膜結(jié)構(gòu)的關(guān)鍵分子,相鄰足突中的nephrin相互作用形成裂孔膜結(jié)構(gòu)的骨架[27],nephrin由NPHS1基因編碼。陳威辛等[28]對(duì)淫羊藿苷調(diào)控NS大鼠的潑尼松抵抗進(jìn)行了研究,發(fā)現(xiàn)淫羊藿苷改善NS大鼠對(duì)潑尼松的抵抗性的同時(shí)升高了nephrin mRNA相對(duì)表達(dá)量。王新斌等[29]發(fā)現(xiàn)右歸丸可以通過(guò)恢復(fù)nephrin蛋白的表達(dá)量提高GCs的敏感性,延緩SRNS的病程。這些研究共同說(shuō)明了nephrin與GCs的效應(yīng)密切相關(guān),這與Hattori M等[30]的研究結(jié)果相一致,其研究發(fā)現(xiàn)nephrin的不完全表達(dá)可以導(dǎo)致足細(xì)胞結(jié)構(gòu)功能異常而發(fā)生激素抵抗一致。

        Podocin是裂孔隔膜支架蛋白,并參與nephrin信號(hào)的啟動(dòng)[31]。編碼podocin的基因是NPHS2,NPHS2基因突變?yōu)槌H旧w隱性SRNS,其突變與發(fā)病年齡之間存在基因型-表型相關(guān)性。有研究[32]對(duì)160例出生后3個(gè)月內(nèi)患有NS的患兒進(jìn)行了NPHS2變異篩查,結(jié)果顯示在出生后3個(gè)月內(nèi)出現(xiàn)SRNS的患兒體內(nèi)編碼podocin的NPHS2基因發(fā)生了突變。有研究顯示[33,34],NPHS1和NPHS2的致病性突變?cè)趦和疭RNS中具有顯著的患病率。以上研究表明,podocin及其編碼基因NPHS2的的突變導(dǎo)致的激素抵抗與年齡密切相關(guān),多發(fā)生于兒童SRNS患者中。

        CD2相關(guān)蛋白(CD2AP)是一種適配分子,存在于除腦以外的所有組織中,在腎臟中起關(guān)鍵作用[35]。孟大川等[36]收集了40例中國(guó)漢族散發(fā)性SRNS患兒進(jìn)行直接DNA序列測(cè),發(fā)現(xiàn)SRNS患兒存在CD2AP基因突變。Tsvetkov D等[37]對(duì)SRNS患者進(jìn)行了Sanger測(cè)序,發(fā)現(xiàn)了CD2AP雜合突變。CD2AP與nephrin、podocin共同維持足細(xì)胞的正常結(jié)構(gòu)與功能,在激素抵抗中扮演著重要角色,兒童SRNS患者的激素抵抗與CD2AP突變的聯(lián)系尤為緊密。

        TRPC6是足細(xì)胞中表達(dá)的瞬時(shí)受體電位通道(TRP)蛋白的成員,與裂孔膜的完整性相關(guān)[38]。TRPC6與CD2AP、nephrin和podocin共定位,通過(guò)G蛋白偶聯(lián)受體直接刺激調(diào)節(jié)細(xì)胞內(nèi)Ca2+的濃度[39]。TRPC6編碼基因啟動(dòng)子區(qū)域的-254Cgt;G的啟動(dòng)子突變與SRNS相關(guān),是中國(guó)兒童SRNS的早期有效預(yù)測(cè)因子[40]。這一發(fā)現(xiàn)有助于SRNS的早期診斷。

        還有研究顯示[41],敲除PLCE1還導(dǎo)致分化時(shí)足細(xì)胞標(biāo)記物(包括NEPH1、NPHS1、WT1等)的表達(dá)下降。WT1作為轉(zhuǎn)錄因子,具有調(diào)節(jié)足細(xì)胞成熟和體內(nèi)平衡的作用,還控制裂孔膜成分編碼基因的表達(dá)、足細(xì)胞的極性和細(xì)胞骨架的排列,以及足細(xì)胞的細(xì)胞-基質(zhì)粘附[42]。Zhu X等[43]用下一代測(cè)序和Sanger測(cè)序分析了283例SRNS或早發(fā)型NS患兒,發(fā)現(xiàn)WT1是最常見(jiàn)的突變。Bezdicka M等[44]對(duì)來(lái)自捷克國(guó)家SRNS數(shù)據(jù)庫(kù)的病例進(jìn)行WT1基因外顯子8和9的測(cè)序,在9名兒童中發(fā)現(xiàn)了8個(gè)明顯的外顯子WT1變異。Han Y等[45]的研究認(rèn)為,WT1基因的沉默可以提高激素敏感性,說(shuō)明WT1基因可能發(fā)生許多不同的突變,也可能在沒(méi)有突變的情況下過(guò)表達(dá),這都會(huì)導(dǎo)致激素抵抗的發(fā)生,將其沉默可能是激素抵抗的潛在療法。

        α-actinin-4是一種廣泛存在的細(xì)胞骨架蛋白,在腎臟富集,是GFB的重要組成部分,由ACTN4基因編碼[46]。有研究發(fā)現(xiàn)[47],ACTN4的突變?cè)贜S的發(fā)生發(fā)展中起重要作用,但SRNS患者中較少見(jiàn)。然而近幾年的研究與此結(jié)論相悖,有研究[48]發(fā)現(xiàn)了第14外顯子上的突變c.1649A>G(p.D550G)可能會(huì)導(dǎo)致激素效應(yīng)的異常。α-actinin-4與其編碼基因ACTN4是否引起SRNS存在爭(zhēng)議,還需要更多的研究進(jìn)行驗(yàn)證。

        2.2炎性環(huán)境" 大量研究表明[49-51],炎性環(huán)境會(huì)損傷足細(xì)胞的結(jié)構(gòu)。有臨床研究發(fā)現(xiàn)[52],血液中的IL-13、IL-1β、TNF-α、IL-18、IL-6等升高可能與NS患者的激素抵抗相關(guān)。IL-13會(huì)對(duì)足細(xì)胞中足突和細(xì)胞骨架分子,如nephrin、podocin、a-actinin-4,CD2AP的重新分布和重排產(chǎn)生影響,并以濃度依賴(lài)的方式破壞細(xì)胞骨架連接[53]。Li X等[8]在體外實(shí)驗(yàn)中用TNF-α誘導(dǎo)激素耐藥模型,有研究表明TNF-α可誘導(dǎo)體內(nèi)蛋白尿和足細(xì)胞凋亡,二者的過(guò)表達(dá)對(duì)腎臟nephrin和WT-1表達(dá)水平的降低起重要作用[54]。Kuang X等[41]的研究還發(fā)現(xiàn)TNF-α可以增強(qiáng)TRPC6的-254G等位基因的轉(zhuǎn)錄活性。IL-18屬于IL-1細(xì)胞因子成員家族,通過(guò)誘導(dǎo)自然殺傷細(xì)胞和T細(xì)胞中的IFN-γ活性并引起級(jí)聯(lián)炎癥反應(yīng)而具有強(qiáng)大的炎癥特性,誘導(dǎo)足細(xì)胞凋亡[55]。還有研究表明[56],IL-18基因缺陷可改善腎小管損傷、壞死、細(xì)胞轉(zhuǎn)分化和纖維化。IL-6家族是一種多功能細(xì)胞因子,暴露于促炎介質(zhì)中的足細(xì)胞會(huì)產(chǎn)生IL-6,其濃度呈劑量和時(shí)間依賴(lài)性,IL-6產(chǎn)生后又會(huì)參與足細(xì)胞的損傷過(guò)程[57]。炎性因子的檢測(cè)還有助于SRNS的早期診斷,Agrawal S等[58]對(duì)14例SRNS患兒收集血漿樣本進(jìn)行血漿細(xì)胞因子分析,IL-7、IL-9、MCP-1能夠在GCs治療前預(yù)測(cè)SRNS。長(zhǎng)期暴露于炎性環(huán)境中的組織和細(xì)胞會(huì)對(duì)GCs產(chǎn)生耐藥性,對(duì)GCs的反應(yīng)性降低,這導(dǎo)致了GCs治療的效果減弱甚至無(wú)效。各種炎性因子會(huì)引起級(jí)聯(lián)炎癥反應(yīng),導(dǎo)致NS患者的激素療效降低甚至出現(xiàn)抵抗,其機(jī)制與其可以造成足細(xì)胞損傷相關(guān)。炎性因子可以導(dǎo)致足細(xì)胞裂孔隔膜相關(guān)基因和蛋白的表達(dá)和分布異常,損傷的足細(xì)胞又會(huì)產(chǎn)生炎性因子,形成惡性循環(huán),增加SRNS的治療難度。因此,可以通過(guò)對(duì)炎性環(huán)境的評(píng)估判斷機(jī)體對(duì)GCs的反應(yīng)。

        3總結(jié)

        SRNS是腎病領(lǐng)域的疑難病癥之一,預(yù)后較差,易發(fā)展成為終末期腎病。對(duì)SRNS機(jī)制的研究可以為新藥研發(fā)及臨床實(shí)踐提供新的思路。GCs的效應(yīng)主要是通過(guò)GR介導(dǎo)的,GR結(jié)構(gòu)的突變,表達(dá)水平的變化,亞型比例的失調(diào),伴侶蛋白的異常都會(huì)使細(xì)胞內(nèi)有效糖皮質(zhì)激素的濃度降低,從而導(dǎo)致SRNS發(fā)病。由于足細(xì)胞的病理變化是腎病綜合征的重要病理基礎(chǔ),與足細(xì)胞相關(guān)的基因及蛋白變異導(dǎo)致足細(xì)胞及其裂孔隔膜結(jié)構(gòu)、功能異常會(huì)導(dǎo)致機(jī)體對(duì)胞質(zhì)內(nèi)糖皮質(zhì)激素的利用度不夠,從而引發(fā)SRNS。

        參考文獻(xiàn):

        [1]Hejazian SM,Zununi Vahed S,Moghaddas Sani H,et al.Steroid-resistant nephrotic syndrome: pharmacogenetics and epigenetic points and views[J].Expert Rev Clin Pharmacol,2020,13(2):147-156.

        [2]Timmermans S,Souffriau J,Libert C.A General Introduction to Glucocorticoid Biology[J].Front Immunol,2019,10:1545.

        [3]Postel S,Wissler L,Johansson CA,et al.Quaternary glucocorticoid receptor structure highlights allosteric interdomain communication[J].Nat Struct Mol Biol,2023,30(3):286-295.

        [4]梁婷玉,沈沛成.糖皮質(zhì)激素受體表達(dá)水平與糖皮質(zhì)激素治療慢性腎炎療效的關(guān)系[J].內(nèi)科急危重癥雜志,2023,29(4):341-343.

        [5]黃爽,肖建香.外周血及組織糖皮質(zhì)激素受體表達(dá)水平與腎病綜合征患者潑尼松治療效果的相關(guān)性[J].徐州醫(yī)科大學(xué)學(xué)報(bào),2023,43(8):603-608.

        [6]田清華,趙學(xué)良.GRα及GRβmRNA在大皰性皮膚病激素耐藥患者中的表達(dá)及意義[J].濰坊醫(yī)學(xué)院學(xué)報(bào),2014,36(5):337-339,376.

        [7]Frank F,Ortlund EA,Liu X.Structural insights into glucocorticoid receptor function[J].Biochem Soc Trans,2021,49(5):2333-2343.

        [8]Li X,Qi D,Wang MY,et al.Salvianolic acid A attenuates steroid resistant nephrotic syndrome through suPAR/uPAR-αvβ3 signaling Inhibition[J].J Ethnopharmacol,2021,279:114351.

        [9]Rahbar Saadat Y,Hejazian SM,Nariman-Saleh-Fam Z,et al.Glucocorticoid receptors and their upstream epigenetic regulators in adults with steroid-resistant nephrotic syndrome[J].Biofactors,2020,46(6):995-1005.

        [10]Jeanneteau F,Meijer OC,Moisan MP.Structural basis of glucocorticoid receptor signaling bias[J].J Neuroendocrinol,2023,35(2):e13203.

        [11]Yu X,Yi P,Hamilton RA,et al.Structural Insights of Transcriptionally Active, Full-Length Androgen Receptor Coactivator Complexes[J].Mol Cell,2020,79(5):812-823.e4.

        [12]Monteiro LLS,F(xiàn)ranco OL,Alencar SA,et al.Deciphering the structural basis for glucocorticoid resistance caused by missense mutations in the ligand binding domain of glucocorticoid receptor[J].J Mol Graph Model,2019,92:216-226.

        [13]Tamai M,Kasai S,Akahane K,et al.Glucocorticoid receptor gene mutations confer glucocorticoid resistance in B-cell precursor acute lymphoblastic leukemia[J].J Steroid Biochem Mol Biol,2022,218:106068.

        [14]Kaziales A,Barkovits K,Marcus K,et al.Glucocorticoid receptor complexes form cooperatively with the Hsp90 co-chaperones Pp5 and FKBPs[J].Sci Rep,2020,10(1):10733.

        [15]劉倩,魯華,郭更新,等.雷公藤多苷聯(lián)合激素對(duì)成人NS糖皮質(zhì)激素抵抗及HSP90的影響[J].基因組學(xué)與應(yīng)用生物學(xué),2017,36(11):4485-4490.

        [16]Hoter A,El-Sabban ME,Naim HY.The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease[J].Int J Mol Sci,2018,19(9):2560.

        [17]Fukuoka H,Shichi H,Yamamoto M,et al.The Mechanisms Underlying Autonomous Adrenocorticotropic Hormone Secretion in Cushing's Disease[J].Int J Mol Sci,2020,21(23):9132.

        [18]Noddings CM,Wang RY,Johnson JL,et al.Structure of Hsp90-p23-GR reveals the Hsp90 client-remodelling mechanism[J].Nature,2022,601(7893):465-469.

        [19]Oroz J,Blair LJ,Zweckstetter M.Dynamic Aha1 co-chaperone binding to human Hsp90[J].Protein Sci,2019,28(9):1545-1551.

        [20]Ortiz NR,Guy N,Garcia YA,et al.Functions of the Hsp90-Binding FKBP Immunophilins[J].Subcell Biochem,2023,101:41-80.

        [21]Guy NC,Garcia YA,Sivils JC,et al.Functions of the Hsp90-binding FKBP immunophilins[J].Subcell Biochem,2015,78:35-68.

        [22]Prasad N,Singh H,Jaiswal A,et al.Overexpression of P-glycoprotein and MRP-1 are pharmacogenomic biomarkers to determine steroid resistant phenotype in childhood idiopathic nephrotic syndrome[J].Pharmacogenomics J,2021,21(5):566-573.

        [23]Oberoi J,Guiu XA,Outwin EA,et al.HSP90-CDC37-PP5 forms a structural platform for kinase dephosphorylation[J].Nat Commun,2022,13(1):7343.

        [24]Silva V,Gil-Martins E,Silva B,et al.Xanthones as P-glycoprotein modulators and their impact on drug bioavailability[J].Expert Opin Drug Metab Toxicol,2021,17(4):441-482.

        [25]Lin DH,Hoelz A.The Structure of the Nuclear Pore Complex (An Update)[J].Annu Rev Biochem,2019,88:725-783.

        [26]Daehn IS,Duffield JS.The glomerular filtration barrier: a structural target for novel kidney therapies[J].Nat Rev Drug Discov,2021,20(10):770-788.

        [27]Mesfine BB,Vojisavljevic D,Kapoor R,et al.Urinary nephrin-a potential marker of early glomerular injury: a systematic review and meta-analysis[J].J Nephrol,2024,37(1):39-51.

        [28]陳威辛,戴恩來(lái),王新斌,等.淫羊藿苷對(duì)局灶節(jié)段性腎小球硬化模型大鼠潑尼松抵抗的影響[J].中國(guó)中醫(yī)藥信息雜志,2019,26(11):46-51.

        [29]王新斌,薛國(guó)忠,陳威辛,等.右歸丸對(duì)激素抵抗型腎病綜合征大鼠模型及SD蛋白的影響[J].光明中醫(yī),2019,34(17):2626-2629.

        [30]Hattori M,Shirai Y,Kanda S,et al.Circulating nephrin autoantibodies and posttransplant recurrence of primary focal segmental glomerulosclerosis[J].Am J Transplant,2022,22(10):2478-2480.

        [31]Horinouchi T,Nozu K,Iijima K.An updated view of the pathogenesis of steroid-sensitive nephrotic syndrome[J].Pediatr Nephrol,2022,37(9):1957-1965.

        [32]Philippe A,Nevo F,Esquivel EL,et al.Nephrin mutations can cause childhood-onset steroid-resistant nephrotic syndrome[J].J Am Soc Nephrol,2008,19(10):1871-1878.

        [33]Li Y,He Q,Wang Y,et al.A Systematic Analysis of Major Susceptible Genes in Childhood-onset Steroid-resistant Nephrotic Syndrome[J].Ann Clin Lab Sci,2019,49(3):330-337.

        [34]Wu N,Zhu Y,Jiang W,et al.A novel NPHS2 mutation (c.865A gt; G) identified in a Chinese family with steroid-resistant nephrotic syndrome alters subcellular localization of nephrin[J].Genes Genomics,2022,44(5):551-559.

        [35]Shojaei A,Serajpour N,Karimi B,et al.Molecular Genetic Analysis of Steroid Resistant Nephrotic Syndrome, Detection of a Novel Mutation[J].Iran J Kidney Dis,2019,13(3):165-172.

        [36]孟大川,余自華,王道靜,等.中國(guó)漢族兒童散發(fā)性激素耐藥型腎病綜合征CD2AP基因突變分析[J].臨床兒科雜志,2012,30(7):641-645,650.

        [37]Tsvetkov D,Hohmann M,Anistan YM,et al.A CD2AP Mutation Associated with Focal Segmental Glomerulosclerosis in Young Adulthood[J].Clin Med Insights Case Rep,2016,9:15-19.

        [38]Nandlal L,Winkler CA,Bhimma R,et al.Causal and putative pathogenic mutations identified in 39% of children with primary steroid-resistant nephrotic syndrome in South Africa[J].Eur J Pediatr,2022,181(10):3595-3606.

        [39]Kawachi H,F(xiàn)ukusumi Y.New insight into podocyte slit diaphragm, a therapeutic target of proteinuria[J].Clin Exp Nephrol,2020,24(3):193-204.

        [40]Shen B,Mei M,Ai S,et al.TRPC6 inhibits renal tubular epithelial cell pyroptosis through regulating zinc influx and alleviates renal ischemia-reperfusion injury[J].FASEB J,2022,36(10):e22527.

        [41]Kuang X,Zhou Q,Li Z,et al.-254Cgt;G SNP in the TRPC6 Gene Promoter Influences Its Expression via Interaction with the NF-κB Subunit RELA in Steroid-Resistant Nephrotic Syndrome Children[J].Int J Genomics,2019,2019:2197837.

        [42]Yu S,Choi WI,Choi YJ,et al.PLCE1 regulates the migration, proliferation, and differentiation of podocytes[J].Exp Mol Med,2020,52(4):594-603.

        [43]Zhu X,Zhang Y,Yu Z,et al.The Clinical and Genetic Features in Chinese Children With Steroid-Resistant or Early-Onset Nephrotic Syndrome: A Multicenter Cohort Study[J].Front Med (Lausanne),2022,9:885178.

        [44]Bezdicka M,Kaufman F,Krizova I,et al.Alteration in DNA-binding affinity of Wilms tumor 1 protein due to WT1 genetic variants associated with steroid - resistant nephrotic syndrome in children[J].Sci Rep,2022,12(1):8704.

        [45]Han Y,Yang L,Suarez-Saiz F,et al.Wilms' tumor 1 suppressor gene mediates antiestrogen resistance via down-regulation of estrogen receptor-alpha expression in breast cancer cells[J].Mol Cancer Res,2008,6(8):1347-1355.

        [46]Dong L,Pietsch S,Englert C.Towards an understanding of kidney diseases associated with WT1 mutations[J].Kidney Int,2015,88(4):684-690.

        [47]He Z,Wu K,Xie W,et al.Case report and literature review: A de novo pathogenic missense variant in ACTN4 gene caused rapid progression to end-stage renal disease[J].Front Pediatr,2022,10:930258.

        [48]Liu Z,Blattner SM,Tu Y,et al.Alpha-actinin-4 and CLP36 protein deficiencies contribute to podocyte defects in multiple human glomerulopathies[J].J Biol Chem.,2011,286(35):30795-30805.

        [49]Benoit G,Machuca E,Nevo F,et al.Analysis of recessive CD2AP and ACTN4 mutations in steroid-resistant nephrotic syndrome[48].Pediatr Nephrol,2010,25(3):445-451.

        [50]Meng L,Cao S,Lin N,et al.Identification of a Novel ACTN4 Gene Mutation Which Is Resistant to Primary Nephrotic Syndrome Therapy[J].Biomed Res Int,2019,2019:5949485.

        [51]Wu Q,Li W,Zhao J,et al.Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation[J].Biomed Pharmacother,2021,137:111308.

        [52]Abdelrahman RS,Abdelmageed ME.Renoprotective effect of celecoxib against gentamicin-induced nephrotoxicity through suppressing NFκB and caspase-3 signaling pathways in rats[J].Chem Biol Interact,2020,315:108863.

        [53]Lai KW,Wei CL,Tan LK,et al.Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats[J].J Am Soc Nephrol,2007,18(5):1476-1485.

        [54]Kuang XY,Huang WY,Xu H,et al.254Cgt;G: a TRPC6 promoter variation associated with enhanced transcription and steroid-resistant nephrotic syndrome in Chinese children[J].Pediatr Res,2013,74(5):511-516.

        [55]Ha TS,Nam JA,Seong SB,et al.Montelukast improves the changes of cytoskeletal and adaptor proteins of human podocytes by interleukin-13[J].Inflamm Res,2017,66(9):793-802.

        [56]Wang J,F(xiàn)eng Y,Zhang Y,et al.TNF-α and IL-1β Promote Renal Podocyte Injury in T2DM Rats by Decreasing Glomerular VEGF/eNOS Expression Levels and Altering Hemodynamic Parameters [J].J Inflamm Res,2022,15:6657-6673.

        [57]Zhou J,Yang J,Wang YM,et al.IL-6/STAT3 signaling activation exacerbates high fructose-induced podocyte hypertrophy by ketohexokinase-A-mediated tristetraprolin down-regulation[J].Cell Signal,2021,86:110082.

        [58]Agrawal S,Brier ME,Kerlin BA,et al.Plasma Cytokine Profiling to Predict Steroid Resistance in Pediatric Nephrotic Syndrome[J].Kidney Int Rep,2021,6(3):785-795.

        收稿日期:2023-12-30;修回日期:2024-01-26

        編輯/王萌

        精品亚洲成a人无码成a在线观看| 亚洲二区三区在线播放| 偷偷夜夜精品一区二区三区蜜桃| 国产极品少妇一区二区| 果冻传媒2021精品一区| 91制服丝袜| 国产大片在线观看三级| 日韩不卡的av二三四区| 国产精品无码一区二区在线看| 久久亚洲精品成人| 久久精品av一区二区免费| 成人国产一区二区三区| 国产中文欧美日韩在线| 无码午夜剧场| 亚洲大胆美女人体一二三区| 人与人性恔配视频免费| 无码国产色欲xxxxx视频| 成人免费无码a毛片| 国产一区二区三区男人吃奶| 久久午夜羞羞影院免费观看| 九九九精品成人免费视频小说| 中文亚洲成a人片在线观看| 麻婆视频在线免费观看| 国产av无码专区亚洲av毛网站| 国内精品一区视频在线播放 | 毛片亚洲av无码精品国产午夜| 日本VA欧美VA精品发布| 精品视频在线观看一区二区有 | 天堂丝袜美腿在线观看| 夜夜爽妓女8888888视频| 国产黑色丝袜在线观看下| 人妻少妇精品视频一区二区三区| 久久精品人搡人妻人少妇| 亚洲熟妇无码八av在线播放| 正在播放淫亚洲| 日本一区二区三区爱爱视频| 大地资源网高清在线播放| 亚洲色图在线观看视频| 久久精品国产亚洲av一| 久久精品中文字幕无码绿巨人| 国产成人无码区免费网站|