亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于組學(xué)技術(shù)探討生物標(biāo)記物在抑郁癥中的研究進(jìn)展

        2025-01-14 00:00:00劉洽程俊香劉娜楊國芳馬辰婧趙奕雯朱瑞芳韓世范
        護(hù)理研究 2025年1期
        關(guān)鍵詞:抑郁癥綜述氧化應(yīng)激

        摘要" 基于組學(xué)技術(shù)綜述神經(jīng)遞質(zhì)、神經(jīng)內(nèi)分泌系統(tǒng)、精神神經(jīng)免疫系統(tǒng)、神經(jīng)營養(yǎng)因子系統(tǒng)、代謝及神經(jīng)影像學(xué)六大潛在抑郁癥生物學(xué)標(biāo)志物在抑郁癥診斷、治療、干預(yù)效果觀察、預(yù)后及護(hù)理中的作用,以期對后續(xù)抑郁癥的研究臨床診治及護(hù)理工作提供支持。

        關(guān)鍵詞" 抑郁癥;生物學(xué)標(biāo)志物;炎癥;氧化應(yīng)激;綜述

        doi:10.12102/j.issn.1009-6493.2025.01.026

        基金項(xiàng)目 2023—2024年度山西省大健康產(chǎn)業(yè)高質(zhì)量發(fā)展科研專項(xiàng)項(xiàng)目,編號:DJKZXKT2023002;山西省食療和農(nóng)產(chǎn)品處方產(chǎn)業(yè)技術(shù)創(chuàng)新戰(zhàn)略聯(lián)盟項(xiàng)目基金

        作者簡介 劉洽,護(hù)士,碩士研究生在讀

        通訊作者 韓世范,E?mail:shifan.han@sxmu.edu.cn;朱瑞芳,E?mail: ruifang.zhu@sxmu.edu.cn

        引用信息 劉洽,程俊香,劉娜,等.基于組學(xué)技術(shù)探討生物標(biāo)記物在抑郁癥中的研究進(jìn)展[J].護(hù)理研究,2025,39(1):151?159.

        Research progress on biomarkers in depression based on omics technologies

        LIU Qia1, CHENG Junxiang1,2,LIU Na2,YANG Guofang1, MA Chenjing1, ZHAO Yiwen3, ZHU Ruifang1,2,3*, HAN Shifan1,2,4,5,6*

        1.Nursing College, Shanxi Medical University, Shanxi 030001 China;2.First Hospital of Shanxi Medical University;3.Shanxi Medical Periodical Press Co.,Ltd.;4.Shanxi Province Food Therapy and Agricultural Products Prescription Industry Technology Innovation Strategic Alliance;5.Major Platform Carrier and Training Base for the Integration of Health Industry and Education in Shanxi Province;6.Dietotherapy Science and Technology Research Center, Shanxi Medical University

        *Corresponding Author" HAN Shifan, E?mail: shifan.han@sxmu.edu.cn; ZHU Ruifang, E?mail: ruifang.zhu@sxmu.edu.cn

        Abstract""" It summarizes the roles of six potential biological markers of depression based on omics technologies, including neurotransmitters, the neuroendocrine system,the psychoneuroimmune system,neurotrophic factor systems,metabolism?related factors, and neuroimaging, in the diagnosis,treatment,observation of intervention effects, and prognosis of depression. The aim is to provide support for subsequent research clinical diagnosis and treatment and nursing work on depression.

        Keywords""" depression; biological markers; inflammation; oxidative stress; review

        抑郁癥(MDD)是一種常見的精神障礙,以持續(xù)的情緒低落、興趣減退、意志力降低為主要臨床表現(xiàn),其終身患病率約為17%,全球約有3.5億人受其影響。世界衛(wèi)生組織報告,到2030年抑郁癥在全球疾病總負(fù)擔(dān)中將升至第1位[1]。該病常反復(fù)發(fā)作,自殺率高達(dá)15%~25%,已成為困擾人類身心健康的重大精神疾患,而抑郁癥更是青少年發(fā)病和死亡的主要原因[2]。研究顯示,抑郁癥的患病風(fēng)險自青少年早期開始上升并在整個青春期繼續(xù)以線性方式上升,到青春期后期,終生患病率估計在15%~25%[3?4]。然而,與如此龐大的患病人群和疾病負(fù)擔(dān)形成對比的是,迄今為止對這一疾病還缺乏行之有效、簡便可靠的客觀診斷及療效預(yù)測方法。青少年抑郁發(fā)作或復(fù)發(fā)可能會持續(xù)到成年,對其生理、心理及社會功能產(chǎn)生負(fù)面影響。更好地了解抑郁癥的病因、病理生理將有助于制定和實(shí)施更有效的一級和二級預(yù)防策略,從而降低抑郁的發(fā)病率[5]。目前普遍認(rèn)為,抑郁癥是由多種遺傳和環(huán)境因素之間的復(fù)雜相互作用引起,而目前抑郁癥的診斷還是基于自我經(jīng)歷、行為或家屬、親人基于對病人觀察的報告,因此疾病診斷的不確定性高。Freedman等[6]采用Kappa 統(tǒng)計分析對精神疾病診斷與統(tǒng)計手冊(DSM?Ⅴ)的診斷一致性進(jìn)行測試,結(jié)果顯示重度抑郁癥的可靠性評估僅為28%。內(nèi)表型或生物標(biāo)志物有助于靶向分析潛在的機(jī)制,還可用于加強(qiáng)臨床表型的分類,或區(qū)分可能的生物亞型,這些標(biāo)志物反過來可能具有不同的臨床或治療特征,對臨床診斷、治療、干預(yù)效果觀察、預(yù)后及護(hù)理提供支持[7]。近年來,隨著各組學(xué)技術(shù)的不斷發(fā)展,對抑郁癥的生物學(xué)標(biāo)志物的探索也有了新的突破,本研究基于組學(xué)技術(shù)在各系統(tǒng)假說的基礎(chǔ)上對潛在的抑郁癥標(biāo)志物進(jìn)行探討,為未來研究、臨床診治及護(hù)理工作提供參考。

        1" 神經(jīng)遞質(zhì)生物學(xué)標(biāo)志物

        單胺假說是目前為止臨床認(rèn)識抑郁癥的主要依據(jù),它假設(shè)抑郁癥病人神經(jīng)回路中呈現(xiàn)出較低的血清素、多巴胺和去甲腎上腺素水平,臨床抗抑郁藥物的作用是增加他們在突觸間隙的生物利用度。5?羥色胺轉(zhuǎn)運(yùn)體(5?HTT)是一種負(fù)責(zé)從突觸向突觸前神經(jīng)元再攝取5?羥色胺的蛋白質(zhì),是目前首選的抗抑郁藥物的主要目標(biāo)。在5?羥色胺轉(zhuǎn)運(yùn)基因(SLC6A4)的啟動子內(nèi),有一個5?羥色胺轉(zhuǎn)運(yùn)基因連接的多態(tài)性區(qū)域5?HTTLPR,該區(qū)域有一個長(l)或短(s)的等位基因,分別導(dǎo)致SLC6A4基因活性的升高和降低[8]。研究表明,童年期遭受壓力應(yīng)激的青少年攜帶5?HTTLPR的S等位基因會增加抑郁的發(fā)生風(fēng)險[9?11]。此外,色氨酸羥化酶(TPH2)基因多態(tài)性也被發(fā)現(xiàn)與青少年抑郁相關(guān)聯(lián),且多數(shù)研究結(jié)果顯示其可預(yù)測SSRIs類抗抑郁藥物的應(yīng)答 [12]。表觀遺傳研究發(fā)現(xiàn),SLC6A4基因近端啟動子甲基化水平升高可作為預(yù)測青春期應(yīng)激下杏仁核反應(yīng)性及后期抑郁癥狀表現(xiàn)的潛在標(biāo)記物。盡管如此,關(guān)于這些標(biāo)記物是否可以作為診斷及預(yù)測抑郁的標(biāo)準(zhǔn)仍存有爭議,Porcelli 等[13]人在控制人種等因素后進(jìn)行的Meta分析中證實(shí)5?HTTLPR與抑郁及治療存在關(guān)聯(lián),但Taylor等[14]的工作卻否定了這一論斷。因此,仍需對此進(jìn)一步深入觀察和研究。

        臨床多項(xiàng)研究證實(shí)了多巴胺在抑郁癥病理生理過程中特別是在快感缺失中的作用,這種觀點(diǎn)也在抗精神病藥輔助治療抑郁癥的有效性中得到印證[15?17]。多巴胺受體D3、D4、D5在外周循環(huán)中的表達(dá)均有報道,特別是D4,有研究顯示,抑郁患者杏仁核中D4 mRNA的表達(dá)增加,然而,其他研究卻發(fā)現(xiàn),抑郁組與健康對照組之間在D4 表達(dá)水平上無差異,且無抽搐電休克治療和異氟醚麻醉可降低D4 的表達(dá)水平[18?21]。

        γ?胺基丁酸(GABA)是一種重要的抑制性神經(jīng)遞質(zhì),它參與多種代謝活動并具有很高的生理活性,免疫學(xué)研究表明其濃度最高的區(qū)域?yàn)橹心X中黑質(zhì)。越來越多的證據(jù)表明它不僅在抑郁癥的病理生理學(xué)中起作用,而且是抗抑郁藥治療的目標(biāo)[22?24]。大多數(shù)研究報告了抑郁癥病人腦脊液中GABA水平降低[25],血漿中也報告了類似的減少[26],盡管這不一定是抑郁癥特有的,但GABA的缺陷,通過增強(qiáng)細(xì)胞突觸后α5?GABA?A受體活性可改善認(rèn)知及情緒[27]以及氯胺酮可快速逆轉(zhuǎn)抑郁情緒,從另一方面也證實(shí)了GABA可以成為預(yù)測抑郁發(fā)作及治療的潛在生物學(xué)標(biāo)志物[28]。此外,較高的血漿GABA基線水平已被證明可以預(yù)測電休克治療應(yīng)答[29]。然而,尸體檢查研究中關(guān)于谷氨酸脫羧酶(GAD)在抑郁癥病人中的表達(dá)數(shù)據(jù)尚不足以支持GABA作為可靠的抑郁預(yù)測標(biāo)志物[30]。

        2" 神經(jīng)內(nèi)分泌系統(tǒng)的生物學(xué)標(biāo)志物

        有證據(jù)證明下丘腦?垂體?腎上腺軸(HPA)的功能失調(diào)或受損在抑郁發(fā)作的機(jī)制中起重要作用,而該機(jī)制與成長過程的壓力應(yīng)激等相關(guān)。在地塞米松抑制試驗(yàn)(DST)中,抑郁癥患者表現(xiàn)為持續(xù)性高皮質(zhì)醇水平和對抑制不敏感。此外,研究表明,抑郁癥患者在進(jìn)行DST時,表現(xiàn)出皮質(zhì)醇反應(yīng)異常升高的現(xiàn)象,這種升高通常與癥狀的嚴(yán)重程度成正相關(guān),因此,它可能作為一個臨床抑郁癥狀嚴(yán)重程度的指標(biāo)[31]。青春期HPA軸功能亢進(jìn)引起的高皮質(zhì)醇節(jié)律以及反應(yīng)性增高比成人更敏感,且在女性中表現(xiàn)更明顯。一項(xiàng)囊括17項(xiàng)研究的Meta分析顯示,與對照組相比,抑郁表現(xiàn)的青少年HPA軸系統(tǒng)往往有功能失調(diào)的表現(xiàn),可以從對DST的非典型反應(yīng)、較高的基線皮質(zhì)醇值以及對心理應(yīng)激源的過度反應(yīng)中得到證明[32]。另一項(xiàng)研究報告指出,與對照組相比,在抑郁癥病人的下丘腦以及抑郁男性自殺病人的藍(lán)斑核和中縫核中促腎上腺皮質(zhì)激素釋放素(CRF)和CRF的mRNA表達(dá)增加[33]。糖皮質(zhì)激素受體(GR)mRNA在抑郁癥病人下額葉回、額葉皮層Ⅲ?Ⅵ層和顳葉皮層Ⅳ層中的表達(dá)降低[34?36]。相比之下,另一項(xiàng)研究報告稱,抑郁病人和對照組在幾個大腦區(qū)域的GR mRNA水平?jīng)]有差異,但扣帶回和杏仁核中GR亞型GRα的mRNA表達(dá)減少[37?38]。

        基于組學(xué)技術(shù)的研究顯示,早期的壓力會改變HPA軸調(diào)節(jié),并通過對糖皮質(zhì)激素受體基因(NR3C1)的表觀遺傳修飾增加抑郁癥的發(fā)生風(fēng)險[39]。一項(xiàng)前瞻性研究表明,NR3C1基因中的甲基化水平可預(yù)測青春期及成年早期抑郁的發(fā)病,另一項(xiàng)研究在控制了抑郁的遺傳變異后關(guān)聯(lián)仍然顯著,而NR3C1的外周表達(dá)水平降低,這些證據(jù)表明NR3C1的甲基化可以獨(dú)立作為抑郁癥非遺傳性生物學(xué)標(biāo)志物。一些研究還表明,NR3C1基因中的高甲基化與兒童和青少年的壓力史和抑郁癥狀的出現(xiàn)有關(guān)[39?42]。

        FKBP51是糖皮質(zhì)激素受體的有效抑制劑,是HPA軸應(yīng)激反應(yīng)的重要調(diào)節(jié)劑,涉及成人及青少年兒童的研究均表明,F(xiàn)KBP5基因的單核苷酸多態(tài)性(SNP)的次要等位基因會增加抑郁的風(fēng)險,特別是rs1360780,rs9470080,rs3800373;成人組的研究表明,F(xiàn)KBP5 rs1360780和rs3800373基因型的非顯著趨勢與抗抑郁藥低反應(yīng)率相關(guān),證明FKBP5的表達(dá)調(diào)節(jié)了成人對抗抑郁藥物的反應(yīng)[43?46]。但青少年組的研究并未顯示該相關(guān)性[47],因此,需要對青少年群體進(jìn)行更多研究,以驗(yàn)證FKBP5表達(dá)改變與青少年抑郁癥治療結(jié)果之間的關(guān)系。

        3" 精神神經(jīng)免疫系統(tǒng)生物學(xué)標(biāo)志物

        自提出抑郁癥炎癥病因假說以來,越來越多的研究表明抑郁癥通常伴隨著免疫反應(yīng),其表現(xiàn)為促炎細(xì)胞因子分泌增加,例如腫瘤壞死因子α(TNF?α)、白細(xì)胞介素(IL)和干擾素γ(IFN?γ)[48]。慢性應(yīng)激以及持續(xù)的神經(jīng)炎性反應(yīng)一方面誘導(dǎo)糖皮質(zhì)激素受體脫敏和糖皮質(zhì)激素抵抗,導(dǎo)致HPA軸反應(yīng)系統(tǒng)發(fā)生雙向改變,從而損害糖皮質(zhì)激素的抗炎活性;另一方面,促炎細(xì)胞因子可以增加吲哚胺2,3?雙加氧酶(IDO)的活性,導(dǎo)致色氨酸(一種血清素前體)的生物利用度降低。此外,氧化應(yīng)激反應(yīng)會損害幾乎所有已知的與抑郁癥相關(guān)單胺的合成[49]。神經(jīng)系統(tǒng)慢性炎癥反應(yīng)引發(fā)神經(jīng)元興奮性毒性并阻礙腦源性神經(jīng)營養(yǎng)因子(BDNF)的產(chǎn)生,導(dǎo)致與情緒調(diào)節(jié)相關(guān)的神經(jīng)元回路變性[50]。

        抑郁與促炎細(xì)胞因子和抗炎細(xì)胞因子例如IL?1β、IL?6、IFN?γ、TNF?α、c ?反應(yīng)蛋白(CRP)水平升高有關(guān)。細(xì)胞因子是由淋巴細(xì)胞、巨噬細(xì)胞和自然殺傷細(xì)胞(NK)產(chǎn)生的一組多種生化化合物[51]。細(xì)胞因子通常根據(jù)其對炎癥的影響分為刺激炎癥發(fā)展的促炎因子(例如IFN?γ、TNF、IL?1、IL?2,IL?5、IL?8)和抗炎因子(例如IL?1β、IL?6、TNF?α、IL?10、IL?19、IL?20、IL?22、IL?24、IL?26、IL?28、IL?29),其中有一部分根據(jù)情況不同其角色會發(fā)生改變(如IL?6、TGF?β、INF?α)[52?53]。一些研究報告顯示,抑郁癥患者外周血中的促炎細(xì)胞因子 IL?1ɑ、IL?1β、IL?6、IL?8、IL?10、IFN?γ、MIF和TNF?α的mRNA 表達(dá)升高[54?57]。一項(xiàng)以前瞻性研究為基礎(chǔ)的Meta分析證實(shí)了IL?6和CRP與抑郁癥呈正相關(guān),兩者可以很好地預(yù)測抑郁的發(fā)作,但該研究顯示TNF?α與抑郁的發(fā)作并沒有預(yù)測關(guān)系[58],關(guān)于TNF?α的這一結(jié)果與相關(guān)研究得出的結(jié)論[59]相矛盾。炎性標(biāo)記物相關(guān)研究顯示IL?6和CRP被證實(shí)是最具有潛力預(yù)測抑郁發(fā)作的標(biāo)記物,多項(xiàng)Meta分析結(jié)果顯示IL?6和CRP是抑郁癥發(fā)作的顯著預(yù)測因子,同時可以評估抗抑郁藥的應(yīng)答[60?62]。炎癥性標(biāo)志物在未來有可能作為抑郁癥發(fā)作或抗抑郁藥物治療應(yīng)答的生物學(xué)指標(biāo),盡管目前仍需要更多研究進(jìn)一步探索。

        微生物?腸?腦軸理論在多數(shù)研究中得以印證,明顯的微生物生態(tài)失調(diào)可能導(dǎo)致抑郁發(fā)作。Fernstrom等[63]利用血液微生物組將抑郁癥病人與健康對照組相比,抑郁病人紫色桿菌屬比例較高而奈瑟菌水平較低。在腸道菌群的研究中發(fā)現(xiàn)抑郁癥病人中微生物多樣性減少,在門水平上厚壁菌、擬桿菌和變形桿菌的豐度不一致,抑郁癥病人放線菌和梭菌門的豐度很高[64]。也有研究報告抑郁患者厚壁菌門及梭桿菌屬豐度低,類桿菌科、腸桿菌科等的豐度高[65]。還有研究指出抑郁癥病人乳酸桿菌、另枝菌屬、副擬桿菌屬、鏈球菌屬水平較高,而糞球菌屬、普氏菌屬和瘤胃球菌屬則呈現(xiàn)低水平狀態(tài)[66]。Szczesniak等[67]發(fā)現(xiàn),糞便桿菌、阿利司提普桿菌和瘤胃球菌與抑郁癥相關(guān)??傊?,抑郁癥病人糞便微生物群檢測結(jié)果所呈現(xiàn)出來的是潛在有害和炎癥性細(xì)菌(如放線菌和腸桿菌科)過多,而有益細(xì)菌(厚壁菌)總體上減少[68?69],但聚焦于哪一特定菌屬,目前研究結(jié)論存在矛盾。有學(xué)者認(rèn)為,這些矛盾是由于診斷標(biāo)準(zhǔn)、分組標(biāo)準(zhǔn)、糞便微生物群檢測方法等研究方法之間的不同所導(dǎo)致的。此外,腸道是一個復(fù)雜的生態(tài)系統(tǒng),其環(huán)境受人種、遺傳、地理環(huán)境、飲食習(xí)慣等多重因素影響,未來研究應(yīng)在人種、地區(qū)等人口統(tǒng)計學(xué)和臨床特征一致的受試者中進(jìn)行,以獲得更具可比性和推廣性的結(jié)果[70]。

        4" 神經(jīng)營養(yǎng)因子系統(tǒng)標(biāo)志物

        腦源性神經(jīng)營養(yǎng)因子(brain?derived neurotrophic factor, BDNF)是神經(jīng)營養(yǎng)因子家族中的一種蛋白,通過促進(jìn)神經(jīng)元增殖和突觸發(fā)生在神經(jīng)發(fā)育中發(fā)揮重要作用。它還刺激成熟大腦中的神經(jīng)可塑性過程,包括新細(xì)胞的形成和神經(jīng)元的消除。抑郁癥的神經(jīng)營養(yǎng)理論認(rèn)為環(huán)境應(yīng)激因素和突變會降低大腦中的BDNF合成,導(dǎo)致突觸可塑性降低、突觸傳遞減少和神經(jīng)元變性增加。這些改變可能導(dǎo)致已知的參與認(rèn)知和情緒調(diào)節(jié)的大腦區(qū)域的特定結(jié)構(gòu)發(fā)生變化,例如前額葉皮層萎縮和海馬收縮。研究顯示,抑郁癥病人外周BDNF表達(dá)水平降低,有研究將漢密爾頓抑郁量表評分與BDNF外周表達(dá)相結(jié)合發(fā)現(xiàn),BDNF可用于判斷疾病嚴(yán)重程度[56]。但是也有學(xué)者對此提出質(zhì)疑,且研究結(jié)果表明全血中BDNF mRNA的表達(dá)在抑郁癥病人組和對照組中無差異,Gururajan 等[71]認(rèn)為造成這種研究結(jié)果不同的原因可能是研究所采用的方法不同。

        大腦中BDNF的生物利用度受BDNF基因的單核苷酸多態(tài)性(Val66Met)的影響,研究發(fā)現(xiàn)抑郁與BDNF Met 等位基因相關(guān),特別是在青少年女性中更為顯著[72?74]。此外,BDNF表觀遺傳的研究發(fā)現(xiàn)抑郁受試者BDNF基因啟動子甲基化與健康對照組不同,Bakusic等[75]的研究顯示抑郁癥病人BDNF啟動子I甲基化水平低,Val66Met多態(tài)性和啟動子I的DNA甲基化與抑郁癥狀相關(guān),但兩者沒有交互作用。另一方面,BDNF外顯子Ⅸ的甲基化對抑郁病人的執(zhí)行功能有負(fù)面影響,并介導(dǎo)了Val66Met對抑郁癥病人這一結(jié)局的影響。然而,F(xiàn)roud等[76]的橫斷面研究(探討飲食模式、BDNF水平、Val66Met與抑郁癥的相關(guān)性)顯示,Val66Met多態(tài)性與抑郁發(fā)作無關(guān)。未來還應(yīng)開展關(guān)于這一標(biāo)志物的大樣本縱向研究來進(jìn)一步驗(yàn)證其有效性。

        5" 代謝標(biāo)志物

        代謝組學(xué)聚焦于代謝的底物和產(chǎn)物,如脂質(zhì)、脂肪酸、氨基酸、同型半胱氨酸、腺苷以及線粒體功能障礙等。研究表明,抑郁癥狀與代謝組學(xué)中的一些特異性改變之間存在聯(lián)系。有人提出,血清膽固醇可能直接影響腦脂和細(xì)胞膜的流動性,而對5?羥色胺能神經(jīng)傳遞具有繼發(fā)性效應(yīng)。此外,高濃度的膽固醇促發(fā)炎癥反應(yīng)并增加了IL?6和TNF?α的釋放,這與抑郁癥的炎癥理論相關(guān)聯(lián)。研究表明代謝綜合征與抑郁呈雙向關(guān)系,納入183項(xiàng)研究的系統(tǒng)綜述報告了體質(zhì)指數(shù)(BMI)過高和過低都會增加抑郁的風(fēng)險[77],而在肥胖人群中腹型肥胖的人抑郁的發(fā)生風(fēng)險會更高[78]。Meta分析證明成人抑郁癥與特征性脂質(zhì)水平有關(guān),主要與血液中甘油三酯(TG)水平升高、極低密度脂蛋白(VLDL)和高密度脂蛋白(HDL)膽固醇水平降低有關(guān)[79]。有證據(jù)表明,TG與自殺及自殘行為有相對一致的關(guān)聯(lián),HDL和抑郁呈現(xiàn)中等水平因果關(guān)聯(lián),LDL和總膽固醇(TC)沒有顯示出與抑郁表型的強(qiáng)相關(guān)[80]。但由于以上代謝指標(biāo)與多種臨床疾病以及癥狀相關(guān)聯(lián),其作為抑郁癥特異性靶標(biāo)的可靠性仍需進(jìn)一步驗(yàn)證。

        同型半胱氨酸是蛋氨酸代謝過程中的一種含硫氨基酸,該產(chǎn)物在外周的升高被證實(shí)與抑郁癥相關(guān),其主要原因是同型半胱氨酸代謝通路的甲基化過程在合成神經(jīng)遞質(zhì)、蛋白質(zhì)和膜磷脂中至關(guān)重要,任何干擾都可能影響神經(jīng)功能和情緒調(diào)節(jié)。各年齡段的研究結(jié)果一致顯示,高水平的同型半胱氨酸與抑郁癥密切相關(guān)[81?83]。同時,葉酸在同型半胱氨酸的代謝中起關(guān)鍵作用,Khosravi 等[84]發(fā)現(xiàn)通過調(diào)整飲食模式(增加葉酸的攝入)可以降低抑郁的發(fā)病率。

        有證據(jù)表明,各大腦區(qū)域的線粒體功能障礙與抑郁癥有關(guān)。最近的發(fā)現(xiàn)引發(fā)了人們對線粒體在許多細(xì)胞內(nèi)的作用以及突觸可塑性和細(xì)胞彈性的重新認(rèn)識。神經(jīng)可塑性損害是抑郁癥病理生理機(jī)制的一種基礎(chǔ)假說。線粒體在三磷酸腺苷(ATP)的產(chǎn)生過程中有重要作用,包括細(xì)胞內(nèi)Ca2+信號傳導(dǎo),以建立膜穩(wěn)定性、活性氧(ROS)平衡以及執(zhí)行神經(jīng)傳遞和可塑性等作用[85]。因此,理解抑郁癥發(fā)病機(jī)制中線粒體功能障礙的各種概念無疑有助于為抑郁癥治療提供更具針對性的治療方法。研究發(fā)現(xiàn)線粒體功能的改變,如氧化磷酸化(OXPHOS)和膜極性增加了氧化應(yīng)激和細(xì)胞凋亡,這些改變可能早于抑郁癥狀的出現(xiàn)[86]。神經(jīng)炎性病變會對線粒體健康產(chǎn)生負(fù)面影響,導(dǎo)致興奮性毒性、氧化應(yīng)激、能量不足,最終導(dǎo)致神經(jīng)元死亡。而另一方面,受損的線粒體又會釋放各種與損傷相關(guān)的分子,這些分子是炎癥反應(yīng)的有效激活劑,在氧化應(yīng)激、線粒體損傷、炎癥和神經(jīng)元功能障礙之間形成前饋循環(huán)[87?88]。Cai等[89]通過對血液及唾液樣本的分析發(fā)現(xiàn)重度抑郁癥病人的線粒體DNA(mtDNA)比對照組多,同時mtDNA的量與生活中的壓力應(yīng)激暴露相關(guān)聯(lián),而Kageyama等[90]的研究發(fā)現(xiàn)卻與之相反,抑郁癥病人的mtDNA水平較正常人群低。

        6" 神經(jīng)影像學(xué)標(biāo)志物

        隨著神經(jīng)成像技術(shù)的發(fā)展,神經(jīng)影像學(xué)生物標(biāo)志物在精神疾病領(lǐng)域的研究也越來越多。神經(jīng)成像技術(shù)包括腦容量MRI、功能性 MRI(fMRI)、腦電圖(EEG)、彌散張量成像(DTI)、磁共振波譜(MRS)、近紅外光譜(NIRS)等[91]。近年來,這些技術(shù)已被用來研究抑郁癥發(fā)病或各種治療應(yīng)答的效應(yīng)預(yù)測。

        海馬體在抑郁病因病理中很重要。研究發(fā)現(xiàn),抑郁病人糖皮質(zhì)激素水平升高與海馬體損傷有關(guān),海馬體是參與記憶和學(xué)習(xí)的大腦區(qū)域,相關(guān)研究發(fā)現(xiàn)抑郁病人的左海馬體積通常比健康對照組小19%[92],且在治療前后對比抑郁癥受試者和對照組受試者海馬體和杏仁核體積的MRI掃描中發(fā)現(xiàn),與抑郁癥狀緩解者相比,未緩解者的雙側(cè)海馬體容量顯著減少[93]。有學(xué)者將該方法用于預(yù)測病人應(yīng)用抗抑郁藥物氟西汀的治療應(yīng)答,結(jié)果顯示準(zhǔn)確率為88.9%,同時,癥狀緩解者額葉、枕葉和扣帶皮層的灰質(zhì)體積大于未緩解者[94]。一項(xiàng)神經(jīng)影像學(xué)研究的系統(tǒng)評價報告了電休克治療(ECT)對腦結(jié)構(gòu)的影響,應(yīng)答者在顳葉和皮質(zhì)下結(jié)構(gòu)的體積有所增加,并且扣帶回皮質(zhì)體積與抗抑郁藥、ECT和認(rèn)知行為治療(CBT)治療應(yīng)答存在正相關(guān)[95]。

        fMRI測量與神經(jīng)活動相關(guān)的大腦血流變化引起的信號,反映靜息狀態(tài)或任務(wù)執(zhí)行期間激活的大腦區(qū)域,其優(yōu)點(diǎn)是無創(chuàng)、無輻射暴露[96?98]。研究表明,無論是青少年還是成人,靜息態(tài)功能磁共振成像(fMRI)檢測到的杏仁核、中額葉、右后扣帶皮層和右前楔體的靜息態(tài)功能連接(RSFC)水平與抗抑郁藥物的治療反應(yīng)有關(guān)。但相關(guān)研究結(jié)果不一致,這種情況可能與研究區(qū)域以及研究變量不同有關(guān)?;谌蝿?wù)的fMRI研究顯示,雙側(cè)下額葉皮層、背外側(cè)前額葉皮層、島葉、伏隔核、喙前扣帶和左杏仁核的激活與治療效果或預(yù)后相關(guān)[99?100];在關(guān)于耐藥抑郁病人的fMRI研究中發(fā)現(xiàn),重復(fù)經(jīng)顱磁刺激治療(r?TMS)任務(wù)中對低頻rTMS刺激有反應(yīng)的病人額葉回的雙側(cè)激活減少[101]。睡眠異常是抑郁癥病人的常見主訴,腦電圖在抑郁診療中的應(yīng)用研究發(fā)現(xiàn)與正常對照組相比,抑郁青少年的睡眠腦電圖顯示睡眠效率降低,快動眼睡眠(REM)潛伏期縮短,REM密度升高,而癥狀緩解后沒有發(fā)現(xiàn)睡眠質(zhì)量的變化,這種腦電圖變化可能代表生物痕跡[102],Ghiasi等[103]研究證實(shí)皮質(zhì)連接在θ波段中對早期抑郁癥識別具有核心作用。

        近紅外光譜(near?infrared spectroscopy,NIRS)是用于測量生物組織中含氧血紅蛋白或脫氧血紅蛋白濃度變化的一種神經(jīng)成像技術(shù),該方法簡便且是一種非侵入性方法,為大多數(shù)病人接受,臨床上常用于評價治療效果。臨床研究發(fā)現(xiàn)受試者前、中顳葉、額葉區(qū)含氧血紅蛋白的值和血流動力學(xué)可預(yù)測反映相關(guān)治療效果[99, 104?105]。相對外周生物學(xué)標(biāo)志物而言,神經(jīng)影像學(xué)生物標(biāo)志物更穩(wěn)定,且不易受機(jī)體內(nèi)環(huán)境影響,然而,由于抑郁癥本身的特點(diǎn)難以從單個研究區(qū)域獲得足夠的樣本量,未來應(yīng)聚焦抑郁臨床亞型著力發(fā)掘相應(yīng)標(biāo)志物。

        7" 小結(jié)與展望

        綜上所述,盡管在抑郁癥生物學(xué)標(biāo)志物領(lǐng)域各國學(xué)者們做了大量的研究且技術(shù)手段日趨先進(jìn),但目前為止尚無抑郁癥生物學(xué)診斷的金標(biāo)準(zhǔn),這可能與抑郁癥病因病理的異質(zhì)性相關(guān),某一區(qū)域、人種、文化背景、生物樣本無法概括整個人類群體,且受疾病亞型、分期、嚴(yán)重程度影響無法用單一的指標(biāo)去評估,因此,對該領(lǐng)域的研究是一大挑戰(zhàn)。但基于多種組學(xué)技術(shù)(如基因組學(xué)、轉(zhuǎn)錄組學(xué)、代謝組學(xué)和蛋白質(zhì)組學(xué))及神經(jīng)影像學(xué)技術(shù)的研究逐漸揭示了抑郁癥潛在的生物學(xué)標(biāo)志物,如單胺假說和GABA系統(tǒng)的異常在抑郁癥的發(fā)病機(jī)制中起關(guān)鍵作用,5?HTT、TPH2的基因多態(tài)性和多巴胺受體被認(rèn)為是潛在的生物標(biāo)志物;HPA軸功能失調(diào)(如皮質(zhì)醇水平升高)已被廣泛證明與抑郁癥的發(fā)病機(jī)制及病情嚴(yán)重程度密切相關(guān);FKBP5基因及其多態(tài)性與應(yīng)激反應(yīng)及抗抑郁藥物的療效相關(guān);抑郁癥患者常伴有促炎細(xì)胞因子升高(如IL?6、TNF?α),且炎癥標(biāo)志物與抗抑郁藥物的療效相關(guān);微生物組學(xué)研究發(fā)現(xiàn)抑郁癥患者常表現(xiàn)出微生物生態(tài)失調(diào),腸道菌群的多樣性及特定菌屬的豐度與抑郁發(fā)作密切相關(guān);BDNF在神經(jīng)發(fā)育和可塑性中發(fā)揮重要作用,其表達(dá)水平的降低與抑郁癥的發(fā)病有關(guān);代謝相關(guān)產(chǎn)物、底物(如膽固醇、BMI、三酰甘油等)和線粒體功能障礙與抑郁癥的病理生理機(jī)制相關(guān);通過MRI、fMRI和NIRS等技術(shù)發(fā)現(xiàn),抑郁癥患者大腦特定區(qū)域(如海馬體、額葉皮層等)體積和功能的變化與抑郁癥的癥狀表現(xiàn)及治療反應(yīng)密切相關(guān)等。這些生物學(xué)指標(biāo)的確立將對抑郁癥疾病的診斷、治療及預(yù)后提供強(qiáng)有力的支撐,也為早期疾病識別,降低疾病總體負(fù)擔(dān)提供保障。在上述研究中,大多數(shù)研究的樣本量相對較小,難以得出廣泛適用的結(jié)論,未來應(yīng)開展大樣本、多中心、長期隨訪的研究,以提高結(jié)果的穩(wěn)定性和可重復(fù)性;不同研究方法和檢測技術(shù)的標(biāo)準(zhǔn)化程度不高導(dǎo)致了研究結(jié)果的差異性,所以未來應(yīng)制定統(tǒng)一的檢測標(biāo)準(zhǔn)和流程,減少技術(shù)偏差,提高不同研究之間結(jié)果的可比性。同時,抑郁癥的多因素病因使得單一標(biāo)志物難以全面反映其病理生理過程,亟需整合多種生物標(biāo)志物及組學(xué)數(shù)據(jù),以實(shí)現(xiàn)更精準(zhǔn)的疾病分類和個性化治療策略。同時大量文獻(xiàn)已經(jīng)表明,生物標(biāo)志物有可能改善抑郁癥患者的治療,除了幾十年來一直被廣泛研究的神經(jīng)遞質(zhì)和神經(jīng)內(nèi)分泌標(biāo)志物外,慢性炎癥反應(yīng)是近年來頗受關(guān)注的話題,且有可能成為有效的治療靶點(diǎn),但也有可能局限于抑郁癥的亞組。盡管目前尚無統(tǒng)一的生物標(biāo)志物標(biāo)準(zhǔn),但通過整合多種生物指標(biāo)和組學(xué)技術(shù)從疾病不同層次、階段進(jìn)行研究,有望在未來實(shí)現(xiàn)更精準(zhǔn)的抑郁癥的診斷、治療及個性化護(hù)理。

        參考文獻(xiàn):

        [1]" MALHI G S,MANN J J.Course and prognosis[J].Lancet,2018,392(10161):2299-2312.

        [2]" 季建林.中國抑郁障礙防治指南修訂與抑郁障礙的規(guī)范治療[J].中華行為醫(yī)學(xué)與腦科學(xué)雜志,2015,24(4):292-293.

        [3]" ZWOLI?SKA W,DMITRZAK-W?GLARZ M,S?OPIE? A.Biomarkers in child and adolescent depression[J].Child Psychiatry amp; Human Development,2023,54(1):266-281.

        [4]" RAO U.Biomarkers in pediatric depression[J].Depression and Anxiety,2013,30(9):787-791.

        [5]" ZISOOK S,LESSER I,STEWART J W,et al.Effect of age at onset on the course of major depressive disorder[J].The American Journal of Psychiatry,2007,164(10):1539-1546.

        [6]" FREEDMAN R,LEWIS D A,MICHELS R,et al.The initial field trials of DSM-5:new blooms and old thorns[J].The American Journal of Psychiatry,2013,170(1):1-5.

        [7]" NONE.BEST (Biomarkers,endpoints,and other tools)resource[M].Silver Spring:Food and Drug Administration,2016:1.

        [8]" LESCH K P,BENGEL D,HEILS A,et al.Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region[J].Science,1996,274(5292):1527-1531.

        [9]" PRIESS-GROBEN H A,HYDE J S.5-HTTLPR X stress in adolescent depression:moderation by MAOA and gender[J].Journal of Abnormal Child Psychology,2013,41(2):281-294.

        [10]" KOHEN R,MYAING M T,RICHARDS J,et al.Depression persistence and serotonin transporter genotype in adolescents under usual care conditions[J].Journal of Child and Adolescent Psychopharmacology,2013,23(4):290-294.

        [11]" KANG H J,KIM J M,STEWART R,et al.Association of SLC6A4 methylation with early adversity,characteristics and outcomes in depression[J].Progress in Neuro-Psychopharmacology amp; Biological Psychiatry,2013,44:23-28.

        [12] "ROTBERG B,KRONENBERG S,CARMEL M,et al.Additive effects of 5-HTTLPR (serotonin transporter) and tryptophan hydroxylase 2 G-703T gene polymorphisms on the clinical response to citalopram among children and adolescents with depression and anxiety disorders[J].Journal of Child and Adolescent Psychopharmacology,2013,23(2):117-122.

        [13]" PORCELLI S,F(xiàn)ABBRI C,SERRETTI A.Meta-analysis of serotonin transporter gene promoter polymorphism(5-HTTLPR) association with antidepressant efficacy[J].European Neuropsychopharmacology,2012,22(4):239-258.

        [14]" TAYLOR M J,SEN S,BHAGWAGAR Z.Antidepressant response and the serotonin transporter gene-linked polymorphic region[J].Biological Psychiatry,2010,68(6):536-543.

        [15]" DUNLOP B W,NEMEROFF C B.The role of dopamine in the pathophysiology of depression[J].Archives of General Psychiatry,2007,64(3):327.

        [16]" FRISCH A,POSTILNICK D,ROCKAH R,et al.Association of unipolar major depressive disorder with genes of the serotonergic and dopaminergic pathways[J].Molecular Psychiatry,1999,4(4):389-392.

        [17]" LóPEZ LEóN S,CROES E A,SAYED-TABATABAEI F A,et al.The dopamine D4 receptor gene 48-base-pair-repeat polymorphism and mood disorders:a meta-analysis[J].Biological Psychiatry,2005,57(9):999-1003.

        [18]" ERSCHE K D,ROISER J P,LUCAS M,et al.Peripheral biomarkers of cognitive response to dopamine receptor agonist treatment[J].Psychopharmacology,2011,214(4):779-789.

        [19]" IACOB E,TADLER S C,LIGHT K C,et al.Leukocyte gene expression in patients with medication refractory depression before and after treatment with ECT or isoflurane anesthesia:a pilot study[J].Depression Research and Treatment,2014,2014:582380.

        [20]" ROCC P,LEO C D,EVA C,et al.Decrease of the D4 dopamine receptor messenger RNA expression in lymphocytes from patients with major depression[J].Progress in Neuro-Psychopharmacology amp; Biological Psychiatry,2002,26(6):1155-1160.

        [21]" XIANG L B,SZEBENI K,SZEBENI A,et al.Dopamine receptor gene expression in human amygdaloid nuclei:elevated D4 receptor mRNA in major depression[J].Brain Research,2008,1207:214-224.

        [22]" KALUEFF A V,NUTT D J.Role of GABA in anxiety and depression[J].Depression and Anxiety,2007,24(7):495-517.

        [23]" PAYNE J L,MAGUIRE J.Pathophysiological mechanisms implicated in postpartum depression[J].Frontiers in Neuroendocrinology,2019,52:165-180.

        [24]" DUMAN R S,SANACORA G,KRYSTAL J H.Altered connectivity in depression:GABA and glutamate neurotransmitter deficits and reversal by novel treatments[J].Neuron,2019,102(1):75-90.

        [25]" ROY A,DEJONG J,F(xiàn)ERRARO T.CSF GABA in depressed patients and normal controls[J].Psychological Medicine,1991,21(3):613-618.

        [26]" PETTY F,KRAMER G L,GULLION C M,et al.Low plasma gamma-aminobutyric acid levels in male patients with depression[J].Biological Psychiatry,1992,32(4):354-363.

        [27]" PRéVOT T,SIBILLE E.Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders[J].Molecular Psychiatry,2021,26(1):151-167.

        [28]" LENER M S,NICIU M J,BALLARD E D,et al.Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine[J].Biological Psychiatry,2017,81(10):886-897.

        [29]" DEVANAND D P,SHAPIRA B,PETTY F,et al.Effects of electroconvulsive therapy on plasma GABA[J].Convulsive Therapy,1995,11(1):3-13.

        [30]" PEHRSON A L,SANCHEZ C.Altered γ-aminobutyric acid neurotransmission in major depressive disorder:a critical review of the supporting evidence and the influence of serotonergic antidepressants[J].Drug Design,Development and Therapy,2015,9:603-624.

        [31]" NONE.The dexamethasone suppression test:an overview of its current status in psychiatry.The APA Task Force on Laboratory Tests in Psychiatry[J].The American Journal of Psychiatry,1987,144(10):1253-1262.

        [32]" LOPEZ-DURAN N L,KOVACS M,GEORGE C J.Hypothalamic-pituitary-adrenal axis dysregulation in depressed children and adolescents:a meta-analysis[J].Psychoneuroendocrinology,2009,34(9):1272-1283.

        [33]" AUSTIN M C,JANOSKY J E,MURPHY H A.Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men[J].Molecular Psychiatry,2003,8(3):324-332.

        [34]" KLOK M D,ALT S R,IRURZUN LAFITTE A J,et al.Decreased expression of mineralocorticoid receptor mRNA and its splice variants in postmortem brain regions of patients with major depressive disorder[J].Journal of Psychiatric Research,2011,45(7):871-878.

        [35]" WEBSTER M J,KNABLE M B,O'GRADY J,et al.Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders[J].Molecular Psychiatry,2002,7(9):985-994.

        [36]" PANDEY G N,RIZAVI H S,REN X G,et al.Region-specific alterations in glucocorticoid receptor expression in the postmortem brain of teenage suicide victims[J].Psychoneuroendocrinology,2013,38(11):2628-2639.

        [37]" ALT S R,TURNER J D,KLOK M D,et al.Differential expression of glucocorticoid receptor transcripts in major depressive disorder is not epigenetically programmed[J].Psychoneuroendocrinology,2010,35(4):544-556.

        [38]" HUMPHREYS K L,MOORE S R,DAVIS E G,et al.DNA methylation of HPA-axis genes and the onset of major depressive disorder in adolescent girls:a prospective analysis[J].Translational Psychiatry,2019,9(1):245.

        [39]" EFSTATHOPOULOS P,ANDERSSON F,MELAS P A,et al.NR3C1 hypermethylation in depressed and bullied adolescents[J].Translational Psychiatry,2018,8(1):121.

        [40]" CICCHETTI D,HANDLEY E D.Methylation of the glucocorticoid receptor gene,nuclear receptor subfamily 3,group C,member 1 (NR3C1),in maltreated and nonmaltreated children:associations with behavioral under control,emotional lability/negativity,and externalizing and internalizing symptoms[J].Development and Psychopathology,2017,29(5):1795-1806.

        [41]" GARDINI E S,SCHAUB S,NEUHAUSER A,et al.Methylation of the glucocorticoid receptor promoter in children:links with parents as teachers,early life stress,and behavior problems[J].Development and Psychopathology,2022,34(3):810-822.

        [42]" WANG Q Z,SHELTON R C,DWIVEDI Y.Interaction between early-life stress and FKBP5 gene variants in major depressive disorder and post-traumatic stress disorder:a systematic review and meta-analysis[J].Journal of Affective Disorders,2018,225:422-428.

        [43]" PIECHACZEK C E,GREIMEL E,F(xiàn)ELDMANN L,et al.Interactions between FKBP5 variation and environmental stressors in adolescent major depression[J].Psychoneuroendocrinology,2019,106:28-37.

        [44]" BINDER E B,SALYAKINA D,LICHTNER P,et al.Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment[J].Nature Genetics,2004,36(12):1319-1325.

        [45]" ISING M,MACCARRONE G,BRüCKL T,et al.FKBP5 gene expression predicts antidepressant treatment outcome in depression[J].International Journal of Molecular Sciences,2019,20(3):485.

        [46]" BRENT D,MELHEM N,F(xiàn)ERRELL R,et al.Association of FKBP5 polymorphisms with suicidal events in the Treatment of Resistant Depression in Adolescents (TORDIA) study[J].The American Journal of Psychiatry,2010,167(2):190-197.

        [47]" JIA Y,LIU L L,SHENG C Q,et al.Increased serum levels of cortisol and inflammatory cytokines in people with depression[J].The Journal of Nervous and Mental Disease,2019,207(4):271-276.

        [48]" NEURAUTER G,SCHR?CKSNADEL K,SCHOLL-BüRGI S,et al.Chronic immune stimulation correlates with reduced phenylalanine turnover[J].Current Drug Metabolism,2008,9(7):622-627.

        [49]" LEONARD B E.Inflammation and depression:a causal or coincidental link to the pathophysiology?[J].Acta Neuropsychiatrica,2018,30(1):1-16.

        [50]" MOSIO?EK A,PI?TA A,JAKIMA S,et al.Effects of antidepressant treatment on peripheral biomarkers in patients with major depressive disorder (MDD)[J].Journal of Clinical Medicine,2021,10(8):1706.

        [51]" GRUDZIEN M,RAPAK A.Effect of natural compounds on NK cell activation[J].Journal of Immunology Research,2018,2018(1):4868417.

        [52]" LIU J J,WEI Y B,STRAWBRIDGE R,et al.Peripheral cytokine levels and response to antidepressant treatment in depression:a systematic review and meta-analysis[J].Molecular Psychiatry,2020,25(2):339-350.

        [53]" IACOB E,LIGHT K C,TADLER S C,et al.Dysregulation of leukocyte gene expression in women with medication-refractory depression versus healthy non-depressed controls[J].BMC Psychiatry,2013,13:273.

        [54]" MILLER A H,MALETIC V,RAISON C L.Inflammation and its discontents:the role of cytokines in the pathophysiology of major depression[J].Biological Psychiatry,2009,65(9):732-741.

        [55]" CATTANEO A,GENNARELLI M,UHER R,et al.Candidate genes expression profile associated with antidepressants response in the GENDEP study:differentiating between baseline 'predictors' and longitudinal 'targets'[J].Neuropsychopharmacology,2013,38(3):377-385.

        [56]" MILLER G E,COLE S W.Clustering of depression and inflammation in adolescents previously exposed to childhood adversity[J].Biological Psychiatry,2012,72(1):34-40.

        [57]" MAC GIOLLABHUI N,NG T H,ELLMAN L M,et al.The longitudinal associations of inflammatory biomarkers and depression revisited:systematic review,meta-analysis,and meta-regression[J].Molecular Psychiatry,2021,26(7):3302-3314.

        [58]" RAISON C L,RUTHERFORD R E,WOOLWINE B J,et al.A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression:the role of baseline inflammatory biomarkers[J].JAMA Psychiatry,2013,70(1):31-41.

        [59]" COLASANTO M,MADIGAN S,KORCZAK D J.Depression and inflammation among children and adolescents:a meta-analysis[J].Journal of Affective Disorders,2020,277:940-948.

        [60]" STRAWBRIDGE R,ARNONE D,DANESE A,et al.Inflammation and clinical response to treatment in depression:a meta-analysis[J].European Neuropsychopharmacology,2015,25(10):1532-1543.

        [61]" OSIMO E F,PILLINGER T,RODRIGUEZ I M,et al.Inflammatory markers in depression:a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls[J].Brain,Behavior,and Immunity,2020,87:901-909.

        [62]" BRYDGES C R,BHATTACHARYYA S,DEHKORDI S M,et al.Metabolomic and inflammatory signatures of symptom dimensions in major depression[J].Brain,Behavior,and Immunity,2022,102:42-52.

        [63]" FERNSTR?M J,MELLON S H,MCGILL M A,et al.Blood-based mitochondrial respiratory chain function in major depression[J].Translational Psychiatry,2021,11(1):593.

        [64]" BARANDOUZI Z A,STARKWEATHER A R,HENDERSON W A,et al.Altered composition of gut microbiota in depression:a systematic review[J].Frontiers in Psychiatry,2020,11:541.

        [65]" JIANG H Y,LING Z X,ZHANG Y H,et al.Altered fecal microbiota composition in patients with major depressive disorder[J].Brain,Behavior,and Immunity,2015,48:186-194.

        [66]" LIU Y X,ZHANG L,WANG X Q,et al.Similar fecal microbiota signatures in patients with diarrhea-predominant irritable bowel syndrome and patients with depression[J].Clinical Gastroenterology and Hepatology,2016,14(11):1602-1611.

        [67]" SZCZESNIAK O,HESTAD K A,HANSSEN J F,et al.Isovaleric acid in stool correlates with human depression[J].Nutritional Neuroscience,2016,19(7):279-283.

        [68]" HUANG T T,LAI J B,DU Y L,et al.Current understanding of gut microbiota in mood disorders:an update of human studies[J].Frontiers in Genetics,2019,10:98.

        [69]" HUANG Y C,SHI X,LI Z Y,et al.Possible association of Firmicutes in the gut microbiota of patients with major depressive disorder[J].Neuropsychiatric Disease and Treatment,2018,14:3329-3337.

        [70]" AVERINA O V,ZORKINA Y A,YUNES R A,et al.Bacterial metabolites of human gut microbiota correlating with depression[J].International Journal of Molecular Sciences,2020,21(23):9234.

        [71]" GURURAJAN A,CLARKE G,DINAN T G,et al.Molecular biomarkers of depression[J].Neuroscience and Biobehavioral Reviews,2016,64:101-133.

        [72]nbsp; STONE L B,MCGEARY J E,PALMER R H,et al.Identifying genetic predictors of depression risk:5-HTTLPR and BDNF Val66Met polymorphisms are associated with rumination and corumination in adolescents[J].Frontiers in Genetics,2013,4:246.

        [73]" CHEN J,LI X Y,MCGUE M.The interacting effect of the BDNF Val66Met polymorphism and stressful life events on adolescent depression is not an artifact of gene-environment correlation:evidence from a longitudinal twin study[J].Journal of Child Psychology and Psychiatry,and Allied Disciplines,2013,54(10):1066-1073.

        [74]" HILT L M,SANDER L C,NOLEN-HOEKSEMA S,et al.The BDNF Val66Met polymorphism predicts rumination and depression differently in young adolescent girls and their mothers[J].Neuroscience Letters,2007,429(1):12-16.

        [75]" BAKUSIC J,VRIEZE E,GHOSH M,et al.Interplay of Val66Met and BDNF methylation:effect on reward learning and cognitive performance in major depression[J].Clinical Epigenetics,2021,13(1):149.

        [76]" FROUD A,MURPHY J,CRIBB L,et al.The relationship between dietary quality,serum brain-derived neurotrophic factor (BDNF) level,and the Val66met polymorphism in predicting depression[J].Nutritional Neuroscience,2019,22(7):513-521.

        [77]" JUNG S J,WOO H T,CHO S,et al.Association between body size,weight change and depression:systematic review and meta-analysis[J].The British Journal of Psychiatry,2017,211(1):14-21.

        [78]" DOLATIAN A,ARZAGHI S M,QORBANI M,et al.The relationship between body mass index (BMI) and depression according to the rs16139NPY gene[J].Iranian Journal of Psychiatry,2017,12(3):201-205.

        [79]" BOT M,MILANESCHI Y,AL-SHEHRI T,et al.Metabolomics profile in depression:a pooled analysis of 230 metabolic markers in 5 283 cases with depression and 10 145 controls[J].Biological Psychiatry,2020,87(5):409-418.

        [80]" SO H C,CHAU C K,CHENG Y Y,et al.Causal relationships between blood lipids and depression phenotypes:a Mendelian randomisation analysis[J].Psychological Medicine,2021,51(14):2357-2369.

        [81]" CHUNG K H,CHIOU H Y,CHEN Y H.Associations between serum homocysteine levels and anxiety and depression among children and adolescents in China[J].Scientific Reports,2017,7:8330.

        [82]" NARAYAN S K,VERMAN A,KATTIMANI S,et al.Plasma homocysteine levels in depression and schizophrenia in south Indian Tamilian population[J].Indian Journal of Psychiatry,2014,56(1):46-53.

        [83]" FORTI P,RIETTI E,PISACANE N,et al.Blood homocysteine and risk of depression in the elderly[J].Archives of Gerontology and Geriatrics,2010,51(1):21-25.

        [84]" KHOSRAVI M,SOTOUDEH G,AMINI M,et al.The relationship between dietary patterns and depression mediated by serum levels of Folate and vitamin B12[J].BMC Psychiatry,2020,20(1):63.

        [85]" BANSAL Y,KUHAD A.Mitochondrial dysfunction in depression[J].Current Neuropharmacology,2016,14(6):610-618.

        [86]" ALLEN J,ROMAY-TALLON R,BRYMER K J,et al.Mitochondria and mood:mitochondrial dysfunction as a key player in the manifestation of depression[J].Frontiers in Neuroscience,2018,12:386.

        [87]" CASARIL A M,DANTZER R,BAS-ORTH C.Neuronal mitochondrial dysfunction and bioenergetic failure in inflammation-associated depression[J].Frontiers in Neuroscience,2021,15:725547.

        [88]" RAPPENEAU V,WILMES L,TOUMA.Molecular correlates of mitochondrial dysfunctions in major depression:evidence from clinical and rodent studies[J].Molecular and Cellular Neurosciences,2020,109:103555.

        [89]" CAI N,CHANG S,LI Y H,et al.Molecular signatures of major depression[J].Current Biology:CB,2015,25(9):1146-1156.

        [90]" KAGEYAMA Y,KASAHARA T,KATO M,et al.The relationship between circulating mitochondrial DNA and inflammatory cytokines in patients with major depression[J].Journal of Affective Disorders,2018,233:15-20.

        [91]" KANG S G,CHO S E.Neuroimaging biomarkers for predicting treatment response and recurrence of major depressive disorder[J].International Journal of Molecular Sciences,2020,21(6):2148.

        [92]" BREMNER J D,NARAYAN M,ANDERSON E R,et al.Hippocampal volume reduction in major depression[J].The American Journal of Psychiatry,2000,157(1):115-118.

        [93]" FRODL T,MEISENZAHL E M,ZETZSCHE T,et al.Hippocampal and amygdala changes in patients with major depressive disorder and healthy controls during a 1-year follow-up[J].The Journal of Clinical Psychiatry,2004,65(4):492-499.

        [94]" COSTAFREDA S G,CHU C,ASHBURNER J,et al.Prognostic and diagnostic potential of the structural neuroanatomy of depression[J].PLoS One,2009,4(7):e6353.

        [95]" ENNEKING V,LEEHR E J,DANNLOWSKI U,et al.Brain structural effects of treatments for depression and biomarkers of response:a systematic review of neuroimaging studies[J].Psychological Medicine,2020,50(2):187-209.

        [96]" CULLEN K R,KLIMES-DOUGAN B,VU D P,et al.Neural correlates of antidepressant treatment response in adolescents with major depressive disorder[J].Journal of Child and Adolescent Psychopharmacology,2016,26(8):705-712.

        [97]" ANDREESCU C,TUDORASCU D L,BUTTERS M A,et al.Resting state functional connectivity and treatment response in late-life depression[J].Psychiatry Research,2013,214(3):313-321.

        [98]" ROSENBAUM D,HAGEN K,DEPPERMANN S,et al.State-dependent altered connectivity in late-life depression:a functional near-infrared spectroscopy study[J].Neurobiology of Aging,2016,39:57-68.

        [99]" LANGENECKER S A,KENNEDY S E,GUIDOTTI L M,et al.Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder[J].Biological Psychiatry,2007,62(11):1272-1280.

        [100]" GYURAK A,PATENAUDE B,KORGAONKAR M S,et al.Frontoparietal activation during response inhibition predicts remission to antidepressants in patients with major depression[J].Biological Psychiatry,2016,79(4):274-281.

        [101]" FITZGERALD P B,SRITHARAN A,DASKALAKIS Z J,et al.A functional magnetic resonance imaging study of the effects of low frequency right prefrontal transcranial magnetic stimulation in depression[J].Journal of Clinical Psychopharmacology,2007,27(5):488-492.

        [102]" RAO U,POLAND R E.Electroencephalographic sleep and hypothalamic-pituitary-adrenal changes from episode to recovery in depressed adolescents[J].Journal of Child and Adolescent Psychopharmacology,2008,18(6):607-613.

        [103]" GHIASI S,DELL'ACQUA C,BENVENUTI S M,et al.Classifying subclinical depression using EEG spectral and connectivity measures[J].IEEE Engineering in Medicine and Biology Society,2021,2021:2050-2053.

        [104]" YAMAGATA B,YAMANAKA K,TAKEI Y,et al.Brain functional alterations observed 4-weekly in major depressive disorder following antidepressant treatment[J].Journal of Affective Disorders,2019,252:25-31.

        [105]" TOMIOKA H,YAMAGATA B,KAWASAKI S,et al.A longitudinal functional neuroimaging study in medication-na?ve depression after antidepressant treatment[J].PLoS One,2015,10(3):e0123.

        (收稿日期:2024-07-23;修回日期:2024-12-15)

        (本文編輯 崔曉芳)

        猜你喜歡
        抑郁癥綜述氧化應(yīng)激
        基于炎癥-氧化應(yīng)激角度探討中藥對新型冠狀病毒肺炎的干預(yù)作用
        SEBS改性瀝青綜述
        石油瀝青(2018年6期)2018-12-29 12:07:04
        NBA新賽季綜述
        NBA特刊(2018年21期)2018-11-24 02:47:52
        對一例因抑郁癥有自殺傾向的案例分析
        人間(2016年26期)2016-11-03 16:11:24
        文拉法辛聯(lián)合米氮平治療老年抑郁癥的效果及安全性
        西酞普蘭治療抑郁癥的療效及安全性
        JOURNAL OF FUNCTIONAL POLYMERS
        抑郁癥患者腦電圖檢查的臨床應(yīng)用
        氧化應(yīng)激與糖尿病視網(wǎng)膜病變
        氧化應(yīng)激與結(jié)直腸癌的關(guān)系
        久久免费看的少妇一级特黄片 | 亚洲av成人无遮挡网站在线观看 | 欧美一级特黄AAAAAA片在线看 | 92午夜少妇极品福利无码电影| 波多野结衣av手机在线观看| 久久一区二区三区四区| 日韩一区二区三区天堂| 大陆老熟女自拍自偷露脸| 久久综合狠狠色综合伊人| 国产成人精选在线不卡| 中文字幕人妻少妇精品| 亚洲国产高清精品在线| аⅴ资源天堂资源库在线| 午夜亚洲国产理论片亚洲2020| 精品自拍偷拍一区二区三区| 国产精品毛片无遮挡高清| 无码骚夜夜精品| 国产午夜视频免费观看| 亚洲中文字幕一区二区三区多人| 国产中文三级全黄| 久久国产精品二国产精品| 最新永久无码AV网址亚洲| 国产一区二区精品人妖系列在线| 国产又粗又猛又黄又爽无遮挡| 国产成人亚洲不卡在线观看| 绿帽人妻被插出白浆免费观看| 亚洲美女毛多水多免费视频| 欧美人与动牲交a精品| 美女裸体无遮挡免费视频的网站 | 韩国一级成a人片在线观看| 国产成人综合久久大片| 特黄aaaaaaaaa毛片免费视频| 人妻aⅴ无码一区二区三区| 国产精品国产三级国产av主| 亚洲综合日韩一二三区| 日本精品αv中文字幕| av无码天堂一区二区三区| 中文字幕人妻互换激情| 97日日碰曰曰摸日日澡| 国产最新地址| 亚洲av成人无网码天堂|