摘要目的:利用生物信息學(xué)技術(shù)篩選并鑒定缺血性腦卒中(IS)的關(guān)鍵基因,基于基因富集分析結(jié)合相關(guān)實(shí)驗(yàn)探討羥基紅花黃色素A(HSYA)對(duì)腦缺血損傷后神經(jīng)元凋亡的影響及機(jī)制。方法:從GEO數(shù)據(jù)庫(kù)獲得IS相關(guān)的樣本數(shù)據(jù),進(jìn)行差異表達(dá)基因(DEGs)分析及基因富集分析,獲得關(guān)鍵基因與關(guān)鍵信號(hào)通路,并通過(guò)體內(nèi)外實(shí)驗(yàn)進(jìn)行相關(guān)驗(yàn)證。建立Sprague-Dawley大鼠大腦中動(dòng)脈閉塞再灌注模型(MCAO/R),采用蛋白免疫印跡法(Western Blot)和免疫熒光檢測(cè)Janus激酶2(JAK2)/信號(hào)傳導(dǎo)轉(zhuǎn)錄激活因子3(STAT3)通路的磷酸化水平及凋亡相關(guān)蛋白的表達(dá);線粒體膜電位探針檢測(cè)線粒體膜電位情況進(jìn)而明確細(xì)胞凋亡水平。利用HT-22海馬神經(jīng)元細(xì)胞建立糖氧剝奪/復(fù)糖氧模型(OGD/R),使用JAK2/STAT3信號(hào)通路抑制劑進(jìn)一步驗(yàn)證HSYA對(duì)神經(jīng)元凋亡的作用機(jī)制。結(jié)果:通過(guò)生物信息學(xué)分析研究GSE22255數(shù)據(jù)集發(fā)現(xiàn)23個(gè)顯著上調(diào)的DEGs和2個(gè)顯著下調(diào)的DEGs。富集分析發(fā)現(xiàn)其與脂多糖的反應(yīng)、細(xì)胞凋亡的調(diào)控、炎癥反應(yīng)、急性炎癥反應(yīng)調(diào)節(jié)、分子干預(yù)信號(hào)通路相關(guān)。生物過(guò)程方面,通過(guò)建立特征基因功能網(wǎng)絡(luò)發(fā)現(xiàn),特征基因與急性炎癥反應(yīng)、凋亡信號(hào)通路的調(diào)節(jié)、脂多糖介導(dǎo)的反應(yīng)、穩(wěn)態(tài)分子的反應(yīng)等功能相關(guān)?;蚣患治鲲@示,腫瘤壞死因子α(TNF-α)介導(dǎo)的核因子κB(NF-κB)信號(hào)通路、血紅素代謝信號(hào)通路、細(xì)胞凋亡相關(guān)信號(hào)通路、JAK/STAT3信號(hào)通路、P53信號(hào)通路發(fā)揮著關(guān)鍵作用。篩選出JAK2/STAT3信號(hào)通路和凋亡相關(guān)通路為研究重點(diǎn)。與假手術(shù)組比較,MCAO/R組大鼠磷酸化JAK2(p-JAK2)、磷酸化STAT3(p-STAT3)和促凋亡相關(guān)蛋白表達(dá)升高(P<0.001),抑凋亡相關(guān)蛋白表達(dá)降低(P<0.001)。HSYA干預(yù)后可抑制JAK2/STAT3信號(hào)通路磷酸化激活和神經(jīng)元凋亡(P<0.01)。體外實(shí)驗(yàn)顯示,OGD/R組JAK2/STAT3通路被磷酸化激活,促凋亡相關(guān)蛋白表達(dá)較Normal組升高(P<0.001),抑凋亡相關(guān)蛋白表達(dá)低于Normal組(P<0.001);加入抑制劑AG490后JAK2、STAT3磷酸化程度降低(P<0.01)。與Normal組比較,OGD/R組凋亡相關(guān)蛋白半胱氨酸蛋白酶3(Cleaved Caspase-3)、Bcl-2關(guān)聯(lián)X蛋白(Bax)表達(dá)水平升高(P<0.001),Bcl-2表達(dá)降低(P<0.001)。HSYA抑制了神經(jīng)元的凋亡(P<0.01)。結(jié)論:JAK2/STAT3信號(hào)通路和凋亡相關(guān)信號(hào)通路在IS后發(fā)揮著關(guān)鍵作用,HSYA可能通過(guò)調(diào)控JAK2/STAT3信號(hào)通路,抑制缺血缺氧后神經(jīng)元凋亡,從而減輕腦損傷。
關(guān)鍵詞缺血性腦卒中;生物信息學(xué)分析;羥基紅花黃色素A;腦缺血;神經(jīng)元;Janus激酶2/信號(hào)傳導(dǎo)轉(zhuǎn)錄激活因子3信號(hào)通路;凋亡;實(shí)驗(yàn)研究
doi:10.12102/j.issn.1672-1349.2024.18.011
Mechanism of Hydroxysafflor Yellow A Inhibiting Neuronal Apoptosis after Ischemic Stroke through JAK2/STAT3 Signaling Pathway Based on Bioinformatics Analysis
WU Yige, YIN Lijun, WANG Zeqian, JIA Sifeng, WEN Chunli, SONG Lijuan, MA Cungen
Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi, China
Corresponding AuthorSONG Lijuan, E-mail: slj_0354@126.com; MA Cungen, E-mail: macungen@sxtcm.edu.cn
AbstractObjective:To screen and identify key genes related to ischemic stroke(IS) by bioinformatics technology,and to explored the effects and its mechanism of hydroxysafflor yellow A(HSYA) on neuronal apoptosis after cerebral ischemic injury.Methods:Is-related sample data were obtained from GEO database,and differential expression gene(DEGs) analysis and gene enrichment analysis were performed to obtain key genes and key signaling pathways,and relevant verification was carried out through in vivo and in vitro experiments.The Sprague-Dawley rat middle cerebral artery occlusion and reperfusion model(MCAO/R) was established.The phosphorylation level of Janus kinase 2(JAK2)/signal transduction transcriptional activator 3(STAT3) pathway and the expression of apoptosis-related proteins were detected by Western Blot and immunofluorescence.Mitochondrial membrane potential probes were used to detect mitochondrial membrane potential to determine the level of apoptosis.The glucose-oxygen deprivation/reoxygen model(OGD/R) was established in HT-22 hippocampal neurons,and JAK2/STAT3 signaling pathway inhibitors were used to" verify the mechanism of HSYA on neuronal apoptosis.Results:Bioinformatics analysis of the GSE22255 dataset revealed 23 significantly up-regulated DEGs and 2 significantly down-regulated DEGs.Enrichment analysis showed that it was related to lipopolysaccharide response,apoptosis regulation,inflammatory response,acute inflammatory response regulation,and molecular intervention signal pathway.In terms of biological processes,by establishing functional networks of feature genes,it was found that feature genes were related to acute inflammatory response,regulation of apoptosis signaling pathway,lipopolysaccharids-mediated response,and homeostasis molecular response.Gene set enrichment analysis showed that nuclear factor κB(NF-κB) signaling pathway,heme metabolism signaling pathway,apoptosis-related signaling pathway,JAK/STAT3 signaling pathway and P53 signaling pathway mediated by tumor necrosis factor α(TNF-α) played some key role.JAK2/STAT3 signaling pathway and apoptosis-related pathways were screen out as the research focus.Compared with the sham group,the expressions of phosphorylated JAK2(p-JAK2),phosphorylated STAT3(p-STAT3) and pro-apoptosis-related proteins in the MCAO/R group increased(P<0.001),while the expressions of anti-apoptosis-related proteins decreased(P<0.001).HSYA inhibited phosphorylation activation of JAK2/STAT3 signaling pathway and neuronal apoptosis(P<0.01).Vitro experiments showed that JAK2/STAT3 pathway was activated by phosphorylation in the OGD/R group,the expression of pro-apoptosis-related proteins was more than that in the normal group(P<0.001),and the expression of anti-apoptosis-related proteins was less than that in the normal group(P<0.001).The phosphorylation of JAK2 and STAT3 decreased after the addition of inhibitor AG490(P<0.01).Compared with the normal group,the expression levels of apoptosis-associated protein cysteine protease 3(Cleaved Caspase-3) and Bcl-2 associated X protein(Bax) in the OGD/R group increased(P<0.001),and the expression of Bcl-2 decreased(P<0.001).HSYA inhibited neuronal apoptosis(P<0.01).Conclusion:JAK2/STAT3 signaling pathway and apoptosis-related signaling pathway played key roles after IS,and HSYA might inhibit neuronal apoptosis after ischemia and hypoxia by regulating JAK2/STAT3 signaling pathway,thereby alleviating brain injury.
Keywordsischemic stroke; bioinformatics analysis; hydroxysafflor yellow A; cerebral ischemia; neurons; Janus kinase 2/signal transduction transcription activator 3 signaling pathway; apoptosis; experimental study
腦卒中是威脅人類(lèi)健康的疾病,在中老年群體中發(fā)病率逐年增加[1],造成沉重的家庭負(fù)擔(dān)及醫(yī)療負(fù)擔(dān)。我國(guó)腦卒中病人逐漸趨于年輕化,風(fēng)險(xiǎn)因素包括心房顫動(dòng)、高血壓、高脂血癥、糖尿病、吸煙、飲酒、不健康飲食和肥胖等[2]。缺血性腦卒中(ischemic stroke,IS)約占全部腦卒中的70%以上,原因主要是腦梗死和腦動(dòng)脈閉塞引起的缺血病變導(dǎo)致缺氧,常伴有認(rèn)知、感覺(jué)功能障礙[3]。由于腦缺血引起的神經(jīng)元死亡決定了腦卒中病人的死亡率和致殘率,因此,針對(duì)神經(jīng)元的治療方案尤為重要。逆轉(zhuǎn)缺血缺氧造成的神經(jīng)元損傷在理論上具有一定難度,腦卒中不僅對(duì)神經(jīng)元造成重要損傷,而且通過(guò)細(xì)胞因子與信號(hào)通路產(chǎn)生廣泛的相互作用,誘導(dǎo)多種細(xì)胞死亡途徑的激活[4-6]。因此,深入探討IS的發(fā)生、發(fā)展機(jī)制,從中尋找關(guān)鍵的分子標(biāo)志物與信號(hào)通路,對(duì)IS的基礎(chǔ)研究及后續(xù)的治療方案有重要的臨床意義。
近年來(lái),隨著生物信息學(xué)的快速發(fā)展,測(cè)序及基因芯片等研究手段在疾病的預(yù)測(cè)與治療中被廣泛應(yīng)用[7]。采用生物信息學(xué)方法分析IS相關(guān)的差異表達(dá)基因(differentially expressed genes,DEGs),進(jìn)行可視化繪圖以分析篩選并鑒定關(guān)鍵基因,通過(guò)實(shí)驗(yàn)進(jìn)行體內(nèi)外相關(guān)基因與信號(hào)通路的驗(yàn)證,以期為藥物治療IS提供新方向。
Janus激酶2(Janus kinase 2,JAK2)/信號(hào)傳導(dǎo)轉(zhuǎn)錄激活因子3(signal transducer and activator of transcription 3,STAT3)信號(hào)通路在生理狀態(tài)下處于靜息狀態(tài),但在IS后的各種神經(jīng)細(xì)胞中產(chǎn)生磷酸化被激活[8-9]。JAK2/STAT3信號(hào)通路通過(guò)直接或間接方式參與各種細(xì)胞活動(dòng),并與其他通路間發(fā)生串?dāng)_,誘導(dǎo)神經(jīng)細(xì)胞凋亡、焦亡和鐵死亡等。有研究顯示,抑制神經(jīng)元的JAK2/STAT3相關(guān)信號(hào)通路,有助于減輕IS后的神經(jīng)元凋亡[10]。多項(xiàng)研究表明,對(duì)STAT3相關(guān)通路的調(diào)控可緩解神經(jīng)炎癥和改善突觸可塑性[11-13]。調(diào)控JAK2/STAT3信號(hào)通路進(jìn)而降低其磷酸化水平可能是抑制IS后神經(jīng)元凋亡的有效途徑。前期建立的可視化生信分析結(jié)果顯示,凋亡相關(guān)信號(hào)通路與JAK2/STAT3信號(hào)通路在IS相關(guān)的基因與通路中發(fā)揮著重要作用。因此,探討相關(guān)藥物能否通過(guò)干預(yù)JAK2/STAT3信號(hào)通路的方式介導(dǎo)IS后神經(jīng)元凋亡。
傳統(tǒng)中藥紅花治療IS歷史悠久,其有效單體羥基紅花黃色素A(hydroxysafflor yellow A,HSYA)抗腦缺血損傷作用顯著,且于2023年作為治療IS的新藥上市并應(yīng)用,目前僅闡明部分機(jī)制[14-16]。相關(guān)研究表明,HSYA通過(guò)抑制IS后星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞上的JAK2/STAT3信號(hào)通路磷酸化激活,進(jìn)而抑制神經(jīng)炎性因子表達(dá),緩解神經(jīng)細(xì)胞損傷[17-19]。但HSYA能否通過(guò)干預(yù)神經(jīng)元上的JAK2/STAT3信號(hào)通路抑制IS后的神經(jīng)元凋亡仍需深入研究。
1材料與方法
1.1數(shù)據(jù)的獲取及差異表達(dá)
通過(guò)GEO數(shù)據(jù)庫(kù)(https://www.ncbi.nlm.nih.gov/geo/)搜索“ischemic stroke”且下載GSE22255。參與基因組表達(dá)譜研究的IS病人要求在采血前至少6個(gè)月只經(jīng)歷過(guò)1次IS發(fā)作,對(duì)照組無(wú)IS家族史;排除患有嚴(yán)重貧血或活動(dòng)性過(guò)敏的病人。樣本來(lái)源于靜脈穿刺采集,標(biāo)準(zhǔn)化預(yù)處理后共得到40個(gè)樣本,其中對(duì)照組20個(gè)樣本,IS組20個(gè)樣本。獲得數(shù)據(jù)后,使用R軟件limma(version 3.40.6)對(duì)40個(gè)樣本進(jìn)行分析,獲得IS相關(guān)的DEGs(以P<0.01,差異倍數(shù)>2.0為篩選標(biāo)準(zhǔn))。通過(guò)對(duì)DEGs相關(guān)數(shù)據(jù)進(jìn)行整合分析,利用R軟件包進(jìn)行差異基因火山圖和熱圖的繪制。根據(jù)上述分析數(shù)據(jù),基于基因本體(GO)、京都基因和基因組百科全書(shū)(KEGG)對(duì)DEGs進(jìn)行功能富集分析。通過(guò)使用Cluster Profiler,并對(duì)分析結(jié)果進(jìn)行可視化。GO富集分析包括生物過(guò)程、分子功能和細(xì)胞組成等。本研究中篩選條件為P<0.05,Count≥1。選取排名居前20位的相關(guān)信號(hào)通路分析差異基因相關(guān)的生物功能[7,20]。
1.2特征基因功能網(wǎng)絡(luò)的構(gòu)建
基于GO及KEGG數(shù)據(jù)分析,繪制特征基因功能相關(guān)的網(wǎng)絡(luò)圖,了解特征基因關(guān)聯(lián)的具體功能,并對(duì)結(jié)果進(jìn)行可視化分析。
1.3基因集富集分析(gene set enrichment analysis,GSEA)
GSEA是一種生物信息學(xué)的計(jì)算方法,從基因集的富集角度分析,計(jì)算方法內(nèi)容不局限于是否為差異基因,理論上更易發(fā)現(xiàn)對(duì)生物通路及生物功能細(xì)微變化的影響。因此,使用GSEA分析富集相關(guān)的信號(hào)通路。
1.4實(shí)驗(yàn)試劑和儀器
高糖DMEM培養(yǎng)液購(gòu)自中生奧邦公司;胎牛血清購(gòu)自EXCELL公司;無(wú)糖DMEM培養(yǎng)液(貨號(hào)A2477501)、青霉素-鏈霉素混合液(貨號(hào)15140122)均購(gòu)自美國(guó)Gibco公司;兔抗凋亡相關(guān)蛋白半胱氨酸蛋白酶3(Cleaved Caspase-3)一抗(貨號(hào)9661)購(gòu)自Cell Signaling Technology公司;磷酸化JAK2(p-JAK2,貨號(hào)Tyr1007/1008)購(gòu)自Cell Signaling Technology公司;JAK2(貨號(hào)ab108596)購(gòu)自Abcam公司;磷酸化STAT3(p-STAT3,貨號(hào)Tyr705)購(gòu)自Cell Signaling Technology公司;STAT3(貨號(hào)ab119352)購(gòu)自Abcam公司;Bax(貨號(hào)ab32503)購(gòu)自Abcam公司;Bcl-2(貨號(hào)68103-1-Ig)購(gòu)自Proteintech公司;山羊抗兔抗體(貨號(hào)BA1054)購(gòu)自Boster公司;山羊抗鼠抗體(貨號(hào)SA00001-1)購(gòu)自Proteintech公司;Alexa Fluor 488山羊抗鼠IgG(貨號(hào)A-11001)、ALexa FlourTM Plus555標(biāo)記的山羊抗兔IgG抗體(貨號(hào)A-32732)均購(gòu)自Thermo Fisher公司;線粒體膜電位檢測(cè)試劑盒(JC-1)(貨號(hào)E-CK-A301)購(gòu)自Elabscience公司;4%多聚甲醛溶液(貨號(hào)P1110)、0.25%Trypsin-EDTA胰蛋白酶(貨號(hào)T1300)均購(gòu)自中國(guó)索萊寶公司;一步法脫氧核糖核苷酸末端轉(zhuǎn)移酶介導(dǎo)的缺口末端標(biāo)記法(TUNEL)細(xì)胞凋亡檢測(cè)試劑盒(貨號(hào)C1089)購(gòu)自碧云天公司;RIPA裂解液(貨號(hào)P0013B)購(gòu)自碧云天公司;厭氧培養(yǎng)箱購(gòu)自英國(guó)Baker Ruskinm公司;Bio analytical Imaging System購(gòu)自美國(guó)Bio-Rad公司;CO2培養(yǎng)箱、全波長(zhǎng)光吸收酶標(biāo)儀均購(gòu)自Thermo公司。
1.5實(shí)驗(yàn)動(dòng)物與大腦中動(dòng)脈閉塞再灌注(middle cerebral artery occlusion/reperfusion,MCAO/R)模型
MCAO/R模型采用成年雄性Sprague-Dawley大鼠30只,體質(zhì)量200~240 g,購(gòu)自北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司。動(dòng)物實(shí)驗(yàn)遵照山西中醫(yī)藥大學(xué)生物醫(yī)學(xué)倫理審查委員會(huì)制定的實(shí)驗(yàn)動(dòng)物倫理原則進(jìn)行,動(dòng)物倫理批號(hào)為2020DW081。
將大鼠隨機(jī)分為假手術(shù)組(Sham組)、MCAO/R組和MCAO/R中藥組(MCAO/R+HSYA組),各6只。MCAO/R組通過(guò)戊巴比妥鈉(50 mg/kg)麻醉大鼠,剃毛后使用鑷子鈍性分離皮下組織,暴露頸內(nèi)動(dòng)脈(internal carotid artery,ICA)、頸外動(dòng)脈(external carotid artery,ECA)及頸總動(dòng)脈后可見(jiàn)Y型分叉,此時(shí)用細(xì)線在ECA根部和ICA近心段進(jìn)行結(jié)扎以暫時(shí)中斷血流供應(yīng),結(jié)扎完成后于頸總動(dòng)脈剪一切口并插入線栓,待線栓進(jìn)入頸內(nèi)動(dòng)脈,解開(kāi)頸內(nèi)動(dòng)脈的動(dòng)脈夾,并將線栓繼續(xù)推進(jìn),直至線栓已進(jìn)入大腦中動(dòng)脈且不能前行,平均探入深度18~20 mm。線栓插入完畢后,將預(yù)留的結(jié)扎線拉緊固定。醫(yī)用棉簽清理并消毒后,縫合頸部切口,將大鼠放回籠內(nèi),進(jìn)行消毒處理,做好保溫措施。閉塞2 h后,解開(kāi)預(yù)留的結(jié)扎線,重新進(jìn)行再灌注。假手術(shù)組與MCAO/R組操作過(guò)程類(lèi)似,但不進(jìn)行線栓和血管結(jié)扎處理,只進(jìn)行血管分離。MCAO/R+HSYA組大鼠模型處理與MCAO/R組一致,拔除線栓,并以12 mg/kg的劑量腹腔注射HSYA。術(shù)后將大鼠放回籠子并注意保溫措施,給予充足的食物和水。所有大鼠在取出線栓后24 h內(nèi)進(jìn)行處死。
1.6細(xì)胞系與細(xì)胞糖氧剝奪/復(fù)糖氧模型(oxygen glucose deprivation/reoxygen,OGD/R)模型
HT-22細(xì)胞系小鼠海馬神經(jīng)元細(xì)胞系由中國(guó)科學(xué)院細(xì)胞庫(kù)(中國(guó)上海)提供。細(xì)胞置于含有10%胎牛血清(FBS,Gibco,Clayton,澳大利亞)中,并加入10 U/mL青霉素、0.1 mg/mL鏈霉素的Dulbecco改良Eagle培養(yǎng)基(DMEM,Gibco,Clayton,澳大利亞)中進(jìn)行培養(yǎng)。將細(xì)胞置于37 ℃,含有5%CO2潮濕空氣的培養(yǎng)箱中培養(yǎng),每2 d更換1次培養(yǎng)基。使用HT-22細(xì)胞建立OGD/R模型,模擬缺血/再灌注條件。將細(xì)胞隨機(jī)分為正常組(Normal組)、OGD/R組、OGD/R中藥組(OGD/R+HSYA組)。OGD/R組、OGD/R+HSYA組棄去完全培養(yǎng)基后,使用磷酸緩沖鹽溶液(PBS)洗滌細(xì)胞,確保完全無(wú)培養(yǎng)基殘留后加入不含葡萄糖的DMEM,將細(xì)胞置于厭氧培養(yǎng)箱(0.1%O2、5%CO2、94%N2,37 ℃)中進(jìn)行糖氧剝奪2 h。待OGD結(jié)束后,將葡萄糖補(bǔ)充至正常水平。之后將細(xì)胞置于先前培養(yǎng)箱中繼續(xù)培養(yǎng)24 h。OGD誘導(dǎo)期間,OGD/R+HSYA組用25 μmol/L的HSYA處理8 h。Normal組更換同體積的高糖完全培養(yǎng)液,置于37 ℃、5%CO2細(xì)胞培養(yǎng)箱中培養(yǎng) ?厱
1.7TUNEL細(xì)胞凋亡檢測(cè)
將制備的冰凍切片置于載玻片上復(fù)溫,取出樣品并甩干;應(yīng)用組化筆將待染部位畫(huà)圈,采用0.3%TritonX-100配制液在室溫通透30 min,之后用含山羊血清的PBS封閉液封閉1 h;PBS沖洗3次并甩干;首先滴加配制好的NeuN抗體(1∶2 000),平放于濕盒內(nèi)置于4 ℃冰箱孵育過(guò)夜;次日棄去NeuN一抗,PBS沖洗5次并甩干,加入與一抗相應(yīng)種屬的二抗,在室溫下孵育2 h;吸出二抗,PBS沖洗5次并甩干,根據(jù)說(shuō)明書(shū)比例加入配制好的TUNEL溶液,放入濕盒中,置于37 ℃恒溫箱孵育;取出后棄去TUNEL溶液,使用PBS沖洗5次,最后加入含DAPI的熒光封片液,完成制作。
1.8線粒體膜電位檢測(cè)(JC-1)
JC-1是一種對(duì)線粒體膜電位敏感的熒光探針,根據(jù)試劑的說(shuō)明書(shū)配制JC-1工作溶液和分析緩沖液。完成細(xì)胞分組與造模后,首先使用PBS輕洗細(xì)胞,接著使用Assay Buffer沖洗細(xì)胞1次,丟棄上清后用JC-1工作液孵育20 min。孵育后,將細(xì)胞皿置于熒光顯微鏡下觀察并選取代表性圖像進(jìn)行拍攝。
1.9免疫熒光染色
大鼠:制作來(lái)自不同組別的石蠟切片用于免疫熒光染色。腦切片經(jīng)過(guò)二甲苯與乙醇脫蠟后,使用檸檬酸鈉修復(fù)液進(jìn)行抗原修復(fù)后用于免疫熒光。細(xì)胞:完成細(xì)胞玻片與細(xì)胞造模后棄去培養(yǎng)液,用PBS清洗3次,每次5 min。使用4%多聚甲醛進(jìn)行固定,用于免疫熒光前的準(zhǔn)備。室溫下用含有0.15%的Triton X-100和2%BSA的PBS封閉2 h后,將腦切片/細(xì)胞玻片與特異性一抗在濕盒中置于冰箱4 ℃孵育過(guò)夜。棄去一抗并使用PBS清洗5次后,使用熒光二抗在室溫孵育1.5 h。最后用熒光顯微鏡拍攝代表性圖像。
1.10蛋白免疫印跡法(Western Blot)
將大鼠腦組織勻漿和神經(jīng)元細(xì)胞加入到RIPA Lysis Buffer中。按比例加入苯甲基磺酰氟(PMSF)和磷酸酶抑制劑,進(jìn)行成分混勻渦旋,置于冰上裂解30 min,每隔5~10min再進(jìn)行1次渦旋混勻。使用One-Step PAGE Gel Fast Preparation Kit(Epizyme Biotech)配制7.5%~12.5%的電泳凝膠并進(jìn)行電泳。接下來(lái)將蛋白質(zhì)轉(zhuǎn)移至聚偏乙烯膜(PVDF)上(Millipore),并進(jìn)行后續(xù)恒流200 mA轉(zhuǎn)膜。轉(zhuǎn)膜完成后將膜與脫脂牛奶在室溫?fù)u床上孵育封閉1.5 h,之后將膜與稀釋配制好的特異性一抗在4 ℃冰箱搖床條件下孵育過(guò)夜。最后與二抗在室溫孵育1.5 h。
2結(jié)果
2.1IS后對(duì)照組與IS組相關(guān)DEG的鑒定
在GSE22255數(shù)據(jù)集中確定了對(duì)照組和IS組顯著差異的基因25個(gè)。DEG相關(guān)熱圖顯示了IS組和對(duì)照組樣本之間的差異,其中LogFC≥1.0的基因有23個(gè),LogFC<-1.0的基因有2個(gè)。詳見(jiàn)圖1。
2.2IS后功能富集分析與基因功能網(wǎng)絡(luò)
為探討DEGs涉及的生物學(xué)功能,本研究對(duì)所有差異基因表達(dá)進(jìn)行GO分析后,發(fā)現(xiàn)在生物過(guò)程(biological process,BP)中基因參與細(xì)胞對(duì)脂多糖的反應(yīng)、細(xì)胞凋亡的調(diào)控、炎癥反應(yīng)、急性炎癥反應(yīng)調(diào)節(jié)、分子干預(yù)信號(hào)通路等;分子功能(molecular function,MF)中與細(xì)胞因子活性、細(xì)胞因子結(jié)合受體、DNA結(jié)合轉(zhuǎn)錄、催化劑活性、CXCR趨化因子受體結(jié)合等顯著相關(guān)。詳見(jiàn)圖2A。BP方面,通過(guò)建立特征基因功能網(wǎng)絡(luò),發(fā)現(xiàn)特征基因與急性炎癥反應(yīng)、凋亡信號(hào)通路的調(diào)節(jié)、脂多糖介導(dǎo)的反應(yīng)、穩(wěn)態(tài)分子的反應(yīng)等功能相關(guān)。詳見(jiàn)圖2B。為探討哪些基因和信號(hào)通路與IS有重要聯(lián)系,采用基因富集分析不同組間信號(hào)通路富集情況。詳見(jiàn)圖3。分析結(jié)果表明,通過(guò)TNF-α介導(dǎo)的NF-κB信號(hào)通路、血紅素代謝信號(hào)通路、細(xì)胞凋亡相關(guān)信號(hào)通路、JAK/STAT3信號(hào)通路、P53信號(hào)通路、炎癥反應(yīng)信號(hào)通路等在基因富集中發(fā)揮著重要作用。
2.3HSYA抑制MCAO/R誘導(dǎo)的神經(jīng)元凋亡
基于上述生信分析結(jié)果發(fā)現(xiàn),細(xì)胞凋亡與JAK/STAT3信號(hào)通路在IS后發(fā)揮著重要作用。利用MCAO/R大鼠進(jìn)行分析,觀察HSYA是否能通過(guò)上述靶點(diǎn)富集通路產(chǎn)生影響,進(jìn)而緩解IS后的神經(jīng)元損傷。通過(guò)TUNEL染色觀察HSYA是否抑制MCAO/R后的神經(jīng)元凋亡。結(jié)果表明,MCAO/R后,大鼠海馬神經(jīng)元出現(xiàn)大量凋亡,HSYA干預(yù)后,凋亡神經(jīng)元數(shù)量減少。詳見(jiàn)圖4。為了進(jìn)一步確定MCAO/R及HSYA對(duì)大鼠凋亡相關(guān)指標(biāo)的影響,測(cè)定大鼠腦勻漿Cleaved Caspase-3、Bax與Bcl-2的表達(dá),得到與免疫熒光相似結(jié)論,即MCAO/R可增加凋亡相關(guān)指標(biāo)Cleaved Caspase-3與Bax,減少抗凋亡蛋白Bcl-2表達(dá)(P<0.001),HSYA干預(yù)可緩解神經(jīng)元的凋亡(P<0.01或P<0.001)。詳見(jiàn)圖5。
2.4HSYA抑制MCAO/R后JAK2/STAT3信號(hào)通路的磷酸化激活
為明確HSYA及MCAO/R對(duì)JAK2/STAT3信號(hào)通路的影響,首先對(duì)大鼠腦組織的蛋白勻漿進(jìn)行測(cè)定。結(jié)果顯示,MCAO/R能誘導(dǎo)JAK2/STAT3信號(hào)通路的磷酸化激活,HSYA干預(yù)后可抑制其表達(dá)。詳見(jiàn)圖6。
2.5HSYA抑制OGD/R后JAK2/STAT3信號(hào)通路的磷酸化激活與神經(jīng)元凋亡
通過(guò)動(dòng)物實(shí)驗(yàn)初步明確了HSYA抑制MCAO/R誘導(dǎo)的神經(jīng)元凋亡和HSYA抑制MCAO/R后JAK2/STAT3信號(hào)通路的磷酸化激活。體外細(xì)胞實(shí)驗(yàn)進(jìn)一步通過(guò)免疫熒光雙染神經(jīng)元細(xì)胞發(fā)現(xiàn),HSYA可抑制OGD/R后JAK2/STAT3信號(hào)通路的磷酸化激活。詳見(jiàn)圖7。通過(guò)Western Blot檢測(cè)凋亡相關(guān)蛋白,結(jié)果顯示,HSYA抑制OGD/R引起的Cleaved Caspase-3表達(dá)增加與Bax/Bcl-2比值增大,與體內(nèi)實(shí)驗(yàn)結(jié)果一致。詳見(jiàn)圖8。
2.6HSYA通過(guò)抑制OGD/R后JAK2/STAT3信號(hào)通路的磷酸化激活減輕神經(jīng)元凋亡
通過(guò)體外實(shí)驗(yàn)與體內(nèi)實(shí)驗(yàn)可知:HSYA可抑制缺血再灌注誘導(dǎo)的神經(jīng)元凋亡和JAK2/STAT3信號(hào)通路的磷酸化激活。使用JAK2/STAT3信號(hào)通路的抑制劑AG490,設(shè)置4組細(xì)胞,分別為Normal組、OGD/R組、OGD/R+HSYA組和OGD/R+HSYA+AG490組探討HSYA是否通過(guò)抑制JAK2/STAT3信號(hào)通路磷酸化激活從而緩解OGD/R后的神經(jīng)元凋亡。Western Blot結(jié)果顯示,OGD/R可激活JAK2/STAT3信號(hào)通路的磷酸化,引起凋亡相關(guān)蛋白表達(dá)增多(P<0.001),HSYA可抑制通路的激活并減少促進(jìn)凋亡蛋白的表達(dá)(P<0.01);加入HSYA與AG490進(jìn)行干預(yù)后,這種通路磷酸化的抑制效果未得到進(jìn)一步逆轉(zhuǎn)(P>0.05),提示HSYA可能通過(guò)抑制JAK2/STAT3信號(hào)通路磷酸化激活的方式緩解OGD/R引起的神經(jīng)元凋亡,詳見(jiàn)圖9。JC-1探針為一種對(duì)細(xì)胞膜電位敏感的檢測(cè)方式,相關(guān)結(jié)果與Western Blot結(jié)果一致,即HSYA通過(guò)抑制JAK2/STAT3的磷酸化激活進(jìn)而減輕OGD/R引起的神經(jīng)元凋亡,詳見(jiàn)圖10。
3討論
IS發(fā)生后,中樞神經(jīng)系統(tǒng)發(fā)生供血功能障礙導(dǎo)致缺氧和能量缺乏,并引起神經(jīng)元離子梯度紊亂。發(fā)生去極化的神經(jīng)元可觸發(fā)細(xì)胞死亡機(jī)制,包括凋亡、焦亡和細(xì)胞壞死[21-22]。細(xì)胞凋亡是一種高度調(diào)節(jié)的、能量依賴(lài)性的細(xì)胞死亡形式,其特征是細(xì)胞出現(xiàn)顯著的形態(tài)變化,如細(xì)胞質(zhì)萎縮與凝結(jié)、核膜分解及凋亡小體形成[23-24]。神經(jīng)元細(xì)胞凋亡在IS病理過(guò)程中發(fā)揮著重要作用,影響疾病的死亡率、致殘率。既往研究顯示,IS中凋亡與多種信號(hào)通路存在密切聯(lián)系并相互協(xié)調(diào),通過(guò)干預(yù)凋亡與信號(hào)通路之間的平衡可減輕神經(jīng)功能損傷[25-26]。
JAK2/STAT3作為一條經(jīng)典的信號(hào)通路,在IS的急性期被激活[27]。本研究生信分析結(jié)果表明,JAK2/STAT3信號(hào)通路與細(xì)胞凋亡相關(guān)信號(hào)通路均是IS后關(guān)鍵的通路與靶點(diǎn)。有研究表明,JAK2的磷酸化激活可直接引起STAT3的磷酸化[28]。有研究顯示,JAK2/STAT3通路的磷酸化激活后參與多種細(xì)胞死亡進(jìn)程,進(jìn)而參與IS后的病理活動(dòng)[29]。既往研究指出,JAK2/STAT3信號(hào)通路是導(dǎo)致腦缺血/再灌注損傷的主要因素之一[30]。實(shí)驗(yàn)研究表明,JAK2/STAT3信號(hào)通路的磷酸化激活與細(xì)胞凋亡有緊密聯(lián)系,抑制其通路的激活有助于減輕細(xì)胞損傷[31]。
中醫(yī)經(jīng)典活血化瘀代表藥物紅花治療IS歷史悠久,《中國(guó)藥典》中明確有效單體成分HSYA是對(duì)紅花進(jìn)行含量測(cè)定和質(zhì)量控制的指標(biāo)。有實(shí)驗(yàn)表明,HSYA通過(guò)抑制星形膠質(zhì)細(xì)胞和小膠組織細(xì)胞的JAK2/STAT3信號(hào)通路,抑制脂質(zhì)運(yùn)載蛋白2和核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白3的表達(dá),進(jìn)而發(fā)揮神經(jīng)保護(hù)作用[17-18]。研究發(fā)現(xiàn),HSYA通過(guò)調(diào)節(jié)自噬通路直接干預(yù)神經(jīng)元自噬[16]。HSYA是否通過(guò)抑制神經(jīng)元的JAK2/STAT3信號(hào)通路的磷酸化激活抑制IS后的神經(jīng)元凋亡,有待進(jìn)一步研究。
本研究首先通過(guò)生信分析篩選出了在IS后重要的信號(hào)通路與細(xì)胞功能基因網(wǎng)絡(luò),基于課題組研究結(jié)果將其進(jìn)行選擇與串?dāng)_;通過(guò)進(jìn)一步的體內(nèi)外實(shí)驗(yàn)驗(yàn)證HSYA干預(yù)JAK2/STAT3通路發(fā)揮抑制IS神經(jīng)元凋亡的作用。體內(nèi)實(shí)驗(yàn)結(jié)果表明,HSYA可抑制MCAO/R大鼠神經(jīng)元JAK2/STAT3信號(hào)通路的磷酸化激活,并降低促凋亡相關(guān)蛋白表達(dá),提高抗凋亡蛋白表達(dá);為了明確JAK2/STAT3的磷酸化與神經(jīng)元凋亡之間的關(guān)系,在小鼠海馬神經(jīng)元細(xì)胞系HT-22建立OGD/R模型,通過(guò)體外實(shí)驗(yàn)進(jìn)一步探討兩者之間的關(guān)系,實(shí)驗(yàn)結(jié)果佐證了體內(nèi)實(shí)驗(yàn)結(jié)果,即HSYA與JAK2/STAT3通路抑制劑AG490的作用類(lèi)似,通過(guò)抑制JAK2、STAT3的磷酸化減輕IS后神經(jīng)元凋亡。上述研究結(jié)果提示,JAK2/STAT3信號(hào)通路可能與凋亡相關(guān)信號(hào)通路間存在串?dāng)_,HSYA可能通過(guò)抑制JAK2/STAT3信號(hào)通路磷酸化激活的方式抑制凋亡的發(fā)生與發(fā)展。
眾多研究證實(shí)JAK2/STAT3信號(hào)通路與細(xì)胞凋亡之間有密切聯(lián)系,但不排除其他通路可能對(duì)凋亡產(chǎn)生影響,且HSYA的作用靶點(diǎn)尚未明確,今后實(shí)驗(yàn)需深入探討進(jìn)一步驗(yàn)證證實(shí)。
參考文獻(xiàn):
[1]MISHRA A,MALIK R,HACHIYA T,et al.Stroke genetics informs drug discovery and risk prediction across ancestries[J].Nature,2022,611(7934):115-123.
[2]JOLUGBO P,ARIENS R A S.Thrombus composition and efficacy of thrombolysis and thrombectomy in acute ischemic stroke[J].Stroke,2021,52(3):1131-1142.
[3]SAINI V,GUADA L,YAVAGAL D R.Global epidemiology of stroke and access to acute ischemic stroke interventions[J].Neurology,2021,97(20 Suppl 2):S6-S16.
[4]LAOHAVISUDHI K,SRIWICHAIIN S,ATTACHAIPANICH T,et al.Mechanistic insights into lipocalin-2 in ischemic stroke and hemorrhagic brain injury:integrating animal and clinical studies[J].Experimental Neurology,2024,379:114885.
[5]MAO R,ZONG N N,HU Y J,et al.Neuronal death mechanisms and therapeutic strategy in ischemic stroke[J].Neuroscience Bulletin,2022,38(10):1229-1247.
[6]TUO Q Z,ZHANG S T,LEI P.Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications[J].Medicinal Research Reviews,2022,42(1):259-305.
[7]司蕊豪,劉羽茜,朱仲康,等.基于生信分析對(duì)阿爾茨海默病炎癥相關(guān)關(guān)鍵基因的篩選及鑒定[J].天津醫(yī)科大學(xué)學(xué)報(bào),2023,29(5):486-493.
[8]ZHU H,JIAN Z H,ZHONG Y,et al.Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition[J].Frontiers in Immunology,2021,12:714943.
[9]ZHONG Y,GU L J,YE Y Z,et al.JAK2/STAT3 axis intermediates microglia/macrophage polarization during cerebral ischemia/reperfusion injury[J].Neuroscience,2022,496:119-128.
[10]HOU Y Y,WANG K,WAN W J,et al.Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats[J].Genes amp; Diseases,2018,5(3):245-255.
[11]LIU Z J,RAN Y Y,QIE S Y,et al.Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway[J].CNS Neuroscience amp; Therapeutics,2019,25(12):1353-1362.
[12]ADLY SADIK N,AHMED RASHED L,AHMED ABD-EL MAWLA M.Circulating miR-155 and JAK2/STAT3 axis in acute ischemic stroke patients and its relation to post-ischemic inflammation and associated ischemic stroke risk factors[J].International Journal of General Medicine,2021,14:1469-1484.
[13]ZHAO H,F(xiàn)ENG Y,WEI C J,et al.Colivelin rescues ischemic neuron and axons involving JAK/STAT3 signaling pathway[J].Neuroscience,2019,416:198-206.
[14]ZHANG Y L,LIU Y,CUI Q,et al.Hydroxysafflor yellow A alleviates ischemic stroke in rats via HIF-1,BNIP3,and Notch1-mediated inhibition of autophagy[J].The American Journal of Chinese Medicine,2022,50(3):799-815.
[15]YU L,JIN Z,LI M C,et al.Protective potential of hydroxysafflor yellow A in cerebral ischemia and reperfusion injury:an overview of evidence from experimental studies[J].Frontiers in Pharmacology,2022,13:1063035.
[16]WEI R H,SONG L J,MIAO Z Y,et al.Hydroxysafflor yellow A exerts neuroprotective effects via HIF-1α/BNIP3 pathway to activate neuronal autophagy after OGD/R[J].Cells,2022,11(23):3726.
[17]劉可心,宋麗娟,吳藝舸,等.羥基紅花黃色素A干預(yù)腦缺血再灌注損傷后星形膠質(zhì)細(xì)胞脂質(zhì)運(yùn)載蛋白2的表達(dá)[J].中國(guó)組織工程研究,2024,28(7):1063-1069.
[18]殷麗君,吳藝舸,但存燕,等.羥基紅花黃色素A通過(guò)JAK2/STAT3信號(hào)通路抑制缺血性腦卒中后小膠質(zhì)細(xì)胞NLRP3介導(dǎo)的神經(jīng)功能損傷[J].中國(guó)免疫學(xué)雜志,2024.[2024-02-25].http://kns.cnki.net/kcms/detail/22.1126.R.20240108.1534.002.html.
[19]韓光遠(yuǎn),宋麗娟,丁智斌,等.星形膠質(zhì)細(xì)胞在腦缺血誘導(dǎo)的炎癥反應(yīng)中的作用及其機(jī)制[J].中國(guó)免疫學(xué)雜志,2022,38(1):118-123.
[20]WANG J,KANG Z J,LIU Y D,et al.Identification of immune cell infiltration and diagnostic biomarkers in unstable atherosclerotic plaques by integrated bioinformatics analysis and machine learning[J].Frontiers in Immunology,2022,13:956078.
[21]SUN A J,REN J.ALDH2,a novel protector against stroke?[J].Cell Research,2013,23(7):874-875.
[22]DAI Q Q,LI S J,LIU T,et al.Interleukin-17A-mediated alleviation of cortical astrocyte ischemic injuries affected the neurological outcome of mice with ischemic stroke[J].Journal of Cellular Biochemistry,2019,120(7):11498-11509.
[23]YUAN J Y,AMIN P,OFENGEIM D.Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases[J].Nature Reviews Neuroscience,2019,20:19-33.
[24]JIN W L,ZHAO J X,YANG E Y,et al.Neuronal STAT3/HIF-1α/PTRF axis-mediated bioenergetic disturbance exacerbates cerebral ischemia-reperfusion injury via PLA2G4A[J].Theranostics,2022,12(7):3196-3216.
[25]GUPTA R,AMBASTA R K,KUMAR P.Autophagy and apoptosis cascade:which is more prominent in neuronal death?[J].Cellular and Molecular Life Sciences,2021,78(24):8001-8047.
[26]ZHI S M,F(xiàn)ANG G X,XIE X M,et al.Melatonin reduces OGD/R-induced neuron injury by regulating redox/inflammation/apoptosis signaling[J].European Review for Medical and Pharmacological Sciences,2020,24(3):1524-1536.
[27]ZHANG W,XU M J,CHEN F Y,et al.Targeting the JAK2-STAT3 pathway to inhibit cGAS-STING activation improves neuronal senescence after ischemic stroke[J].Experimental Neurology,2023,368:114474.
[28]FENG X F,LI M C,LIN Z Y,et al.Tetramethylpyrazine promotes axonal remodeling and modulates microglial polarization via JAK2-STAT1/3 and GSK3-NFκB pathways in ischemic stroke[J].Neurochemistry International,2023,170:105607.
[29]ZHONG Y,YIN B,YE Y Z,et al.The bidirectional role of the JAK2/STAT3 signaling pathway and related mechanisms in cerebral ischemia-reperfusion injury[J].Experimental Neurology,2021,341:113690.
[30]ZHOU K C,CHEN J,WU J Y,et al.Atractylenolide Ⅲ ameliorates cerebral ischemic injury and neuroinflammation associated with inhibiting JAK2/STAT3/Drp1-dependent mitochondrial fission in microglia[J].Phytomedicine,2019,59:152922.
[31]XU B,HE X,SUI Y,et al.Ginkgetin aglycone attenuates neuroinflammation and neuronal injury in the rats with ischemic stroke by modulating STAT3/JAK2/SIRT1[J].Folia Neuropathologica,2019,57(1):16-23.
(收稿日期:2024-03-21)
(本文編輯薛妮)