摘要" 目的:基于網(wǎng)絡(luò)藥理學(xué)與分子對(duì)接技術(shù)分析二仙湯治療絕經(jīng)后冠心病共病骨質(zhì)疏松的作用機(jī)制。方法:利用中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫(kù)與分析平臺(tái)獲取二仙湯靶蛋白,從GeneCards和OMMI數(shù)據(jù)庫(kù)中獲得絕經(jīng)后骨質(zhì)疏松與絕經(jīng)后冠心病相關(guān)蛋白,將藥物與疾病靶點(diǎn)取交集;通過Cytoscape軟件、STRING 數(shù)據(jù)庫(kù)以及DAVID 數(shù)據(jù)庫(kù)篩選二仙湯治療絕經(jīng)后冠心病共病骨質(zhì)疏松的關(guān)鍵靶蛋白、靶點(diǎn)以及通路。最后,通過分子對(duì)接驗(yàn)證關(guān)鍵靶點(diǎn)與靶蛋白之間的緊密聯(lián)系。結(jié)果:網(wǎng)絡(luò)藥理學(xué)研究發(fā)現(xiàn)二仙湯治療絕經(jīng)后冠心病共病骨質(zhì)疏松的核心成分為槲皮素、山柰酚、淫羊藿苷、木犀草素、β-谷甾醇、豆甾醇,關(guān)鍵靶點(diǎn)為蘇氨酸蛋白激酶1(AKT1)、腫瘤壞死因子(TNF)、白細(xì)胞介素-1β(IL1β)、白細(xì)胞介素-6 (IL6)、前列腺素G/H合酶2(PTGS2)、轉(zhuǎn)錄因子(JUN)、基質(zhì)金屬蛋白酶-9(MMP9)、胱天蛋白酶3(CASP3)、促表皮生長(zhǎng)因子(EGF)、血管內(nèi)皮生長(zhǎng)因子A(VEGFA)。京都基因與基因組百科全書(KEGG)富集分析發(fā)現(xiàn),二仙湯通過磷脂酰肌醇-3激酶(PI3K)/蛋白激酶B(AKT)通路、絲裂原活化蛋白激酶(MAPK)通路、TNF信號(hào)通路等發(fā)揮對(duì)絕經(jīng)后冠心病共病骨質(zhì)疏松的治療作用。分子對(duì)接結(jié)果顯示,關(guān)鍵靶點(diǎn)與關(guān)鍵化合物結(jié)合比較穩(wěn)定。結(jié)論:網(wǎng)絡(luò)藥理學(xué)方法與分子對(duì)接結(jié)果顯示,二仙湯治療絕經(jīng)后骨質(zhì)疏松與冠心病呈現(xiàn)多靶點(diǎn)、多路徑協(xié)同作用,二仙湯可通過PI3K-AKT通路、MAPK通路、TNF信號(hào)通路等多種途徑發(fā)揮抗絕經(jīng)后冠心病共病骨質(zhì)疏松的作用。
關(guān)鍵詞" 絕經(jīng)后冠心病;絕經(jīng)后骨質(zhì)疏松;二仙湯;網(wǎng)絡(luò)藥理學(xué);分子對(duì)接
doi:10.12102/j.issn.1672-1349.2025.03.004
The Mechanism of Erxian Decoction for the Treatment of Postmenopausal Coronary Heart Disease Complicated with Osteoporosis Based on Network Pharmacology and Molecular Docking Technology
YANG Ying, LIU Haixia, ZHANG Zhiguo, CHEN Yanjing
Institute of Basic Theories of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
Corresponding Author" ZHANG Zhiguo, E-mail: zzgtcm@163.com; CHEN Yanjing, E-mail: chenyj010@163.com
Abstract Objective:To analyze the mechanism of Erxian decoction(EXD) for the treatment of postmenopausal coronary heart disease complicated with osteoporosis based on network pharmacology and molecular docking technology.Methods:The target proteins of EXD were obtained from the pharmacologic database and analysis platform of traditional Chinese medicine system,and the related proteins of postmenopausal osteoporosis and postmenopausal coronary heart disease were obtained from GeneCards and OMMI database.Cytoscape software,STRING database,and DAVID database were used to screen the key target proteins,targets and pathways of EXD for the treatment of postmenopausal coronary heart disease complicated with osteoporosis.Finally,the close relationship between the key target and the target protein was verified by molecular docking.Results:The network pharmacological study showed that the core components of EXD for the treatment of postmenopausal coronary heart disease and osteoporosis were quercetin,kaempferol,beta-sitosterol,Stigmasterol,Anhydroicaritin Luteolin,and the key targets were protein kinase B(AKT1),tumor necrosis factor(TNF),interleukin(IL)-6,IL-1β,prostaglandin G/H synthase 2(PTGS2),JUN,matrix metalloproteinase-9(MMP9),Caspase 3(CASP3),epidermal growth factor(EGF),and vascular endothelial growth factor A(VEGFA).Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis showed that EXD played some role in the treatment of postmenopausal coronary heart disease and osteoporosis through phosphatidylinositol 3-kinase(PI3K)-AKT pathway,MAPK pathway,and TNF signaling pathway.The results of molecular docking showed that the binding of key targets and key compounds was stable.Conclusion:The results of network pharmacology and molecular docking showed that EXD showed a multi-target and multi-pathway synergistic effect for the treatment of postmenopausal osteoporosis and coronary heart disease.EXD could play an anti-postmenopausal coronary heart disease complicated with osteoporosis through various pathways such as PI3K-AKT pathway,MAPK pathway and TNF signaling pathway.
Keywords" postmenopausal coronary heart disease; postmenopausal osteoporosis; Erxian decoction; network pharmacology; molecular docking
世界衛(wèi)生組織將“共病”正式定義為同時(shí)具有多種長(zhǎng)期且需要持續(xù)性、多樣化治療的健康問題[1]。近年來,絕經(jīng)后女性由于卵巢功能衰退、雌激素分泌匱乏、糖脂代謝紊亂等因素,使冠心病發(fā)病率顯著增高[2],而骨質(zhì)疏松癥已成為繼發(fā)于冠心病的主要公共衛(wèi)生問題,并且在絕經(jīng)后女性中更為常見[3]。絕經(jīng)后冠心病與絕經(jīng)后骨質(zhì)疏松均伴隨著雌激素水平降低而發(fā)生發(fā)展,兩者存在共同危險(xiǎn)因素和發(fā)病機(jī)制。中醫(yī)因其整體觀、辨證論治的特點(diǎn),雖然疾病不同,但是若存在相同病機(jī),可辨為相同的證,因而往往可“異病同治”,這也為中醫(yī)治療“共病”提供了理論依據(jù)[4]。
中醫(yī)理論認(rèn)為絕經(jīng)后冠心病、骨質(zhì)疏松與“天癸竭”這一根本原因有關(guān),“腎虛癸竭”是絕經(jīng)后骨質(zhì)疏松發(fā)病的關(guān)鍵,而絕經(jīng)后冠心病以心腎虛衰為本,治本之法應(yīng)以補(bǔ)腎為主。二仙湯是 20 世紀(jì)中葉上海中醫(yī)藥大學(xué)張伯訥教授的經(jīng)驗(yàn)方,主要用于治療婦女絕經(jīng)前后諸病。課題組前期研究發(fā)現(xiàn),去卵巢大鼠動(dòng)物模型中,二仙湯可以通過改善內(nèi)皮功能、降低血液高凝狀態(tài)和高黏滯度、抑制心肌凋亡等途徑起到保護(hù)去卵巢大鼠心肌組織、抗心功能損傷的作用[5-6],二仙湯還可以通過調(diào)節(jié)脂肪酸代謝胰島素生長(zhǎng)因子-1(IGF1)/磷脂酰肌醇-3激酶(PI3K)/蛋白激酶B(AKT)信號(hào)通路減輕去卵巢后骨質(zhì)疏松癥[7],由此可見二仙湯對(duì)絕經(jīng)后冠心病與絕經(jīng)后骨質(zhì)疏松有“異病同治”的作用。本研究旨在運(yùn)用網(wǎng)絡(luò)藥理學(xué)方法與分子對(duì)接技術(shù)分析二仙湯治療絕經(jīng)后冠心病與絕經(jīng)后骨質(zhì)疏松的關(guān)鍵基因、蛋白與生物過程,為臨床應(yīng)用二仙湯治療絕經(jīng)后冠心病共病骨質(zhì)疏松提供科學(xué)依據(jù)。
1 資料與方法
1.1 藥物活性成分及其靶點(diǎn)篩選
在中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫(kù)與分析平臺(tái)(TCMSP)以口服生物利用度(oral bioavailability,OB)≥30%及類藥性(drug likeness,DL)≥0.18為條件檢索出二仙湯的活性成分及其對(duì)應(yīng)靶點(diǎn),將獲取的靶點(diǎn)匯總?cè)ブ貙?dǎo)入U(xiǎn)niPort數(shù)據(jù)庫(kù)中,統(tǒng)一其基因名稱為標(biāo)準(zhǔn)基因名,刪除了非人源及未驗(yàn)證的靶點(diǎn)基因。
1.2 疾病靶點(diǎn)獲取
在GeneCards(https://www.genecards.org)和OMIM(https://omim.org)數(shù)據(jù)庫(kù)中以“postmenopausal coronary heart disease” 和“postmenopausal osteoporosis ” 為 檢 索 詞,分別檢索疾病基因靶點(diǎn),將獲取的靶點(diǎn)信息合并、去重,分別獲得冠心病和骨質(zhì)疏松的疾病靶點(diǎn)。
1.3 藥物-疾病交集靶點(diǎn)篩選與分析
將獲取的二仙湯的靶點(diǎn)與絕經(jīng)后骨質(zhì)疏松和絕經(jīng)后冠心病靶點(diǎn)通過韋恩圖取交集,獲得藥物-疾病交集靶點(diǎn)。
1.4 “藥物活性成分-靶點(diǎn)-疾病”網(wǎng)絡(luò)的構(gòu)建
在Excel中映射出藥物-疾病交集靶點(diǎn)所對(duì)應(yīng)的化合物,利用Cytoscape 3.7.1 軟件構(gòu)建“藥物活性成分-靶點(diǎn)-疾病”網(wǎng)絡(luò),并利用 Analyze Network 插件計(jì)算網(wǎng)絡(luò)中節(jié)點(diǎn)的拓?fù)鋮?shù),并以此篩選網(wǎng)絡(luò)中的重要活性成分。
1.5 蛋白相互作用(PPI)網(wǎng)絡(luò)的構(gòu)建
將藥物-疾病交集靶點(diǎn)上傳至 STRING(https://cn.string-db.org)數(shù)據(jù)庫(kù)構(gòu)建PPI網(wǎng)絡(luò),以“TSV”格式導(dǎo)出,再將其導(dǎo)入 Cytoscape 3.7.1進(jìn)行可視化,利用Cytohubba插件進(jìn)一步對(duì)PPI網(wǎng)絡(luò)進(jìn)行分析并篩選出核心靶點(diǎn)。
1.6 功能富集分析
將潛在治療靶點(diǎn)導(dǎo)入DAVID(https://david.ncifcrf.gov)數(shù)據(jù)庫(kù)進(jìn)行基因本體(GO)、京都基因與基因組百科全書(KEGG)富集分析,并利用微生信作圖工具對(duì)其進(jìn)行可視化展示。
1.7 分子對(duì)接
將“藥物活性成分-靶點(diǎn)-疾病”網(wǎng)絡(luò)中的關(guān)鍵活性成分與PPI網(wǎng)絡(luò)中核心蛋白進(jìn)行分子對(duì)接。
1)在TCMSP數(shù)據(jù)庫(kù)中檢索核心活性成分的PubChem CID,從PubChem(https://pubchem.ncbi.nlm.nih.gov/)數(shù)據(jù)庫(kù)下載其3D結(jié)構(gòu)的SDF文件作為配體,利用Chem3D軟件進(jìn)行格式優(yōu)化并轉(zhuǎn)換成MOL2的格式保存。2)利用UniPort(https://www.uniprot.org)數(shù)據(jù)庫(kù)查找核心蛋白的ID并從PDB(http://www.pdb.org) 數(shù)據(jù)庫(kù)下載其3D結(jié)構(gòu)的PDB文件作為受體,利用PyMol軟件對(duì)其去水、去配體等處理。3)利用 AutoDock Tools軟件將配體與受體轉(zhuǎn)換為pdbqt格式,利用 AutoDock Vina軟件進(jìn)行分子對(duì)接;通過PyMol軟件將結(jié)合能較低且構(gòu)象穩(wěn)定的化合物與靶點(diǎn)進(jìn)行可視化分析。
2 結(jié)果
2.1 二仙湯活性成分及其靶點(diǎn)
在TCMSP數(shù)據(jù)庫(kù)中,以O(shè)B≥30%、DL≥0.18為篩選條件,共獲取仙茅活性成分7個(gè)、淫羊藿23個(gè)、巴戟天20個(gè)、當(dāng)歸2個(gè)、知母15個(gè)、黃柏37個(gè),刪除重復(fù)、無靶點(diǎn)的活性成分后共得到72個(gè)有效活性成分。根據(jù)所得活性成分在TCMSP數(shù)據(jù)庫(kù)中檢索出其對(duì)應(yīng)靶點(diǎn)蛋白,將靶點(diǎn)蛋白導(dǎo)入U(xiǎn)niPort數(shù)據(jù)庫(kù)進(jìn)行標(biāo)準(zhǔn)化,刪除了非人源及未驗(yàn)證的靶點(diǎn)基因,最終得到235個(gè)靶點(diǎn)基因。
2.2 絕經(jīng)后骨質(zhì)疏松與絕經(jīng)后冠心病靶點(diǎn)
以“postmenopausal coronary heart disease”為檢索詞在GeneCards 數(shù)據(jù)庫(kù)和OMIM數(shù)據(jù)庫(kù)檢索,分別獲取靶點(diǎn)為793個(gè)和575個(gè),以“postmenopausal osteoporosis”為檢索詞分別獲取的靶點(diǎn)為1 143個(gè)和144個(gè),將獲得的靶點(diǎn)合并去重,最終獲得絕經(jīng)后骨質(zhì)疏松靶點(diǎn)1 214個(gè)、絕經(jīng)后冠心病靶點(diǎn)1 326個(gè)。
2.3 二仙湯與絕經(jīng)后骨質(zhì)疏松、絕經(jīng)后冠心病共同靶點(diǎn)
將絕經(jīng)后骨質(zhì)疏松、絕經(jīng)后冠心病靶點(diǎn)與二仙湯靶點(diǎn)基因取交集,通過Venn 2.1.0繪制韋恩圖,共獲得116個(gè)潛在治療靶點(diǎn)(見圖1)。
2.4 “藥物活性成分-靶點(diǎn)-疾病”網(wǎng)絡(luò)
在Excel中映射出2.3獲取的潛在治療靶點(diǎn)所對(duì)應(yīng)的活性成分,構(gòu)建“藥物活性成分-靶點(diǎn)-疾病”網(wǎng)絡(luò),二仙湯通過59個(gè)活性成分調(diào)控116個(gè)靶點(diǎn)作用于絕經(jīng)后骨質(zhì)疏松與絕經(jīng)后冠心病。如圖2所示,圖中共有183個(gè)節(jié)點(diǎn)、973條邊,對(duì)節(jié)點(diǎn)拓?fù)鋮?shù)進(jìn)行分析以篩選網(wǎng)絡(luò)中重要活性成分,其中度值(Degree)和接近中心性(Closeness)是對(duì)網(wǎng)絡(luò)中節(jié)點(diǎn)重要性的描述,兩者值越大,表示該節(jié)點(diǎn)越重要。選取滿足Degree、中介中心性(Betweenness)、接近中心性三項(xiàng)數(shù)據(jù)同時(shí)大于平均值的活性成分作為核心成分,如表1所示,共篩選出8個(gè)核心化合物,其中Degree值>30的化合物為槲皮素、β-谷甾醇、山柰酚、豆甾醇、淫羊藿苷、木犀草素,此6種化合物可能為二仙湯作用于絕經(jīng)后冠心病與骨質(zhì)疏松的關(guān)鍵核心成分。
2.5 PPI網(wǎng)絡(luò)
將獲得116個(gè)潛在治療靶點(diǎn)輸入STRING平臺(tái)構(gòu)建PPI網(wǎng)絡(luò),將上述 PPI 網(wǎng)絡(luò)的 TSV 格式文件導(dǎo)入 Cytoscape 3.7.1 軟件進(jìn)行可視化(見圖3),該P(yáng)PI網(wǎng)絡(luò)由116個(gè)節(jié)點(diǎn)和2 494條邊構(gòu)成,PPI網(wǎng)絡(luò)圖中節(jié)點(diǎn)越大、顏色越深、連線越密集,地位越重要。利用Cytoscape中Cytohubba插件進(jìn)一步對(duì)其網(wǎng)絡(luò)進(jìn)行分析,選取 MCC 為計(jì)算方法,確定二仙湯發(fā)揮治療作用的10個(gè)核心靶點(diǎn)(見表2),分別為白細(xì)胞介素-1β(IL1β)、白細(xì)胞介素-6 (IL6)、蘇氨酸蛋白激酶1(AKT1)、腫瘤壞死因子(TNF)、促表皮生長(zhǎng)因子(EGF)、血管內(nèi)皮生長(zhǎng)因子A(VEGFA)、前列腺素G/H合酶2(PTGS2)、轉(zhuǎn)錄因子(JUN)、胱天蛋白酶3(CASP3)以及基質(zhì)金屬蛋白酶-9(MMP9)。
2.6 功能富集分析
利用DAVID數(shù)據(jù)庫(kù)對(duì)116個(gè)潛在治療靶點(diǎn)進(jìn)行GO富集分析和KEGG通路富集分析,根據(jù)P值大小,分別列舉并分析排名前20位的通路并將其進(jìn)行可視化展示。
2.6.1 GO功能富集分析
GO 功能富集分析,二仙湯治療絕經(jīng)后骨質(zhì)疏松與絕經(jīng)后冠心病獲得生物過程(BP)743個(gè),主要涉及對(duì)荷爾蒙、類固醇激素、脂多糖和氧氣水平的反應(yīng)。細(xì)胞組成(CC)73個(gè),主要涉及膜筏、轉(zhuǎn)錄調(diào)節(jié)劑復(fù)合物、受體復(fù)合物、囊泡腔、細(xì)胞外基質(zhì)等。分子功能(MF)128個(gè),主要涉及DNA結(jié)合轉(zhuǎn)錄因子結(jié)合、蛋白質(zhì)結(jié)構(gòu)域特異性結(jié)合、氧化還原酶活性、激酶結(jié)合、細(xì)胞因子受體結(jié)合等。詳見圖4~圖6。
2.6.2 KEGG 富集分析
KEGG 通路富集分析獲得162條信號(hào)通路(見圖7),結(jié)果顯示,通路主要涉及脂質(zhì)和動(dòng)脈粥樣硬化通路、PI3K-AKT信號(hào)通路、糖尿病并發(fā)癥中的晚期搪基化終產(chǎn)物及其受體(AGE-RAGE)信號(hào)通路、體剪切應(yīng)力和動(dòng)脈粥樣硬化、絲裂原活化蛋白激酶(MAPK)信號(hào)通路、白細(xì)胞介素17(IL-17)信號(hào)通路、TNF信號(hào)通路等。
2.7 分子對(duì)接
將篩選出的6個(gè)核心化合物與10個(gè)核心靶點(diǎn)利用 AutoDock Vina軟件分別進(jìn)行分子對(duì)接,一般認(rèn)為,結(jié)合能(binding energy)越小,表明活性物質(zhì)與蛋白質(zhì)之間結(jié)合的越牢固,其結(jié)合能<-17.79 kJ/mol時(shí)表示活性物質(zhì)與蛋白質(zhì)之間有一定結(jié)合活性,<-20.93" kJ/mol時(shí)有較好的結(jié)合活性,<-29.3 kJ/mol時(shí)有強(qiáng)烈的結(jié)合活性。由分子對(duì)接結(jié)果(見表3) 可知所有結(jié)合能<-17.79 kJ/mol,說明核心化合物與靶蛋白之間均有結(jié)合活性。由分子對(duì)接結(jié)果熱圖可知(見圖8),黃酮類化合物與VEGFA、EGF、PTGS2結(jié)合能相對(duì)較低,結(jié)合能越低、氫鍵數(shù)量越多、結(jié)合就越穩(wěn)定、靶點(diǎn)與分子作用的可能性就越大,將有強(qiáng)烈結(jié)合活性且結(jié)合穩(wěn)定的化合物與靶點(diǎn)進(jìn)行可視化分析。詳見圖9。
3 討論
絕經(jīng)后冠心病、絕經(jīng)后骨質(zhì)疏松有相同的致病因素和病理生理基礎(chǔ),推測(cè)二者存在相同的治療靶點(diǎn)與通路[8]。本研究運(yùn)用網(wǎng)絡(luò)藥理學(xué)預(yù)測(cè)二仙湯治療絕經(jīng)后冠心病與骨質(zhì)疏松的關(guān)鍵活性成分、靶點(diǎn)與信號(hào)通路,為臨床應(yīng)用二仙湯治療絕經(jīng)后冠心病共病骨質(zhì)疏松提供科學(xué)依據(jù)。
3.1 關(guān)鍵核心成分分析
網(wǎng)絡(luò)藥理學(xué)分析結(jié)果顯示,二仙湯治療絕經(jīng)后冠心病與骨質(zhì)疏松的關(guān)鍵活性成分為槲皮素、山柰酚、淫羊藿苷、木犀草素、谷甾醇、豆甾醇。其中槲皮素、山柰酚、淫羊藿苷、木犀草素皆屬于黃酮類化合物,β-谷甾醇和豆甾醇是植物中最豐富的植物甾醇[9]。槲皮素通過雌激素受體介導(dǎo)的信號(hào)通路刺激骨髓間充質(zhì)干細(xì)胞的成骨分化[10],槲皮素還可以通過調(diào)節(jié)炎癥過程來抑制破骨細(xì)胞活化并減少骨吸收[11];山柰酚能夠提高成骨細(xì)胞的增殖分化能力,促進(jìn)成骨細(xì)胞礦化[12],山柰酚還可以刺激雌激素信號(hào)轉(zhuǎn)導(dǎo)從而達(dá)到骨保護(hù)的作用[13];淫羊藿苷可以下調(diào)硬化蛋白表達(dá)來促進(jìn)成骨分化[14]。黃酮類化合物與心血管疾病關(guān)系密切[15],其中槲皮素對(duì)人和動(dòng)物具有抗動(dòng)脈粥樣硬化作用[16],槲皮素可以通過下調(diào)核因子κB(NF-κB)和酸化轉(zhuǎn)錄因子激活蛋白1(AP-1)抑制TNF-α誘導(dǎo)的內(nèi)皮細(xì)胞凋亡和炎癥,以緩解冠心病的進(jìn)展[17];山柰酚可以通過調(diào)節(jié)沉默調(diào)節(jié)因子1介導(dǎo)的線粒體途徑以增加抗凋亡蛋白的表達(dá),提高心肌細(xì)胞中線粒體延長(zhǎng)因子表達(dá),從而發(fā)揮保護(hù)心肌細(xì)胞的功能[18];淫羊藿苷可通過擴(kuò)張血管改善血流動(dòng)力學(xué),降低耗氧量,增加心肌及腦供血,還可以增強(qiáng)心肌收縮力起到強(qiáng)心作用[19]。植物甾醇類化合物具有類雌激素作用,且β-谷甾醇是雌激素受體α和β的雌激素激動(dòng)劑[20]。飲食中的植物甾醇降低膽固醇吸收和血漿膽固醇水平,從而防止心血管事件[21]??傊?,二仙湯中關(guān)鍵活性成分如黃酮類化合物以及植物甾醇對(duì)絕經(jīng)后冠心病與骨質(zhì)疏松均具有潛在治療作用。
3.2 關(guān)鍵核心靶點(diǎn)分析
通過PPI網(wǎng)絡(luò)分析可知,二仙湯治療骨質(zhì)疏松與冠心病關(guān)鍵核心靶點(diǎn)為AKT1、TNF、IL6、IL1β、PTGS2、JUN、MMP9、CASP3、EGF、VEGFA。其中TNF、IL6、IL1β、PTGS2 為炎性因子,研究表明絕經(jīng)后雌激素水平的降低可增加自身炎性細(xì)胞因子水平,其中 TNF-α水平升高最為顯著。雌激素可以調(diào)節(jié)一系列破骨細(xì)胞因子的產(chǎn)生[22],如TNF-α、IL1β和 IL6通過增強(qiáng)NF-κB受體活化因子配體(RANKL)表達(dá)來充當(dāng)促吸收因子[23]。MMP9在動(dòng)脈粥樣硬化中作用是促進(jìn)血管平滑肌細(xì)胞通過內(nèi)彈力層的遷移,過量的 MMP9 激活會(huì)促進(jìn)內(nèi)皮細(xì)胞膠原蛋白破壞,從而使動(dòng)脈粥樣硬化斑塊更容易破裂[24]。研究表明,TNF-α在血管內(nèi)皮細(xì)胞中上調(diào)MMP9的表達(dá)[25],IL6 誘導(dǎo)巨噬細(xì)胞表達(dá) MMP9[26],因此,MMP9可能是負(fù)責(zé)耦合心血管疾病與骨質(zhì)疏松的關(guān)鍵分子[27]。AKT1可發(fā)揮多種生物效應(yīng),包括細(xì)胞增殖、血管生成以及調(diào)控成骨分化和破骨分化[28-29],并且AKT1的缺失將會(huì)造成NO生物利用度降低,從而引起內(nèi)皮功能障礙,增加冠心病等心血管疾病的患病風(fēng)險(xiǎn)[30]。此外,分子對(duì)接結(jié)果顯示關(guān)鍵活性成分與核心靶點(diǎn)間均有結(jié)合活性。
3.3 生物富集分析
KEGG富集分析顯示,二仙湯可通過脂質(zhì)和動(dòng)脈粥樣硬化通路、PI3K-AKT信號(hào)通路、糖尿病并發(fā)癥中的AGE-RAGE信號(hào)通路、體剪切應(yīng)力和動(dòng)脈粥樣硬化、MAPK信號(hào)通路、IL-17信號(hào)通路、TNF信號(hào)通路作用于絕經(jīng)后冠心病與骨質(zhì)疏松。PI3K-AKT信號(hào)通路已被證明在調(diào)節(jié)多種細(xì)胞功能中發(fā)揮關(guān)鍵作用,并且還參與血管生成和紅細(xì)胞生成[31]。動(dòng)物實(shí)驗(yàn)證明抑制PI3K-AKT信號(hào)通路降低了去卵巢小鼠中骨髓內(nèi)皮祖細(xì)胞的功能以及H 型血管的形成。內(nèi)皮衍生的NO在血管保護(hù)、心臟保護(hù)和抗動(dòng)脈粥樣硬化中起著至關(guān)重要的作用[32]。PI3K-AKT途徑對(duì)于NO合成至關(guān)重要[33],并且PI3K-AKT信號(hào)通路與雌激素水平密切相關(guān)[34],因此,PI3K-AKT信號(hào)通路影響絕經(jīng)后冠心病的發(fā)生發(fā)展。MAPK 信號(hào)通路是從細(xì)胞表面到細(xì)胞核的重要信號(hào)傳遞器,控制細(xì)胞分化、細(xì)胞生長(zhǎng)、炎癥反應(yīng)和環(huán)境壓力[35-36],MAPK 信號(hào)通路包括 ERK、JNK和P38通路[37]。MAPK信號(hào)通路在破骨細(xì)胞分化中起重要作用,在破骨細(xì)胞形成過程中調(diào)節(jié)重要的下游調(diào)節(jié)因子并最終刺激破骨細(xì)胞分化[38]。此外,雌激素受體通過調(diào)節(jié)MAPK信號(hào)通路來介導(dǎo)雌激素的心臟保護(hù)功能[39]。AGE-RAGE信號(hào)通路可以激活炎癥反應(yīng)和氧化應(yīng)激等,如激活NF-κB,進(jìn)而產(chǎn)生炎性因子[40];流體剪切應(yīng)力和動(dòng)脈粥樣硬化信號(hào)通路中,可以激活的膜上受體NF-κB,誘導(dǎo)炎癥介質(zhì)基因表達(dá),從而促進(jìn)絕經(jīng)后冠心病與骨質(zhì)疏松的發(fā)生發(fā)展。
4 小結(jié)
網(wǎng)絡(luò)藥理學(xué)研究發(fā)現(xiàn)二仙湯治療絕經(jīng)后冠心病與骨質(zhì)疏松的核心成分為槲皮素、山柰酚、淫羊藿苷、木犀草素、β-谷甾醇、豆甾醇,關(guān)鍵靶點(diǎn)為AKT1、TNF、IL6、IL1β、PTGS2、JUN、MMP9、CASP3、EGF、VEGFA。二仙湯治療絕經(jīng)后骨質(zhì)疏松與冠心病呈現(xiàn)多靶點(diǎn)、多路徑協(xié)同作用,其作用機(jī)制與PI3K-AKT信號(hào)通路、MAPK信號(hào)通路、IL-17信號(hào)通路、TNF信號(hào)通路有關(guān),在此基礎(chǔ)上可進(jìn)一步通過體內(nèi)、體外實(shí)驗(yàn)來驗(yàn)證藥物的時(shí)效性、藥效性等與疾病靶點(diǎn)之間的作用關(guān)系,進(jìn)一步證實(shí)二仙湯對(duì)絕經(jīng)后冠心病與骨質(zhì)疏松有“異病同治”之作用,為臨床應(yīng)用二仙湯治療絕經(jīng)后冠心病共病骨質(zhì)疏松提供科學(xué)依據(jù)。
參考文獻(xiàn):
[1] World Health Organization.Multimorbidity:technical series on safer primary care[EB/OL].(2016-12-13)[2023-10-18].https://www.who.int/publications/i/item/9789241511650.
[2] 彭程.基于全基因組雙變量分析鑒定骨質(zhì)疏松新的變異及與冠心病的多效性變異[D].廣州:南方醫(yī)科大學(xué),2018.
[3] SHIH C C,WU Y W,LIN W C.Ameliorative effects of anoectochilus formosanus extract on osteopenia in ovariectomized rats[J].Journal of Ethnopharmacology,2001,77(2/3):233-238.
[4] 陳代軍,李丹丹.從異質(zhì)性淺談中西醫(yī)的差異[J].中國(guó)實(shí)用醫(yī)藥,2022,17(15):194-196.
[5] 王昱涵,姜燕華,向麗華,等.二仙湯對(duì)去卵巢大鼠心功能和血壓動(dòng)態(tài)演變的干預(yù)作用[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2020,26(3):53-61.
[6] 姜燕華,王昱涵,劉燕君,等.二仙湯對(duì)去卵巢大鼠心肌微血管及血液流變學(xué)的影響[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2020,26(24):59-67.
[7] MA Y J,HU J,SONG C H,et al.Er-Xian decoction attenuates ovariectomy-induced osteoporosis by modulating fatty acid metabolism and IGF1/PI3K/AKT signaling pathway[J].Journal of Ethnopharmacology,2023,301:115835.
[8] 許振,王舒,肖菲,等.基于心腎相交探討絕經(jīng)后骨質(zhì)疏松癥合并冠心病的發(fā)病機(jī)制[J].中國(guó)中醫(yī)藥現(xiàn)代遠(yuǎn)程教育,2023,21(6):82-86.
[9] MOREAU R A,WHITAKER B D,HICKS K B.Phytosterols,phytostanols,and their conjugates in foods:structural diversity,quantitative analysis,and health-promoting uses[J].Progress in Lipid Research,2002,41(6):457-500.
[10]"""""" PANG X G,CONG Y,BAO N R,et al.Quercetin stimulates bone marrow mesenchymal stem cell differentiation through an estrogen receptor-mediated pathway[J].BioMed Research International,2018,2018:4178021.
[11]"""""" LI Z W,ZHANG J,REN X S,et al.The mechanism of quercetin in regulating osteoclast activation and the PAR2/TRPV1 signaling pathway in the treatment of bone cancer pain[J].International Journal of Clinical and Experimental Pathology,2018,11(11):5149-5156.
[12]"""""" 曾意榮,曾建春,樊粵光,等.山柰酚對(duì)成骨細(xì)胞株MG-63增殖分化的影響[J].時(shí)珍國(guó)醫(yī)國(guó)藥,2012,23(6):1463-1465.
[13]"""""" SHARMA A R,NAM J S.Kaempferol stimulates WNT/β-catenin signaling pathway to induce differentiation of osteoblasts[J].The Journal of Nutritional Biochemistry,2019,74:108228.
[14]"""""" WEI Q S,WANG B,HU H L,et al.Icaritin promotes the osteogenesis of bone marrow mesenchymal stem cells via the regulation of sclerostin expression[J].International Journal of Molecular Medicine,2020,45(3):816-824.
[15]"""""" SIASOS G,TOUSOULIS D,TSIGKOU V,et al.Flavonoids in atherosclerosis:an overview of their mechanisms of action[J].Current Medicinal Chemistry,2013,20(21):2641-2660.
[16]"""""" KLEEMANN R,VERSCHUREN L,MORRISON M,et al.Anti-inflammatory,anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models[J].Atherosclerosis,2011,218(1):44-52.
[17]"""""" CHEN T L,ZHANG X D,ZHU G L,et al.Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-κB and AP-1 signaling pathway in vitro[J].Medicine,2020,99(38):e22241.
[18]"""""" 張雅雯,邵東燕,師俊玲,等.山奈酚生物功能研究進(jìn)展[J].生命科學(xué),2017,29(4):400-405.
[19]"""""" 宋偉平,蔣育紅.淫羊藿苷對(duì)蟾蜍離體心臟功能活動(dòng)的影響[J].長(zhǎng)春師范學(xué)院學(xué)報(bào)(自然科學(xué)版),2010,29(2):80-83.
[20]"""""" GUTENDORF B,WESTENDORF J.Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens,phytoestrogens and xenoestrogens[J].Toxicology,2001,166(1/2):79-89.
[21]"""""" DREXEL H,BREIER C,LISCH H J,et al.Lowering plasma cholesterol with beta-sitosterol and diet[J].Lancet,1981,1(8230):1157.
[22]"""""" FAIENZA M F,VENTURA A,MARZANO F,et al.Postmenopausal osteoporosis:the role of immune system cells[J].Clinical amp; Developmental Immunology,2013,2013:575936.
[23]"""""" BOYLE W J,SIMONET W S,LACEY D L.Osteoclast differentiation and activation[J].Nature,2003,423:337-342.
[24]"""""" W?GS?TER D,ZHU C Y,BJ?RKEGREN J,et al.MMP-2 and MMP-9 are prominent matrix metalloproteinases during atherosclerosis development in the Ldlr (-/-) ApoB(100/100) mouse[J].International Journal of Molecular Medicine,2011,28(2):247-253.
[25]"""""" LAU A C,DUONG T T,ITO S,et al.Inhibition of matrix metalloproteinase-9 activity improves coronary outcome in an animal model of Kawasaki disease[J].Clinical and Experimental Immunology,2009,157(2):300-309.
[26]"""""" GOMES L R,TERRA L F,WAILEMANN R A,et al.TGF-β1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells[J].BMC Cancer,2012,12:26.
[27]"""""" SABRY M,MOSTAFA S,RASHED L,et al.Matrix metalloproteinase 9 a potential major player connecting atherosclerosis and osteoporosis in high fat diet fed rats[J].PLoS One,2021,16(2):e0244650.
[28]"""""" HERS I,VINCENT E E,TAVARé J M.Akt signalling in health and disease[J].Cellular Signalling,2011,23(10):1515-1527.
[29]"""""" MUKHERJEE A,ROTWEIN P.Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-mediated osteoclast development[J].Molecular and Cellular Biology,2012,32(2):490-500.
[30]"""""" LEE M Y,GAMEZ-MENDEZ A,ZHANG J S,et al.Endothelial cell autonomous role of Akt1:regulation of vascular tone and ischemia-induced arteriogenesis[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2018,38(4):870-879.
[31]"""""" ZHANG Y,ZHANG H L,ZHANG B,et al.Identification of key HIF-1α target genes that regulate adaptation to hypoxic conditions in Tibetan chicken embryos[J].Gene,2020,729:144321.
[32]"""""" UNGVARI Z,KALEY G,DE CABO R,et al.Mechanisms of vascular aging:new perspectives[J].The Journals of Gerontology:Series A,2010,65A(10):1028-1041.
[33]"""""" AICHER A,HEESCHEN C,MILDNER-RIHM C,et al.Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells[J].Nature Medicine,2003,9(11):1370-1376.
[34]"""""" HWANG Y P,JEONG H G.Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells[J].Toxicology and Applied Pharmacology,2010,242(1):18-28.
[35]"""""" SHAUL Y D,SEGER R.The MEK/ERK cascade:from signaling specificity to diverse functions[J].Biochimica et Biophysica Acta (BBA) - Molecular Cell Research,2007,1773(8):1213-1226.
[36]"""""" BOUTROS T,CHEVET E,METRAKOS P.Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation:roles in cell growth,death,and cancer[J].Pharmacological Reviews,2008,60(3):261-310.
[37]"""""" YANG X,LIANG J M,WANG Z Y,et al.Sesamolin protects mice from ovariectomized bone loss by inhibiting osteoclastogenesis and RANKL-mediated NF-κB and MAPK signaling pathways[J].Frontiers in Pharmacology,2021,12:664697.
[38]"""""" LIAO S J,F(xiàn)ENG W Y,LIU Y,et al.Inhibitory effects of biochanin A on titanium particle-induced osteoclast activation and inflammatory bone resorption via NF-κB and MAPK pathways[J].Journal of Cellular Physiology,2021,236(2):1432-1444.
[39]"""""" WANG M J,TSAI B M,REIGER K M,et al.17-beta-Estradiol decreases p38 MAPK-mediated myocardial inflammation and dysfunction following acute ischemia[J].Journal of Molecular and Cellular Cardiology,2006,40(2):205-212.
[40]"""""" LEE T W,KAO Y H,CHEN Y J,et al.Therapeutic potential of vitamin D in AGE/RAGE-related cardiovascular diseases[J].Cellular and Molecular Life Sciences,2019,76(20):4103-4115.
(本文編輯 郭懷?。?/p>
基金項(xiàng)目 中國(guó)中醫(yī)科學(xué)院科技創(chuàng)新工程重大攻關(guān)項(xiàng)目(No.CI2021A00107);中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(No.YZ-202041)
通訊作者 張治國(guó),E-mail:zzgtcm@163.com;陳彥靜,E-mail:chenyj010@163.com
引用信息 楊瑩,劉海霞,張治國(guó),等.基于網(wǎng)絡(luò)藥理學(xué)與分子對(duì)接技術(shù)探討二仙湯治療絕經(jīng)后冠心病共病骨質(zhì)疏松的作用機(jī)制[J].中西醫(yī)結(jié)合心腦血管病雜志,2025,23(3):349-358.