亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        小膠質(zhì)細(xì)胞極化在神經(jīng)病理性疼痛中作用研究進(jìn)展

        2024-12-31 00:00:00陳晶晶農(nóng)章嵩譚良源楊培培梁英業(yè)唐宏亮王開龍
        天津醫(yī)藥 2024年9期

        摘要:神經(jīng)病理性疼痛(NPP)是一種反復(fù)且難以治愈的疼痛綜合征,小膠質(zhì)細(xì)胞極化與其有密切聯(lián)系。小膠質(zhì)細(xì)胞極化后可形成M1促炎型與M2抗炎型,M1型與M2型小膠質(zhì)細(xì)胞通過調(diào)控炎癥反應(yīng)參與NPP。M1促炎型通過促炎因子和有害物質(zhì)的釋放在NPP中起到傷害作用;而M2抗炎型與之相反,通過分泌抗炎因子起到保護(hù)作用。就小膠質(zhì)細(xì)胞極化對(duì)NPP作用的研究進(jìn)展進(jìn)行綜述。

        關(guān)鍵詞:小神經(jīng)膠質(zhì)細(xì)胞;炎癥;極化;神經(jīng)病理性疼痛

        中圖分類號(hào):R741 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20240408

        Research progress on the role of microglia polarization in neuropathic pain

        CHEN Jingjing1, NONG Zhangsong2, TAN Liangyuan1, YANG Peipei2, LIANG Yingye2, TANG Hongliang3, WANG Kailong2△

        1 Guangxi University of Traditional Chinese Medicine Graduate School, Nanning 530000, China; 2 Department of Rehabilitation, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine;

        3 Guangxi University of Traditional Chinese Medicine Affiliated Fangchenggang Hospital

        △Corresponding Author E -mail: 13707884976@163.com

        Abstract: Neuropathic pain (NPP) is a recurrent and intractable pain syndrome, and microglial polarization is closely related to it. Recent studies have shown that after cell polarization, M1 pro-inflammatory and M2 anti-inflammatory types could be formed, and M1 and M2 microglial cells are involved in NPP through the modulation of inflammatory responses. The two types of microglial cells have different roles in NPP, just like a double-edged sword. M1 pro-inflammatory type plays an injurious role in NPP through the release of pro-inflammatory factors and noxious substances, whereas M2 anti-inflammatory type plays a protective role by secreting anti-inflammatory factors. In this article, the role of microglia polarization on NPP are reviewed.

        Key words: microglia; inflammat ion; polarization; neuropathic pain

        神經(jīng)病理性疼痛(neuropathic pain,NPP)是由軀體感覺神經(jīng)系統(tǒng)病變引起的一種疼痛,發(fā)生率為6.9%~10%[1-2]。NPP患者除遭受身體的痛楚,還會(huì)出現(xiàn)焦慮、抑郁等不良情緒[3]。目前NPP的發(fā)生機(jī)制尚不清楚,但研究發(fā)現(xiàn)小膠質(zhì)細(xì)胞是NPP發(fā)病的關(guān)鍵細(xì)胞,在NPP的發(fā)生、維持和炎癥方面起到重要作用[4-5]。還有研究表明,小膠質(zhì)細(xì)胞經(jīng)激活后向M1、M2型極化而參與NPP的發(fā)生發(fā)展[6]。

        1 NPP的發(fā)病機(jī)制

        NPP類型包括帶狀皰疹后NPP、中樞NPP、混合性或未分類的創(chuàng)傷后NPP等[7]。發(fā)病機(jī)制可與神經(jīng)元活動(dòng)、離子通道、線粒體因素、免疫細(xì)胞有關(guān)[8-9]。也有學(xué)者認(rèn)為NPP的發(fā)病機(jī)制與神經(jīng)炎癥、中樞敏化、外周敏化等有關(guān)[10]。NPP有異常性疼痛、痛覺過敏、痛覺超敏的表現(xiàn)[11]。在病理機(jī)制上,炎癥介質(zhì)的釋放與痛覺過敏的發(fā)生或者維持有關(guān),小膠質(zhì)細(xì)胞可通過釋放促炎因子參與NPP,當(dāng)炎癥水平較高時(shí),機(jī)械和熱痛閾值較低[12]??偠灾?,NPP所涉及的病因較廣泛且所含病變系統(tǒng)雜多,因此,NPP的機(jī)制目前仍未得到闡明。

        2 小膠質(zhì)細(xì)胞概述

        2.1 小膠質(zhì)細(xì)胞的來源 小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)(CNS)的薄壁組織中駐留的巨噬細(xì)胞,在CNS有“免疫哨兵”之稱[13-14]。在卵黃囊中產(chǎn)生小膠質(zhì)細(xì)胞的祖細(xì)胞進(jìn)入CNS,當(dāng)其在CNS定植后會(huì)出現(xiàn)增殖并在整個(gè)生命周期中具有保持自我更新的能力[15-16]。小膠質(zhì)細(xì)胞還具有免疫防御作用,可在CNS進(jìn)行動(dòng)態(tài)的監(jiān)測以維持組織的穩(wěn)態(tài),其活化和增殖也是NPP的標(biāo)志[17]。

        2.2 小膠質(zhì)細(xì)胞的形態(tài) 小膠質(zhì)細(xì)胞在受到刺激后由靜息狀態(tài)轉(zhuǎn)變?yōu)榧せ顮顟B(tài),此時(shí)形態(tài)逐漸從高分枝狀態(tài)轉(zhuǎn)變?yōu)榉种^少的變形蟲狀態(tài)[18]。形態(tài)變化是小膠質(zhì)細(xì)胞活化的主要特征之一,其激活的因素可能與感染、創(chuàng)傷或各種傷害性刺激有關(guān)[19]。當(dāng)受到侵襲刺激時(shí),小膠質(zhì)細(xì)胞模式識(shí)別受體會(huì)迅速激活,通過吞噬、胞飲、受體介導(dǎo)等內(nèi)吞作用將致病物質(zhì)內(nèi)化并且降解[19-20]。炎癥反應(yīng)早期階段,模式識(shí)別受體通過識(shí)別內(nèi)源性和外源性配體,在清除受損細(xì)胞以及防御感染方面起重要作用[21]。未激活前處于靜息狀態(tài)的小膠質(zhì)細(xì)胞不是“靜止”無作用的,靜息狀態(tài)下的小膠質(zhì)細(xì)胞具有突觸修剪、細(xì)胞碎片清除、免疫監(jiān)視等功能[20]。而評(píng)估小膠質(zhì)細(xì)胞是否發(fā)生活化,可以借助影像學(xué)、有效的生物標(biāo)志物等方式[22-23]。

        3 小膠質(zhì)細(xì)胞的極化

        小膠質(zhì)細(xì)胞極化指小膠質(zhì)細(xì)胞被激活后的不同功能表型[24]。靜息狀態(tài)下的小膠質(zhì)細(xì)胞為M0型,被激活后其狀態(tài)發(fā)生一系列形態(tài)以及功能變化,最終極化成為促炎型(M1型)和抗炎型(M2型)[25]。極化后的M1型小膠質(zhì)細(xì)胞釋放促炎因子和有害介質(zhì),加重炎性細(xì)胞浸潤;而M2型與之相反,通過釋放抗炎因子降低炎癥反應(yīng)。小膠質(zhì)細(xì)胞的可控性激活有利于神經(jīng)保護(hù),促進(jìn)神經(jīng)修復(fù),但持續(xù)的激活狀態(tài)通常會(huì)導(dǎo)致神經(jīng)毒性促炎(M1)細(xì)胞因子和其他炎癥介質(zhì)的過度產(chǎn)生[26]。脂多糖(LPS)可誘導(dǎo)小膠質(zhì)細(xì)胞M1極化,后者分泌的白細(xì)胞介素(IL)-12、腫瘤壞死因子-α(TNF-α)、IL-1β等促炎介質(zhì)可增加誘導(dǎo)型一氧化氮合酶(iNOS)和細(xì)胞表面標(biāo)志物CD68和CD86水平;而IL-4和IL-10可誘導(dǎo)M2型極化產(chǎn)生抗炎因子,從而起到神經(jīng)保護(hù)作用[27-29]。研究發(fā)現(xiàn),低強(qiáng)度脈沖超聲可減少M(fèi)1型細(xì)胞表面標(biāo)志物CD86和CD68的表達(dá),增強(qiáng)M2型相關(guān)標(biāo)志物精氨酸酶-1(Arg-1)和IL-10的表達(dá),弱化小膠質(zhì)細(xì)胞的促炎反應(yīng)[28]。

        4 小膠質(zhì)細(xì)胞極化與炎癥反應(yīng)

        研究指出,通過調(diào)控小膠質(zhì)細(xì)胞向M2型轉(zhuǎn)化,可促進(jìn)神經(jīng)營養(yǎng)因子的分泌,降低炎癥介質(zhì)的產(chǎn)生,從而有效減輕神經(jīng)炎癥,并保護(hù)缺血的腦組織[30]。實(shí)驗(yàn)表明,小膠質(zhì)細(xì)胞過度激活會(huì)加劇腦部的炎癥損害,若能抑制其過度激活,并推動(dòng)M1型向M2型轉(zhuǎn)化,則有助于修復(fù)腦組織因炎癥造成的損傷[31]。此外,小膠質(zhì)細(xì)胞在阿爾茨海默?。ˋD)的炎癥過程中扮演著重要角色。減少M(fèi)1型細(xì)胞的數(shù)量,同時(shí)增加M2型細(xì)胞的數(shù)量,能夠強(qiáng)化機(jī)體的抗炎機(jī)制,這種抗炎效應(yīng)的增強(qiáng)與體內(nèi)抗炎因子水平的上升以及促炎因子水平的下降緊密相關(guān)[32]。

        5 小膠質(zhì)細(xì)胞極化調(diào)控NPP

        5.1 調(diào)控炎癥反應(yīng)參與NPP 神經(jīng)炎癥是NPP的病理機(jī)制之一,神經(jīng)損傷后小膠質(zhì)細(xì)胞活化可促進(jìn)促炎因子、趨化因子等炎癥介質(zhì)的分泌,誘發(fā)神經(jīng)炎癥[9,33]。在NPP的發(fā)生發(fā)展中,免疫細(xì)胞,如常見的巨噬細(xì)胞被激活后可釋放大量促炎介質(zhì),而小膠質(zhì)細(xì)胞活化可觸發(fā)炎癥反應(yīng),導(dǎo)致NPP進(jìn)一步發(fā)展[34]。研究發(fā)現(xiàn),NPP的炎癥反應(yīng)或疼痛癥狀與M1/M2小膠質(zhì)細(xì)胞比例有關(guān)[35]。有研究表明,丹皮酚可緩解慢性壓迫性損傷模型大鼠的熱痛覺過敏,降低血清促炎因子水平,增加抗炎因子水平;進(jìn)一步在體外實(shí)驗(yàn)發(fā)現(xiàn)丹皮酚可降低LPS誘導(dǎo)的小膠質(zhì)細(xì)胞M1型標(biāo)志物iNOS水平,提高M(jìn)2型標(biāo)志物Arg-1水平,證實(shí)小膠質(zhì)細(xì)胞M1型向M2型轉(zhuǎn)化可減輕NPP[36]。研究發(fā)現(xiàn),Dickkopf糖蛋白家族成員Dickkopf3可介導(dǎo)小膠質(zhì)細(xì)胞極化,改善NPP,坐骨神經(jīng)部分損傷的大鼠在注射重組Dickkopf3后可促進(jìn)M1型小膠質(zhì)細(xì)胞向M2型轉(zhuǎn)化,減少炎癥細(xì)胞因子產(chǎn)生,改善NPP痛覺,延緩疼痛發(fā)作[6]。研究發(fā)現(xiàn),電針可通過程序性細(xì)胞死亡配體1(PD-L1)調(diào)節(jié)初級(jí)傳入神經(jīng)元的興奮性抑制絲裂原活化蛋白激酶(MAPK)信號(hào)通路,促進(jìn)小膠質(zhì)細(xì)胞M1型向M2型轉(zhuǎn)化,減輕炎癥反應(yīng)而發(fā)揮鎮(zhèn)痛作用[35]。可見在常見的NPP類型中,亦與小膠質(zhì)細(xì)胞極化有密切關(guān)聯(lián)。

        5.2 脊髓損傷后NPP NPP也是脊髓損傷后的常見并發(fā)癥。有實(shí)驗(yàn)研究發(fā)現(xiàn),脊髓損傷的大鼠熱退縮閾值降低,大腦皮質(zhì)、丘腦、中腦和髓質(zhì)的TNF-α、IL-1β和IL-6水平升高,大鼠后腹側(cè)后外側(cè)、腹側(cè)被蓋區(qū)小膠質(zhì)細(xì)胞M1型極化比例顯著增加,經(jīng)過經(jīng)顱直流電刺激治療抗炎細(xì)胞因子IL-10水平升高,大鼠的熱退縮閾值和運(yùn)動(dòng)功能得到改善,M1型小膠質(zhì)細(xì)胞比例降低、M2型比例增加[37]。

        5.3 糖尿病NPP 糖尿病神經(jīng)性疼痛(DNP)是糖尿病的并發(fā)癥之一。研究發(fā)現(xiàn),對(duì)DNP大鼠注射異喹啉類生物堿Koumine可減弱M1型小膠質(zhì)細(xì)胞極化并改善DNP,相比于M2型,M1型小膠質(zhì)細(xì)胞極化狀態(tài)可能處于主導(dǎo)地位[38]。

        5.4 AD相關(guān)NPP AD患者可患有NPP。有研究發(fā)現(xiàn),極化為促炎型M1可伴隨大量炎性細(xì)胞因子的產(chǎn)生與釋放,而極化成M2型的小膠質(zhì)細(xì)胞可減弱NPP的相關(guān)癥狀,提示可通過調(diào)控小膠質(zhì)細(xì)胞向M2型極化來治療AD相關(guān)的NPP[39]。

        5.5 神經(jīng)根型頸椎病NPP 神經(jīng)根型頸椎病所致的疼痛屬于NPP范疇。有研究在神經(jīng)根型頸椎病NPP模型大鼠中發(fā)現(xiàn)炎性細(xì)胞因子IL-1β、IL-6、IL-18、TNF-α大量激活,表明外周神經(jīng)受損后,小膠質(zhì)細(xì)胞向M1型轉(zhuǎn)化,經(jīng)治療后上述指標(biāo)水平下降[40]。因此,抑制小膠質(zhì)細(xì)胞激活可以延緩甚至阻斷其向M1型轉(zhuǎn)化,并且通過減少促炎因子的分泌改善疼痛癥狀。

        6 小結(jié)和展望

        NPP對(duì)患者生活產(chǎn)生困擾,給家庭帶來一定的經(jīng)濟(jì)負(fù)擔(dān)。目前的治療方式可在一定程度上改善NPP患者的癥狀及其生活質(zhì)量。然而,當(dāng)前的治療方案并不滿意,其治療依舊是一個(gè)難題。小膠質(zhì)細(xì)胞的極化作用參與了NPP的發(fā)生發(fā)展,這對(duì)探索NPP的機(jī)制與治療有積極的作用。抑制促炎型M1或促進(jìn)抗炎型M2的表達(dá)都是治療NPP的有效方案,然而NPP的發(fā)展更傾向于M1型。因此對(duì)于調(diào)控小膠質(zhì)細(xì)胞間的表型轉(zhuǎn)化還需要進(jìn)一步探討。小膠質(zhì)細(xì)胞極化方向的轉(zhuǎn)變亦是研究NPP發(fā)生機(jī)制與治療方案的新方向。

        參考文獻(xiàn)

        [1] KIMURA Y,YAMAGUCHI S,SUZUKI T,et al. Switching from pregabalin to mirogabalin in patients with peripheral neuropathic pain:a multi-center,prospective,single-arm,open-label study (MIROP Study)[J]. Pain Ther,2021,10(1):711-727. doi:10.1007/s40122-021-00255-y.

        [2] KNEZEVIC N N,JOVANOVIC F,CANDIDO K D,et al. Oral pharmacotherapeutics for the management of peripheral neuropathic pain conditions-a review of clinical trials[J]. Expert Opin Pharmacother,2020,21(18):2231-2248. doi:10.1080/14656566.2020.1801635.

        [3] 張昆龍,薛白潔,肖瑋,等. 重復(fù)經(jīng)顱磁刺激對(duì)神經(jīng)病理性疼痛患者疼痛和情緒的影響[J]. 中國現(xiàn)代神經(jīng)疾病雜志,2022,22(11):940-947. ZHANG K L,XUE B J,XIAO W,et al. Effects of repetitive transcranial magnetic stimulation on pain and emotion of patients with neuropathic pain[J]. Chinese Journal of Contemporary Neurology and Neurosurgery,2022,22(11):940-947. doi:10.3969/j.issn.1672-6731.2022.11.005.

        [4] KARAVIS M Y,SIAFAKA I,VADALOUCA A,et al. Role of microglia in neuropathic pain[J]. Cureus,2023,15(8):e43555. doi:10.7759/cureus.43555.

        [5] JI A,XU J. Neuropathic pain:biomolecular intervention and imaging via targeting microglia activation[J]. Biomolecules,2021,11(9):1343. doi:10.3390/biom11091343.

        [6] ZHANG L Q,GAO S J,SUN J,et al. DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation[J]. J Neuroinflammation,2022,19(1):129. doi:10.1186/s12974-022-02495-x.

        [7] DERRY S,BELL R F,STRAUBE S,et al. Pregabalin for neuropathic pain in adults[J]. Cochrane Database Syst Rev,2019,1(1):CD007076. doi:10.1002/14651858.CD007076.pub3.

        [8] LI S,F(xiàn)ENG X,BIAN H. Optogenetics:emerging strategies for neuropathic pain treatment[J]. Front Neurol,2022,13:982223. doi:10.3389/fneur.2022.982223.

        [9] JIANG J,XU L,YANG L,et al. Mitochondrial-derived peptide MOTS-c ameliorates spared nerve injury-induced neuropathic pain in mice by inhibiting microglia activation and neuronal oxidative damage in the spinal cord via the AMPK pathway[J]. ACS Chem Neurosci,2023,14(12):2362-2374. doi:10.1021/acschemneuro.3c00140.

        [10] FINNERUP N B,KUNER R,JENSEN T S. Neuropathic pain:from mechanisms to treatment[J]. Physiol Rev,2021,101(1):259-301. doi:10.1152/physrev.00045.2019.

        [11] GHAZISAEIDI S,MULEY M M,SALTER M W. Neuropathic pain:mechanisms,sex differences,and potential therapies for a global problem[J]. Annu Rev Pharmacol Toxicol,2023,63:565-583. doi:10.1146/annurev-pharmtox-051421-112259.

        [12] GUO X,GENG X,CHU Y,et al. MiR-204-5p alleviates neuropathic pain by targeting BRD4 in a rat chronic constrictive injury model[J]. J Pain Res,2022,15:2427-2435. doi:10.2147/JPR.S371616.

        [13] HANSEN J N,BRüCKNER M,PIETROWSKI M J,et al. MotiQ:an open-source toolbox to quantify the cell motility and morphology of microglia[J]. Mol Biol Cell,2022,33(11):ar99. doi:10.1091/mbc.E21-11-0585.

        [14] BRUZELIUS A,HIDALGO I,BOZA-SERRANO A,et al. The human bone marrow harbors a CD45(-) CD11B(+) cell progenitor permitting rapid microglia-like cell derivative approaches[J]. Stem Cells Transl Med,2021,10(4):582-597. doi:10.1002/sctm.20-0127.

        [15] HATTORI Y. The microglia-blood vessel interactions in the developing brain[J]. Neurosci Res,2023,187:58-66. doi:10.1016/j.neures.2022.09.006.

        [16] VIDAL-ITRIAGO A,RADFORD R,ARAMIDEH J A,et al. Microglia morphophysiological diversity and its implications for the CNS[J]. Front Immunol,2022,13:997786. doi:10.3389/fimmu.2022.997786.

        [17] HU X,DU L,LIU S,et al. A TRPV4-dependent neuroimmune axis in the spinal cord promotes neuropathic pain[J]. J Clin Invest,2023,133(5):e161507. doi:10.1172/JCI161507.

        [18] MUKHERJEE L,SAGAR M,OUELLETTE J N,et al. A deep learning framework for classifying microglia activation state using morphology and intrinsic fluorescence lifetime data[J]. Front Neuroinform,2022,16:1040008. doi:10.3389/fninf.2022.1040008.

        [19] MAGUIRE E,CONNOR-ROBSON N,SHAW B,et al. Assaying microglia functions in vitro[J]. Cells,2022,11(21):3414. doi:10.3390/cells11213414.

        [20] CHIDAMBARAM H,DESALE S E,QURESHI T,et al. Microglial uptake of extracellular tau by actin-mediated phagocytosis[J]. Methods Mol Biol,2024,2761:231-243. doi:10.1007/978-1-0716-3662-6_16.

        [21] ZHAO X,SUN J,XIONG L,et al. β-amyloid binds to microglia Dectin-1 to induce inflammatory response in the pathogenesis of Alzheimer's disease[J]. Int J Biol Sci,2023,19(10):3249-3265. doi:10.7150/ijbs.81900.

        [22] QIU T,GUO J,WANG L,et al. Dynamic microglial activation is associated with LPS-induced depressive-like behavior in mice:an [18F] DPA-714 PET imaging study[J]. Bosn J Basic Med Sci,2022,22(4):649-659. doi:10.17305/bjbms.2021.6825.

        [23] YU Z,PANG H,YANG Y,et al. Microglia dysfunction drives disrupted hippocampal amplitude of low frequency after acute kidney injury[J]. CNS Neurosci Ther,2024,30(2):e14363. doi:10.1111/cns.14363.

        [24] LU R,ZHANG L,WANG H,et al. Echinacoside exerts antidepressant-like effects through enhancing BDNF-CREB pathway and inhibiting neuroinflammation via regulating microglia M1/M2 polarization and JAK1/STAT3 pathway[J]. Front Pharmacol,2022,13:993483. doi:10.3389/fphar.2022.993483.

        [25] WANG J,HE W,ZHANG J. A richer and more diverse future for microglia phenotypes[J]. Heliyon,2023,9(4):e14713. doi:10.1016/j.heliyon.2023.e14713.

        [26] AU N,MA C. Neuroinflammation,microglia and implications for retinal ganglion cell survival and axon regeneration in traumatic optic neuropathy[J]. Front Immunol,2022,13:860070. doi:10.3389/fimmu.2022.860070.

        [27] LIU X,MA J,DING G,et al. Microglia polarization from M1 toward M2 phenotype is promoted by astragalus polysaccharides mediated through inhibition of miR-155 in experimental autoimmune encephalomyelitis[J]. Oxid Med Cell Longev,2021,2021:5753452. doi:10.1155/2021/5753452.

        [28] HSU C H,PAN Y J,ZHENG Y T,et al. Ultrasound reduces inflammation by modulating M1/M2 polarization of microglia through STAT1/STAT6/PPARγ signaling pathways[J]. CNS Neurosci Ther,2023,29(12):4113-4123. doi:10.1111/cns.14333.

        [29] WANG X L,CHEN F,SHI H,et al. Oxymatrine inhibits neuroinflammation byregulating M1/M2 polarization in N9 microglia through the TLR4/NF-κB pathway[J]. Int Immunopharmacol,2021,100:108139. doi:10.1016/j.intimp.2021.108139.

        [30] YOU S,MA Z,ZHANG P,et al. Neuroprotective effects of the salidroside derivative SHPL-49 via the BDNF/TrkB/Gap43 pathway in rats with cerebral ischemia[J]. Biomed Pharmacother,2024,174:116460. doi:10.1016/j.biopha.2024.116460.

        [31] 張赟,李珂,補(bǔ)王珍. 電針調(diào)控Nrf2/HO-1通路對(duì)缺血缺氧性腦損傷大鼠小膠質(zhì)細(xì)胞活化的影響[J]. 天津醫(yī)藥,2023,51(2):149-154. ZHANG Y,LI K,BU W Z. Effect of electroacupuncture on the activation of microglia in rats with hypoxia-ischemia brain damage by regulating Nrf2/HO-1 pathway[J]. Tianjin Med J,2023,51(2):149-154. doi:10.11958/20220792.

        [32] XIE L,LIU Y,ZHANG N,et al. Electroacupuncture improves M2 microglia polarization and glia anti-inflammation of hippocampus in Alzheimer's disease[J]. Front Neurosci,2021,15:689629. doi:10.3389/fnins.2021.689629.

        [33] 劉瑩,王文麗,張國鑫,等. 雙氫青蒿素和普瑞巴林聯(lián)用對(duì)神經(jīng)病理性疼痛小鼠的干預(yù)作用及炎癥調(diào)控機(jī)制[J]. 中國中藥雜志,2024,49(6):1570-1578. LIU Y,WANG W L,ZHANG G X,et al.Interventional effects and inflammatory regulatory mechanisms of dihydroartemisinin and pregabalin combination in mice with neuropathic pain[J]. Chinese Journal of Traditional Chinese Medicine,2024,49(6):1570-1578. doi:10.19540/j.cnki.cjcmm.20231114.703.

        [34] LUO D,LI X,TANG S,et al. Epigenetic modifications in neuropathic pain[J]. Mol Pain,2021,17:17448069211056767. doi:10.1177/17448069211056767.

        [35] WU Q,ZHENG Y,YU J,et al. Electroacupuncture alleviates neuropathic pain caused by SNL by promoting M2 microglia polarization through PD-L1[J]. Int Immunopharmacol,2023,123:110764. doi:10.1016/j.intimp.2023.110764.

        [36] LI X,SHI H,ZHANG D,et al. Paeonol alleviates neuropathic pain by modulating microglial M1 and M2 polarization via the RhoA/p38MAPK signaling pathway[J]. CNS Neurosci Ther,2023,29(9):2666-2679. doi:10.1111/cns.14211.

        [37] TAN M,F(xiàn)ENG Z,CHEN H,et al. Transcranial direct current stimulation regulates phenotypic transformation of microglia to relieve neuropathic pain induced by spinal cord injury[J]. Front Behav Neurosci,2023,17:1147693. doi:10.3389/fnbeh.2023.1147693.

        [38] JIN G L,HONG L M,LIU H P,et al. Koumine modulates spinal microglial M1 polarization and the inflammatory response through the Notch-RBP-Jκ signaling pathway,ameliorating diabetic neuropathic pain in rats[J]. Phytomedicine,2021,90:153640. doi:10.1016/j.phymed.2021.153640.

        [39] JIN J,GUO J,CAI H,et al. M2-Like Microglia polarization attenuates neuropathic pain associated with Alzheimer's disease[J]. J Alzheimers Dis,2020,76(4):1255-1265. doi:10.3233/JAD-200099.

        [40] 孟靈,楊松,鐘青華,等. 電針頸夾脊穴對(duì)神經(jīng)根型頸椎病模型大鼠小膠質(zhì)細(xì)胞、P38絲裂原活化蛋白激酶和炎性因子表達(dá)的影響[J]. 針灸臨床雜志,2023,39(1):82-89. MENG L,YANG S,ZHONG Q H,et al. Effects of electro-needling cervical jiaji points on expressions of microglia,P38-MAPK and inflammatory cytokines in rats with CSR[J]. Journal of Clinical Acupuncture and Moxibustion,2023,39(1):82-89. doi:10.19917/j.cnki.1005-0779.023015.

        (2024-04-02收稿 2024-05-17修回)

        (本文編輯 胡小寧)

        久久亚洲春色中文字幕久久| AV无码一区二区三区国产| 亚洲国产剧情一区在线观看| 亚洲综合中文日韩字幕| 久久精品国产亚洲av果冻传媒| 国产欧美日韩一区二区三区在线 | 97视频在线播放| 日韩精品久久不卡中文字幕| 国产熟女一区二区三区不卡| 国产精品99久久久久久猫咪| 成人免费看aa片| 日日鲁鲁鲁夜夜爽爽狠狠视频97| 亚色中文字幕| 精品久久一区二区三区av制服| 国产又大又黑又粗免费视频| 成年女人毛片免费视频| 蜜芽尤物原创AV在线播放| 日本中文字幕精品久久| 国产永久免费高清在线| 青青操国产在线| av资源在线永久免费观看| 亚洲最全av一区二区| 桃花色综合影院| 最新日韩av在线不卡| 一区二区人妻乳中文字幕| 高潮内射双龙视频| 亚洲肥老熟妇四十五十路在线| 蜜臀av国内精品久久久人妻| 公厕偷拍一区二区三区四区五区| 一本精品99久久精品77| 日本一区二区三区高清千人斩| 日本av在线精品视频| 亚洲一区二区精品在线| 人妻少妇出轨中文字幕| 国产精品多人P群无码| 国产av一区二区内射| 久久女人精品天堂av影院麻| 午夜无码伦费影视在线观看| 国产黑色丝袜在线观看下 | 免费看操片| 麻豆夫妻在线视频观看|