摘要:目的 探究夏枯草提取物對膿毒癥小鼠炎癥、巨噬細(xì)胞表型及吞噬能力的影響,并分析Toll樣受體4(TLR4)/核因子-κB(NF-κB)信號通路是否參與其作用。方法 將C57BL/6小鼠分為對照組,模型組,夏枯草提取物低(25 mg/kg)、中(50 mg/kg)、高(100 mg/kg)劑量組。除對照組外,其余各組小鼠腹腔注射脂多糖(LPS)制備膿毒癥模型;各組給予相應(yīng)藥物灌胃。給藥24 h后,檢測小鼠血清腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素(IL)-1β、高遷移率族蛋白B1(HMGB1)、IL-10水平,M1型(CD11b+F4/80+)和M2型(CD206+F4/80+)巨噬細(xì)胞占腹腔巨噬細(xì)胞的比例及巨噬細(xì)胞的吞噬能力,腹腔巨噬細(xì)胞誘導(dǎo)型一氧化氮合酶(iNOS) mRNA和精氨酸酶1(Arg1)mRNA表達(dá)以及巨噬細(xì)胞TLR4、NF-κB p65及其磷酸化蛋白表達(dá)。結(jié)果 與對照組相比,模型組小鼠血清TNF-α、IL-1β、HMGB1,腹腔M1型巨噬細(xì)胞比例,巨噬細(xì)胞的平均熒光強度和吞噬能力百分比,iNOS mRNA,TLR4、磷酸化NF-κB p65(p-NF-κB p65)/NF-κB p65蛋白表達(dá)升高(P<0.05),IL-10、M2型巨噬細(xì)胞比例、Arg1 mRNA表達(dá)降低(P<0.05);與模型組相比,夏枯草提取物低、中、高劑量組小鼠血清TNF-α、IL-1β、HMGB1,腹腔M1型巨噬細(xì)胞比例,iNOS mRNA,TLR4、p-NF-κB p65/NF-κB p65蛋白表達(dá)依次降低(P<0.05),IL-10、M2型巨噬細(xì)胞比例、巨噬細(xì)胞的平均熒光強度和吞噬能力百分比、Arg1 mRNA表達(dá)依次升高(P<0.05)。結(jié)論 夏枯草提取物可能通過抑制TLR4/NF-κB通路抑制腹腔巨噬細(xì)胞極化為M1型,并促進其向M2型極化,增強巨噬細(xì)胞吞噬能力,減輕LPS誘導(dǎo)的膿毒癥小鼠炎癥反應(yīng)。
關(guān)鍵詞:膿毒癥;巨噬細(xì)胞,腹膜;夏枯草;Toll樣受體4;NF-κB;炎癥
中圖分類號:R515.3 文獻標(biāo)志碼:A DOI:10.11958/20240002
The effect of prunella vulgaris extract on inflammatory response and
peritoneal macrophages in septic mice
JIA Weining, BAO Yaling, LEI Hui△, YIN Xiaoning
School of Nursing, Zhangjiakou University, Zhangjiakou 075000, China
△Corresponding Author E-mail: 115386879@qq.com
Abstract: Objective To investigate the effect of prunella vulgaris extract on inflammation, macrophage phenotype, and phagocytic ability in septic mice, and analyze whether Toll like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway involved in its mechanism. Methods C57BL/6 mice were divided into the control group, the model group and the prunella vulgaris extract low (25 mg/kg), medium (50 mg/kg) and high (100 mg/kg) dose groups. Except for the control group, all other groups of mice were injected intraperitoneally with lipopolysaccharide (LPS) to prepare sepsis model. Each group was given corresponding medication by gavage. After 24 hours of administration, serum tumor necrosis factor-α (TNF-α), interleukin (IL) -1β, high mobility group protein B1 (HMGB1), IL-10 levels, the proportion of M1 type (CD11b+F4/80+) and M2 type (CD206+F4/80+) macrophages in peritoneal macrophages, the phagocytotic capacity of macrophages, the expression of inducible nitric oxide synthase (iNOS) messenger RNA (mRNA) and arginase 1 (Arg1) mRNA in peritoneal macrophages and expression levels of TLR4, NF-κB p65 and their phosphorylated proteins in macrophages were detected. Results Compared with the control group, serum TNF-α, IL-1β, HMGB1, proportion of M1 type macrophages in abdominal cavity, mean fluorescence intensity and phagocytotic capacity of macrophages, iNOS mRNA, TLR4, phosphorylated NF-κB p65 (p-NF-κB p65)/NF-κB p65 protein expression were increased in the model group (P<0.05). IL-10, proportion of M2 type macrophages and Arg1 mRNA expression were decreased (P<0.05). Compared with the model group, serum TNF-α, IL-1β, HMGB1, proportion of M1 type macrophages in abdominal cavity, iNOS mRNA, TLR4, p-NF-κB p65/NF-κB p65 protein expression were decreased successively in the prunella vulgaris extract low, medium and high dose groups (P<0.05). IL-10, proportion of M2 macrophages, mean fluorescence intensity and phagocytotic capacity of macrophages and Arg1 mRNA expression were increased successively (P<0.05). Conclusion By inhibiting TLR4/NF-κB pathway, prunella vulgaris extract may inhibit the polarization of peritoneal macrophages into M1 type and promote their polarization to M2 type, enhance macrophage phagocytic ability and alleviate LPS induced inflammatory response in septic mice.
Key words: sepsis; macrophages, peritoneal; Prunellae Spica; Toll-like receptor 4; NF-kappa B; inflammation
膿毒癥是一種復(fù)雜的全身性炎癥反應(yīng)綜合征,可導(dǎo)致多器官功能障礙綜合征,具有近40%的病死率[1]。膿毒癥的主要發(fā)病機制是免疫功能障礙,導(dǎo)致局部和全身性炎癥反應(yīng)加?。?]。免疫調(diào)節(jié)藥物可改善其癥狀,但仍有約50%的患者會發(fā)展為急性肺損傷和急性呼吸窘迫綜合征[3]。巨噬細(xì)胞是先天免疫系統(tǒng)的前哨細(xì)胞,其不同表型(M1和M2)轉(zhuǎn)化可調(diào)節(jié)炎性疾病的發(fā)生發(fā)展[4]。巨噬細(xì)胞在膿毒癥的免疫發(fā)病機制中起著非常重要的作用,調(diào)節(jié)巨噬細(xì)胞極化和自噬的藥物已成為膿毒癥的一種新療法[5-6]。近年來,從傳統(tǒng)草藥中提取的天然產(chǎn)物顯示出免疫調(diào)節(jié)和抗炎活性,如姜黃素[7]、大黃酚[8]、松果菊苷[9]?,F(xiàn)代研究發(fā)現(xiàn)夏枯草提取物具有多種生物學(xué)活性,包括抗微生物、抗癌和抗炎作用[10]。研究表明,夏枯草提取物可抑制脂多糖(LPS)誘導(dǎo)的小鼠單核巨噬細(xì)胞白血病細(xì)胞(RAW264.7)中前列腺素E2、一氧化氮和高遷移率族蛋白B1(HMGB1)的釋放,并降低盲腸結(jié)扎穿刺誘導(dǎo)的膿毒癥小鼠血清和肺HMGB1水平[11],說明夏枯草提取物可能對膿毒癥的治療有益。本研究從巨噬細(xì)胞極化的角度探討夏枯草提取物對膿毒癥小鼠炎癥因子生成的影響,為膿毒癥的治療以及夏枯草的進一步開發(fā)和應(yīng)用提供參考。
1 材料與方法
1.1 材料
1.1.1 動物 雄性健康SPF級C57BL/6小鼠70只,6~8周齡,體質(zhì)量18~22 g,購自江蘇集萃藥康生物公司,生產(chǎn)許可證號:SCXK(蘇)2023-0009。小鼠飼養(yǎng)于張家口學(xué)院動物實驗房,12 h明暗交替,溫度(21±2)℃,濕度(55±5)%。本研究經(jīng)張家口學(xué)院倫理委員會批準(zhǔn)(批準(zhǔn)編號:L2023第35號)。
1.1.2 藥材鑒定及夏枯草提取物制備 原藥材夏枯草購自北京同仁堂中藥材公司,經(jīng)鑒定為唇形科夏枯草屬植物。夏枯草果穗粉碎后過60目篩,取一定量的干燥藥材粉末,在索氏提取器中用體積分?jǐn)?shù)為95%乙醇萃取6 h,在lt;30 ℃下旋轉(zhuǎn)蒸發(fā)濃縮提取液,凍干。記錄殘余物的質(zhì)量,并將殘余物于-20 ℃儲存,殘余物即夏枯草提取物。
1.1.3 試劑 LPS、RIPA裂解液、BCA試劑盒(上海碧云天生物技術(shù)有限公司);小鼠腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素(IL)-1β、IL-10酶聯(lián)免疫吸附試驗(ELISA)試劑盒(上海酶聯(lián)生物科技有限公司);HMGB1 ELISA試劑盒(武漢貝茵萊生物科技有限公司);小鼠巨噬細(xì)胞磁珠分選試劑盒(腹膜)購自北京諾為生物技術(shù)有限公司;F4/80-PE、CD11b-APC、CD206-Alexa Fluor? 647抗體(美國BD Biosciences公司);綠色羧基聚苯乙烯熒光微球、TRIzol RNA分離試劑、PCR試劑盒(上海甄準(zhǔn)生物科技有限公司);誘導(dǎo)型一氧化氮合酶(iNOS)、精氨酸酶1(Arg1)、GAPDH的PCR引物序列由上海藍(lán)基生物科技有限公司合成;兔抗Toll樣受體4(TLR4)、核因子(NF)-κB p65、磷酸化NF-κB p65(p-NF-κB p65)、β-肌動蛋白(β-actin)單克隆抗體及羊抗兔二抗(英國Abcam公司)。
1.1.4 儀器 BILON-2000FD型冷凍干燥機(寧波市雙嘉儀器有限公司);UMR-9100T型酶標(biāo)儀、EXFLOW-104型流式細(xì)胞儀、Gentier 48R型熒光定量PCR(qRT-PCR)儀(北京酷搏科技有限公司);SZX7FL型熒光顯微鏡、E5001-SDB型凝膠成像系統(tǒng)(武漢世紀(jì)星辰科技有限公司)。
1.2 方法
1.2.1 膿毒癥小鼠模型制備及分組給藥 小鼠適應(yīng)性飼養(yǎng)7 d后,參照文獻[12]的方法腹腔注射10 mg/kg的LPS制備膿毒癥模型,小鼠出現(xiàn)腹瀉、寒戰(zhàn)、呼吸窘迫,口鼻分泌物增多,活動及飲食減少表明造模成功。將造模小鼠以隨機數(shù)字表法分成模型組及夏枯草提取物低、中、高劑量組,14只/組。另取14只小鼠腹腔注射等量生理鹽水設(shè)為對照組。造模成功后15 min內(nèi)進行相應(yīng)干預(yù),夏枯草提取物低、中、高劑量組分別灌胃25、50、100 mg/kg的夏枯草提取物,夏枯草提取物和生理鹽水混溶制成質(zhì)量濃度分別為2.5、5、10 g/L的混懸液,灌胃體積10 μL/g[13];模型組和對照組灌胃等量生理鹽水;給藥24 h后進行后續(xù)檢測。模型組出現(xiàn)3只死亡,其余各組小鼠均存活。
1.2.2 血清炎性因子檢測 用眼科鑷摘眼球法取血,置于EP管中,5 300 r/min離心10 min,取血清,按照ELISA試劑盒說明書檢測各組TNF-α、IL-1β、HMGB1、IL-10水平。
1.2.3 腹腔巨噬細(xì)胞收集及表型鑒定 腹腔巨噬細(xì)胞的收集采用腹腔灌洗法,以頸椎脫臼法處死小鼠,仰臥于無菌臺上,在腹腔注入5 mL無血清的培養(yǎng)基,反復(fù)輕柔腹部5 min,然后緩慢回抽腹腔灌洗液,重復(fù)3次,抽取約10 mL細(xì)胞懸液置入離心管。按照磁珠分選試劑盒說明書分離純化腹腔巨噬細(xì)胞。取經(jīng)過磁珠分選后的巨噬細(xì)胞懸液100 μL置于離心管中(含1×106個細(xì)胞),按說明書的要求加入F4/80-PE、CD11b-APC、CD206-Alexa Fluor? 647熒光標(biāo)記抗體,避光孵育25 min。添加PBS緩沖液2 mL,離心除去上清液后,加入PBS緩沖液400 μL重懸細(xì)胞并用流式細(xì)胞儀分析。以CD11b+F4/80+細(xì)胞為M1型巨噬細(xì)胞占腹腔巨噬細(xì)胞的比例;以CD206+F4/80+細(xì)胞為M2型巨噬細(xì)胞占腹腔巨噬細(xì)胞的比例。
1.2.4 巨噬細(xì)胞吞噬能力的測定 取分離純化后的巨噬細(xì)胞懸液,以5×105個/孔的密度接種在6孔板中,與2 μL綠色羧基聚苯乙烯熒光微球(505/515 nm波長,直徑2 μm)在37 ℃避光孵育1 h,用冷PBS緩沖液洗滌后,流式細(xì)胞儀分析細(xì)胞。通過計數(shù)包含微球的細(xì)胞(綠色熒光)來評估平均熒光強度,并計算吞噬能力百分比(吞噬能力百分比=吞有熒光微球的吞噬細(xì)胞數(shù)/吞噬細(xì)胞總數(shù)×100%)。
1.2.5 qRT-PCR檢測腹腔巨噬細(xì)胞iNOS和Arg1 mRNA表達(dá) 提取各組巨噬細(xì)胞中的總RNA,反轉(zhuǎn)錄為cDNA,進行PCR擴增。反應(yīng)體系參照PCR試劑盒說明書進行配制。引物序列見表1。反應(yīng)條件:93 ℃預(yù)變性4 min;92 ℃變性21 s,67 ℃退火14 s,71 ℃延伸19 s,36次循環(huán)。以GAPDH為內(nèi)參,采用2-ΔΔCt方法計算iNOS mRNA和Arg1 mRNA表達(dá)。
1.2.6 蛋白印跡法檢測腹腔巨噬細(xì)胞TLR4/NF-κB通路相關(guān)蛋白表達(dá) 用含有蛋白酶抑制劑的RIPA裂解液提取巨噬細(xì)胞中的總蛋白,定量蛋白濃度,電泳分離蛋白,然后將其轉(zhuǎn)移至PVDF膜,5%脫脂奶粉封膜1.5 h,并在4 ℃下加入一抗TLR4(1∶640)、NF-κB p65(1∶720)、p-NF-κB p65(1∶720)、β-actin(1∶1 490)孵育過夜,加入二抗(1∶4 400)室溫孵育2.5 h,ECL顯色,以β-actin為內(nèi)參,通過與內(nèi)參的灰度比得出目標(biāo)蛋白的相對表達(dá)量。
1.3 統(tǒng)計學(xué)方法 采用SPSS 24.0軟件進行數(shù)據(jù)處理,計量資料以均數(shù)±標(biāo)準(zhǔn)差([x] ±s)表示,多組間比較采用單因素方差分析,組間多重比較采用SNK-q檢驗,P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 夏枯草提取物對膿毒癥小鼠血清炎性因子水平的影響 與對照組相比,模型組血清TNF-α、IL-1β、HMGB1水平升高,IL-10水平降低(P<0.05);與模型組相比,夏枯草提取物低、中、高劑量組血清TNF-α、IL-1β、HMGB1水平依次降低,IL-10水平依次升高(P<0.05),見表2。
2.2 夏枯草提取物對膿毒癥小鼠腹腔巨噬細(xì)胞M1型、M2型變化的影響 與對照組相比,模型組腹腔M1型巨噬細(xì)胞比例升高,M2型巨噬細(xì)胞比例降低(P<0.05),與模型組相比,夏枯草提取物低、中、高劑量組腹腔M1型巨噬細(xì)胞比例依次降低,M2型巨噬細(xì)胞比例依次升高(P<0.05),見圖1、2,表3。
2.3 夏枯草提取物對膿毒癥小鼠腹腔巨噬細(xì)胞吞噬能力的影響 與對照組相比,模型組腹腔巨噬細(xì)胞的平均熒光強度和吞噬能力百分比升高(P<0.05),與模型組相比,夏枯草提取物低、中、高劑量組腹腔巨噬細(xì)胞的平均熒光強度和吞噬能力百分比依次升高(P<0.05),見圖3、表4。
2.4 夏枯草提取物對膿毒癥小鼠腹腔巨噬細(xì)胞iNOS mRNA和Arg1 mRNA表達(dá)的影響 與對照組相比,模型組腹腔巨噬細(xì)胞iNOS mRNA表達(dá)升高,Arg1 mRNA表達(dá)降低(P<0.05);與模型組相比,夏枯草提取物低、中、高劑量組腹腔巨噬細(xì)胞iNOS mRNA表達(dá)依次降低,Arg1 mRNA表達(dá)依次升高(P<0.05),見表5。
2.5 夏枯草提取物對膿毒癥小鼠腹腔巨噬細(xì)胞TLR4/NF-κB通路相關(guān)蛋白的影響 與對照組相比,模型組腹腔巨噬細(xì)胞TLR4、p-NF-κB p65/NF-κB p65蛋白表達(dá)升高(P<0.05),與模型組相比,夏枯草提取物低、中、高劑量組小鼠腹腔巨噬細(xì)胞TLR4、p-NF-κB p65/NF-κB p65蛋白表達(dá)依次降低(P<0.05),見圖4、表6。
3 討論
LPS是革蘭陰性菌外膜的主要成分,參與膿毒癥的發(fā)病機制并刺激免疫反應(yīng),可導(dǎo)致組織損傷和多器官功能衰竭[14-15]。TNF-α和IL-1β是早期促炎介質(zhì),而HMGB1是膿毒癥晚期促炎介質(zhì),可轉(zhuǎn)移至細(xì)胞質(zhì)并通過活化的巨噬細(xì)胞釋放至細(xì)胞外液,誘導(dǎo)巨噬細(xì)胞中產(chǎn)生促炎性介質(zhì)[16]。IL-10是一種炎癥抑制因子,可抑制炎性細(xì)胞的激活、遷移和黏附[17]。本研究顯示,膿毒癥小鼠血清TNF-α、IL-1β和HMGB1水平升高,IL-10水平降低;而經(jīng)夏枯草提取物干預(yù)后,小鼠血清促炎介質(zhì)水平降低,IL-10水平升高,提示夏枯草提取物可減輕膿毒癥小鼠炎癥反應(yīng)。
巨噬細(xì)胞分為促炎(M1)和組織修復(fù)(M2)表型,其功能的轉(zhuǎn)變?nèi)Q于環(huán)境信號。巨噬細(xì)胞可識別LPS、TNF-α、IL-1β,進而向M1型轉(zhuǎn)化,促進iNOS、膜蛋白CD16/32、CD11b和促炎細(xì)胞因子表達(dá);IL-4、IL-10、轉(zhuǎn)化生長因子-β等可誘導(dǎo)分化M2型巨噬細(xì)胞,使得Arg1、CD206高表達(dá)[18]。本研究結(jié)果顯示,膿毒癥小鼠腹腔M1型巨噬細(xì)胞比例升高、M2型巨噬細(xì)胞比例降低;而夏枯草提取物干預(yù)后增加了膿毒癥小鼠腹腔M2型巨噬細(xì)胞比例,降低了M1型巨噬細(xì)胞比例。qPCR證實夏枯草提取物處理可以下調(diào)膿毒癥小鼠腹腔巨噬細(xì)胞iNOS mRNA表達(dá),上調(diào)Arg1 mRNA表達(dá),提示夏枯草提取物可誘導(dǎo)膿毒癥小鼠腹腔巨噬細(xì)胞表型向M2型極化。Tang等[19]發(fā)現(xiàn)將離體程序化的M2巨噬細(xì)胞過繼轉(zhuǎn)移至內(nèi)毒素誘導(dǎo)的膿毒癥小鼠中,可提高小鼠存活率。本研究結(jié)果顯示夏枯草提取物干預(yù)后,膿毒癥小鼠巨噬細(xì)胞的平均熒光強度和吞噬能力百分比升高,提示夏枯草提取物可介導(dǎo)巨噬細(xì)胞極化,增強其吞噬活性。由于夏枯草提取物可使膿毒癥小鼠血清促炎因子(TNF-α、IL-1β、HMGB1)水平降低、抑炎因子(IL-10)水平升高,而M2型巨噬細(xì)胞在炎癥反應(yīng)的后期階段被激活,主要表達(dá)抑炎因子,由此可見夏枯草提取物主要是對M2型巨噬細(xì)胞的吞噬能力產(chǎn)生影響。
TLR4是LPS的受體,在由LPS介導(dǎo)的巨噬細(xì)胞炎癥中起著重要的作用,巨噬細(xì)胞的M1極化受信號分子的調(diào)控,如TLR4/NF-κB通路[20-21]。TLR4/NF-κB激活可導(dǎo)致炎性因子的釋放[22]。研究發(fā)現(xiàn)TLR4/NF-κB信號通路的抑制可通過調(diào)節(jié)巨噬細(xì)胞的活化和炎癥反應(yīng)減輕膿毒癥相關(guān)的急性肺、腎損傷[23]。本研究發(fā)現(xiàn),在LPS誘導(dǎo)的膿毒癥小鼠腹腔巨噬細(xì)胞極化的過程中,巨噬細(xì)胞中TLR4、p-NF-κB p65/NF-κB p65蛋白表達(dá)升高,而夏枯草提取物可下調(diào)TLR4、p-NF-κB p65/NF-κB p65蛋白表達(dá),促進巨噬細(xì)胞向M2型極化。提示夏枯草提取物可抑制TLR4/NF-κB通路,減輕膿毒癥小鼠炎癥反應(yīng)。
綜上所述,夏枯草提取物可能通過抑制TLR4/NF-κB通路進而抑制腹腔巨噬細(xì)胞極化為M1型,并促進其向M2型極化,增強巨噬細(xì)胞吞噬能力,減輕LPS誘導(dǎo)的膿毒癥小鼠炎癥反應(yīng)。但涉及巨噬細(xì)胞極化為M2型的通路較多,夏枯草提取物可否通過其他途徑影響巨噬細(xì)胞極化、減輕膿毒癥引起的器官功能障礙,仍需進一步研究確認(rèn)。此外,給藥后夏枯草提取物的藥效維持時間尚需深入分析。
參考文獻
[1] YANG A,KENNEDY J N,REITZ K M,et al. Time to treatment and mortality for clinical sepsis subtypes[J]. Crit Care,2023,27(1):236. doi:10.1186/s13054-023-04507-5.
[2] STANOJCIC M,VINAIK R,ABDULLAHI A,et al. NLRP3 knockout enhances immune infiltration and inflammatory responses and improves survival in a burn sepsis model[J]. Immunology,2022,165(2):195-205. doi:10.1111/imm.13427.
[3] WANG J,LI J,LOU A,et al. Sacubitril/valsartan alleviates sepsis-induced acute lung injury via inhibiting GSDMD-dependent macrophage pyroptosis in mice[J]. FEBS J,2023,290(8):2180-2198. doi:10.1111/febs.16696.
[4] LI J,YU S,LU X,et al. The phase changes of M1/M2 phenotype of microglia/macrophage following oxygen-induced retinopathy in mice[J]. Inflamm Res,2021,70(2):183-192. doi:10.1007/s00011-020-01427-w.
[5] MENG Y,KONG K W,CHANG Y Q,et al. Histone methyltransferase SETD2 inhibits M1 macrophage polarization and glycolysis by suppressing HIF-1α in sepsis-induced acute lung injury[J]. Med Microbiol Immunol,2023,212(5):369-379. doi:10.1007/s00430-023-00778-5.
[6] DI C,DU Y,ZHANG R,et al. Identification of autophagy-related genes and immune cell infiltration characteristics in sepsis via bioinformatic analysis[J]. J Thorac Dis,2023,15(4):1770-1784. doi:10.21037/jtd-23-312.
[7] CHEN D,WANG H,CAI X. Curcumin interferes with sepsis-induced cardiomyocyte apoptosis via TLR1 inhibition[J]. Rev Port Cardiol,2023,42(3):209-221. doi:10.1016/j.repc.2023.01.013.
[8] ZHAO H,WANG Y,ZHU X. Chrysophanol exerts a protective effect against sepsis-induced acute myocardial injury through modulating the microRNA-27b-3p/Peroxisomal proliferating-activated receptor gamma axis[J]. Bioengineered,2022,13(5):12673-12690. doi:10.1080/21655979.2022.2063560.
[9] 李露,徐臣年,杜燕,等. 松果菊苷對膿毒癥小鼠急性腎損傷的保護作用及其機制[J]. 山西醫(yī)科大學(xué)學(xué)報,2021,52(4):456-462. LI L,XU C N,DU Y,et al. Protective effects and mechanism of echinacoside against sepsis-induced acute kidney injury[J]. J Shanxi Med Univ,2021,52(4):456-462. doi:10.13753/j.issn.1007-6611.2021.04.011.
[10] LEI Y,YUAN H,GAI L,et al. Uncovering active ingredients and mechanisms of spica prunellae in the treatment of colon adenocarcinoma:a study based on network pharmacology and bioinformatics[J]. Comb Chem High Throughput Screen,2021,24(2):306-318. doi:10.2174/1386207323999200730210536.
[11] JUN M S,KIM H S,KIM Y M,et al. Ethanol extract of Prunella vulgaris var. lilacina inhibits HMGB1 release by induction of heme oxygenase-1 in LPS-activated RAW 264.7 cells and CLP-induced septic mice[J]. Phytother Res,2012,26(4):605-612. doi:10.1002/ptr.3613.
[12] 何荷,梁隆斌,劉楊,等. 綠原酸通過ROS/TXNIP/NLRP3信號通路介導(dǎo)的細(xì)胞焦亡途徑減輕膿毒癥小鼠急性肺損傷[J]. 中國病理生理雜志,2021,37(8):1455-1461. HE H,LIANG L B,LIU Y,et al. Chlorogenic acid attenuates acute lung injury in septic mice via ROS/TXNIP/NLRP3 signaling pathway mediated pyrocytosis pathway[J]. Chinese Journal of Pathophysiology,2021,37(8):1455-1461. doi:10.3969/j.issn.1000-4718.2021.08.015.
[13] SONG J,ZHANG Z,HU Y,et al. An aqueous extract of Prunella vulgaris L. inhibits the growth of papillary thyroid carcinoma by inducing autophagy in vivo and in vitro[J]. Phytother Res,2021,35(5):2691-2702. doi:10.1002/ptr.7015.
[14] GABARIN R S,LI M,ZIMMEL P A,et al. Intracellular and extracellular lipopolysaccharide signaling in sepsis:avenues for novel therapeutic strategies[J]. J Innate Immun,2021,13(6):323-332. doi:10.1159/000515740.
[15] DING J,JIANG H,SU B,et al. DNMT1/miR-130a/ZEB1 regulatory pathway affects the inflammatory response in lipopolysaccharide-induced sepsis[J]. DNA Cell Biol,2022,41(5):479-486. doi:10.1089/dna.2021.1060.
[16] CAI D,DUAN H,F(xiàn)U Y,et al. Renal tissue damage induced by acute kidney injury in sepsis rat model is inhibited by cynaropicrin via IL-1β and TNF-α down-regulation[J]. Dokl Biochem Biophys,2021,497(1):151-157. doi:10.1134/S1607672921020022.
[17] CHEN J,WANG F,ZHANG S,et al. Activation of CD4+ T cell-derived cannabinoid receptor 2 signaling exacerbates sepsis via inhibiting IL-10[J]. J Immunol,2022,208(11):2515-2522. doi:10.4049/jimmunol.2101015.
[18] SEOUDY W M,MOHY EL DIEN S M,ABDEL REHEEM T A,et al. Macrophages of the M1 and M2 types play a role in keloids pathogenesis[J]. Int Wound J,2023,20(1):38-45. doi:10.1111/iwj.13834.
[19] TANG H,LIANG Y B,CHEN Z B,et al. Soluble egg antigen activates M2 macrophages via the STAT6 and PI3K pathways,and schistosoma japonicum alternatively activates macrophage polarization to improve the survival rate of septic mice[J]. J Cell Biochem,2017,118(12):4230-4239. doi:10.1002/jcb.26073.
[20] CUI S,ZHANG Z,CHENG C,et al. Small extracellular vesicles from periodontal ligament stem cells primed by lipopolysaccharide regulate macrophage M1 polarization via miR-433-3p targeting TLR2/TLR4/NF-κB[J]. Inflammation,2023,46(5):1849-1858. doi:10.1007/s10753-023-01845-y.
[21] NIU X,SONG H,XIAO X,et al. Tectoridin alleviates lipopolysaccharide-induced inflammation via inhibiting TLR4-NF-κB/NLRP3 signaling in vivo and in vitro[J]. Immunopharmacol Immunotoxicol,2022,44(5):641-655. doi:10.1080/08923973.2022.2073890.
[22] WANG M,WEI J,SHANG F,et al. Down-regulation of lncRNA SNHG5 relieves sepsis-induced acute kidney injury by regulating the miR-374a-3p/TLR4/NF-κB pathway[J]. J Biochem,2021,169(5):575-583. doi:10.1093/jb/mvab008.
[23] SENOUSY S R,AHMED A F,ABDELHAFEEZ D A,et al. Alpha-chymotrypsin protects against acute lung,kidney,and liver injuries and increases survival in CLP-induced sepsis in rats through inhibition of TLR4/NF-κB pathway[J]. Drug Des Devel Ther,2022,16:3023-3039. doi:10.2147/DDDT.S370460.
(2023-12-28收稿 2024-04-10修回)
(本文編輯 李國琪)