+和CD83+樹突狀細(xì)胞在COPD小鼠肺組織中的分布及意義"/>
摘要:目的 研究CD1a和CD83陽(yáng)性樹突狀細(xì)胞(DC)在慢性阻塞性肺疾?。–OPD)小鼠肺組織中的分布及意義。方法 將20只C57BL/6小鼠采用隨機(jī)數(shù)字表法分為空氣對(duì)照組和煙熏COPD組,各10例??諝鈱?duì)照組暴露于空氣中;煙熏COPD組使用香煙煙熏法建立COPD小鼠模型,于最后一次煙熏結(jié)束24 h內(nèi)處死小鼠,取右下肺。觀察2組小鼠體質(zhì)量變化、肺組織病理變化,測(cè)量平均內(nèi)襯間隔(MLI),免疫組化法檢測(cè)肺組織中CD1a+、CD83+ DC的分布并計(jì)數(shù)。結(jié)果 建模7、14、21、28 d時(shí)煙熏COPD組的小鼠體質(zhì)量較空氣對(duì)照組均降低(P<0.05);HE染色示煙熏COPD組小鼠肺組織正常肺泡結(jié)構(gòu)破壞,多個(gè)肺泡相互融合形成較大的肺泡腔,肺泡間隔有大量炎性細(xì)胞浸潤(rùn),肺泡壁增厚,COPD造模成功;與空氣對(duì)照組比較,煙熏COPD組MLI值(μm)增大(28.30±3.47 vs. 50.40±3.60),肺組織中CD1a+ DC數(shù)量(個(gè)/視野)增多(9.58±2.18 vs. 17.08±3.67),而CD83+ DC數(shù)量(個(gè)/視野)減少(19.78±4.95 vs. 8.02±3.30),差異有統(tǒng)計(jì)學(xué)意義(均P<0.05)。結(jié)論 煙熏COPD組小鼠肺組織CD1a+ DC增多,CD83+ DC減少,香煙煙熏可能導(dǎo)致DC成熟障礙。
關(guān)鍵詞:肺疾病,慢性阻塞性;樹突細(xì)胞;吸煙;CD1a;CD83
中圖分類號(hào):R563 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20240321
Distribution and significance of CD1a+ and CD83+ dendritic cells in lung tissue of COPD mice
ZHANG Lanying1, ZHANG Fuan2, LIU Maomao1, CHEN Jie1, ZHOU Jian1, LIU Yuting1, OUYANG Yao1△
1 Department of Respiratory and Critical Care Medicine, 2 Department of Neurosurgery,
Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
△Corresponding Author E-mail: ouyangyao116@sohu.com
Abstract: Objective To study the distribution and significance of CD1a and CD83 positive dendritic cells (DCs) in lung tissue of chronic obstructive pulmonary disease (COPD) mice. Methods Twenty C57BL/6 mice were randomly divided into the air control group and the smoked COPD group (n=10 for each group). COPD mouse model was established using cigarette smoking method. Mice were executed within 24 h after the last cigarette smoking, and right lower lung was collected. Body mass changes and lung histopathological changes of mice were observed in two groups. Mean linear intercept (MLI) was measured, and expression levels of CD1a+ and CD83+ DCs in lung tissue were detected by immunohistochemistry. Results The body mass of mice at 7, 14, 21 and 28 d after modeling was lower in the smoked COPD group than that in the air control group (P<0.05). HE staining showed that the normal alveolar structure of lung tissue of mice in the smoked group was disrupted, with multiple alveoli fused with each other to form a larger alveolar lumen, a large number of inflammatory cells infiltrated in alveolar intervals, and walls of the alveoli were thickened. COPD modeling was successful. Compared with the air control group, MLI values (μm) increased in the smoked COPD group (28.30±3.47 vs. 50.40±3.60), and the number of CD1a+ DCs ( per field of view) in lung tissue increased (9.58±2.18 vs. 17.08±3.67), while the number of CD83+ DCs (per field of view) decreased (19.78±4.95 vs. 8.02±3.30) (all P<0.05). Conclusion The number of CD1a+ DCs in lung tissue is increased and the number of CD83+ DCs in lung tissue is decreased in the smoked COPD group of mice, and cigarette smoking may have impaired DC maturation.
Key words: pulmonary disease, chronic obstructive; dendritic cells; smoking; CD1a; CD83
慢性阻塞性肺疾?。–OPD)是一種高發(fā)病率、高病死率及高負(fù)擔(dān)的疾病,以持續(xù)存在的氣流受限和相應(yīng)的呼吸系統(tǒng)癥狀為特征,其與氣道及肺組織對(duì)有害顆粒和氣體的異常炎癥反應(yīng)有關(guān),嚴(yán)重影響患者的生活質(zhì)量,并帶來(lái)較大的經(jīng)濟(jì)壓力和社會(huì)負(fù)擔(dān)[1-2]。吸煙是COPD發(fā)病的重要誘發(fā)因素,吸煙停止后肺部炎癥仍持續(xù)存在,自身免疫系統(tǒng)紊亂可能是COPD的發(fā)病機(jī)制[3]。氣道、肺實(shí)質(zhì)和肺血管的慢性炎癥反應(yīng)是COPD的特征性改變,這一過(guò)程需要抗原提呈細(xì)胞參與。樹突狀細(xì)胞(dendritic cell,DC)是目前已知唯一可激活初始T細(xì)胞的抗原提呈細(xì)胞,在啟動(dòng)、調(diào)控及維持特異性免疫反應(yīng)中發(fā)揮不可替代的作用[4-5]。根據(jù)成熟狀態(tài)不同可分為成熟DC及未成熟DC,未成熟DC具有攝取并處理抗原的能力,成熟DC具有抗原提呈能力,目前認(rèn)為CD1a是未成熟DC的標(biāo)志,而CD83則是成熟DC的標(biāo)志[6-7]。本研究通過(guò)香煙煙熏法建立COPD小鼠模型,檢測(cè)COPD小鼠肺組織中CD1a+和CD83+ DC的分布情況,探討DC在COPD發(fā)病機(jī)制中的作用。
1 材料與方法
1.1 實(shí)驗(yàn)動(dòng)物 SPF級(jí)C57BL/6小鼠20只,6~8周齡,雌雄不限,體質(zhì)量18~24 g,購(gòu)自第三軍醫(yī)大學(xué)實(shí)驗(yàn)動(dòng)物中心,動(dòng)物生產(chǎn)許可證號(hào):SCXK(渝)2012-0005。本研究經(jīng)遵義醫(yī)科大學(xué)附屬醫(yī)院動(dòng)物倫理委員會(huì)審批后實(shí)施,批準(zhǔn)號(hào):KLLY(A)-2020-056。
1.2 主要試劑及儀器 黃果樹牌香煙購(gòu)自貴州中煙工業(yè)有限責(zé)任公司,焦油量10 mg,煙氣煙堿量0.9 mg,煙氣一氧化碳量12 mg。兔抗小鼠CD1a多克隆抗體、兔抗小鼠CD83多克隆抗體、超敏二步法免疫組化檢測(cè)試劑盒(小鼠)購(gòu)自北京博奧森生物技術(shù)有限公司;蘇木素伊紅(HE)染色試劑盒購(gòu)自北京索萊寶科技有限公司;全自動(dòng)輪轉(zhuǎn)式切片機(jī)購(gòu)自德國(guó)Leica公司;光學(xué)顯微鏡購(gòu)自日本Olympus公司。
1.3 實(shí)驗(yàn)方法
1.3.1 COPD小鼠模型建立及分組 將20只C57BL/6小鼠采用隨機(jī)數(shù)字表法分為空氣對(duì)照組和煙熏COPD組各10只。使用香煙煙熏法建立COPD小鼠模型:將小鼠置于自制煙熏玻璃箱(90 cm×40 cm×30 cm)中,每周連續(xù)煙熏6 d,4次/d(每次6支煙,間隔1 h),共持續(xù)4周??諝鈱?duì)照組則暴露于空氣中,正常飼養(yǎng)。觀察小鼠一般情況,于模型建立0、7、14、21、28 d時(shí)記錄體質(zhì)量變化。
1.3.2 標(biāo)本收集和HE染色 2組小鼠于末次煙熏結(jié)束24 h內(nèi)予1.25%阿佛?。?0 mL/kg)腹腔注射麻醉,然后采用頸椎脫臼法處死。充分暴露胸腔,取右下肺,于4%多聚甲醛固定24 h,30%~100%梯度乙醇脫水、二甲苯透明、石蠟包埋并制作厚5 μm切片,行HE染色,顯微鏡觀察肺組織病理變化。
1.3.3 小鼠肺組織平均內(nèi)襯間隔(mean linear intercept,MLI)測(cè)定 將HE染色切片在低倍鏡(×100)下隨機(jī)讀取5個(gè)視野(避開大血管和支氣管),于每個(gè)視野正中劃十字交叉線,計(jì)數(shù)與交叉線相交的肺泡隔數(shù)(NS),同時(shí)測(cè)量十字線總長(zhǎng)(L),按公式計(jì)算MLI。MLI=L/NS,以表示肺泡平均內(nèi)徑。通過(guò)MLI評(píng)估小鼠肺氣腫嚴(yán)重程度。
1.3.4 免疫組化法檢測(cè)小鼠肺組織DC中CD1a+、CD83+的表達(dá) 將小鼠肺組織切片脫蠟、脫水、清除內(nèi)源性氧化產(chǎn)物、抗原修復(fù),血清封閉;加兔抗小鼠CD1a、CD83多克隆抗體(1∶100),以PBS代替一抗作為陰性對(duì)照,4 ℃冰箱過(guò)夜;加二抗[超敏二步法免疫組化檢測(cè)試劑盒(小鼠)],DAB顯色,蘇木紫染色,乙醇分化、脫水、干燥、封片。采用IPWin32軟件,于200倍下選取同一張切片上5個(gè)陽(yáng)性細(xì)胞數(shù)最多的視野進(jìn)行拍照并計(jì)數(shù),作為該切片對(duì)應(yīng)肺組織的陽(yáng)性細(xì)胞數(shù)。
1.4 統(tǒng)計(jì)學(xué)方法 采用SPSS 29.0軟件進(jìn)行數(shù)據(jù)分析,計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差([x] ±s)表示,2組間比較采用獨(dú)立樣本t檢驗(yàn),組內(nèi)各時(shí)間點(diǎn)比較采用重復(fù)測(cè)量資料的方差分析。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 2組小鼠的一般情況 空氣對(duì)照組小鼠活潑好動(dòng),毛發(fā)有光澤且較順暢,食欲旺盛,呼吸平穩(wěn)。煙熏COPD組小鼠精神萎靡,毛發(fā)無(wú)光澤,食欲減退,出現(xiàn)咳嗽、氣促表現(xiàn)。
2.2 2組小鼠體質(zhì)量變化 造模0 d時(shí),2組小鼠體質(zhì)量差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);造模7、14、21、28 d時(shí),煙熏COPD組體質(zhì)量均低于空氣對(duì)照組(P<0.05)??諝鈱?duì)照組小鼠體質(zhì)量隨時(shí)間延長(zhǎng)而逐漸增加,煙熏COPD組小鼠體質(zhì)量隨煙熏時(shí)間延長(zhǎng)而逐漸降低(P<0.05),見(jiàn)表1。
2.3 小鼠肺組織病理特征 HE染色結(jié)果顯示,空氣對(duì)照組小鼠肺泡壁結(jié)構(gòu)連續(xù)、完整,肺泡間隔可見(jiàn)少量炎性細(xì)胞浸潤(rùn)。煙熏COPD組小鼠正常肺泡結(jié)構(gòu)破壞,多個(gè)肺泡相互融合形成較大的肺泡腔,肺泡間隔有大量的淋巴細(xì)胞、中性粒細(xì)胞等炎性細(xì)胞浸潤(rùn),且肺泡壁增厚,與人類COPD患者肺組織形態(tài)、結(jié)構(gòu)相似,見(jiàn)圖1。煙熏COPD組MLI值(μm)較空氣對(duì)照組增大(50.40±3.60 vs. 28.30±3.47,n=10,t=13.993,P<0.05),提示造模成功。
2.4 2組小鼠肺組織中CD1a+及CD83+ DC的分布比較 CD1a和CD83染色均位于細(xì)胞膜及細(xì)胞質(zhì)內(nèi)。CD1a+和CD83+ DC呈棕黃色,單核,胞體呈卵圓形或不規(guī)則形,部分細(xì)胞表面見(jiàn)粗細(xì)不一、長(zhǎng)短不等的突起,主要分布于肺泡、肺小血管管壁周圍、小氣道及氣道周圍淋巴組織,見(jiàn)圖2。煙熏COPD組小鼠肺組織中CD1a+ DC較空氣對(duì)照組增多,而CD83+ DC較空氣對(duì)照組減少(均P<0.05),見(jiàn)表2。
3 討論
COPD嚴(yán)重危害人類健康[8],盡管現(xiàn)階段的診療技術(shù)取得了較大進(jìn)步,但其患病率和死亡率仍呈上升趨勢(shì)[9]。吸煙是COPD的主要危險(xiǎn)因素,可增加肺組織和小氣道中炎性細(xì)胞、炎性因子、趨化因子等,造成氣道上皮和肺實(shí)質(zhì)損傷退化,最終導(dǎo)致COPD[10]。本課題組前期通過(guò)香煙煙熏法成功建立COPD小鼠模型[11]。本研究顯示,香煙煙熏COPD組小鼠一般情況較空氣對(duì)照組差,體質(zhì)量下降,肺泡結(jié)構(gòu)破壞、肺部炎性細(xì)胞浸潤(rùn),與文獻(xiàn)[12]報(bào)道一致。
COPD患者存在小氣道炎癥[13],需要抗原提呈細(xì)胞參與。DC是體內(nèi)的重要抗原提呈細(xì)胞[14-15]。目前認(rèn)為CD1a是未成熟DC的標(biāo)志,而CD83則是成熟DC的標(biāo)志[6-7,16]。Giorello等[17]研究表明CD1a+和CD83+ DC可以作為早期乳腺癌患者轉(zhuǎn)移發(fā)展的預(yù)后標(biāo)志。Barbieri等[18]發(fā)現(xiàn)吸煙可引發(fā)口腔免疫系統(tǒng)紊亂,降低DC的活化和成熟能力,影響口腔鱗狀細(xì)胞癌的發(fā)生發(fā)展。Stahelin等[19]研究顯示吸煙可消耗口腔鱗狀細(xì)胞癌中未成熟DC和成熟DC。由此可知,CD1a+和CD83+ DC作為重要的免疫細(xì)胞可調(diào)節(jié)機(jī)體免疫功能,參與多種疾病的發(fā)生發(fā)展。
本課題組前期研究發(fā)現(xiàn),在COPD患者肺組織小氣道中CD1a+ DC分布增加,CD83+ DC分布減少,香煙煙霧影響COPD患者小氣道DC的成熟[20],且通過(guò)流式細(xì)胞術(shù)和免疫組化法檢測(cè)COPD患者外周血以及肺組織中趨化因子受體6、CD80水平,發(fā)現(xiàn)趨化因子受體6表達(dá)增高,CD80表達(dá)降低,存在輔助性T細(xì)胞17(Th17)/調(diào)節(jié)性T(Treg)細(xì)胞失衡[21],筆者推測(cè)COPD患者中存在DC成熟障礙,DC介導(dǎo)Th17/Treg細(xì)胞失衡可能在COPD的發(fā)病機(jī)制中發(fā)揮重要作用。而本研究在煙熏COPD小鼠肺組織中發(fā)現(xiàn)CD1a+ DC增多,CD83+ DC減少,DC成熟障礙,與本課題組前期研究[20]結(jié)果一致。Zanini等[22]研究表明,COPD患者中心氣道中未成熟DC標(biāo)志物CD207增加,而成熟DC標(biāo)志物CD83減少,成熟度降低;這與本研究結(jié)果一致,且該研究表明DC成熟障礙與氣道血管分布和血管生成因子有關(guān),未成熟DC與疾病嚴(yán)重程度明顯相關(guān),氣道血管變化與DC成熟障礙之間的相互作用可能在COPD的發(fā)病機(jī)制中發(fā)揮關(guān)鍵作用。在本研究中,煙熏COPD組MLI值較空氣對(duì)照組增大且DC成熟障礙,說(shuō)明DC成熟障礙可能參與COPD的發(fā)病,并與其嚴(yán)重程度相關(guān)。香煙煙熏使DC成熟障礙的具體機(jī)制不明,筆者推測(cè)香煙煙霧復(fù)雜的化學(xué)成分可促進(jìn)免疫炎癥,使得肺部炎癥持續(xù)加重導(dǎo)致DC成熟障礙,不能有效地激活效應(yīng)性T淋巴細(xì)胞,從而引起特異性免疫反應(yīng)。此外,不同的煙熏時(shí)間對(duì)DC成熟的影響可能也不同。在本研究中,經(jīng)過(guò)長(zhǎng)達(dá)4周的煙熏后,煙熏COPD小鼠肺組織中DC成熟障礙。而Givi等[23]研究表明,短期香煙煙霧提取物可刺激未成熟DC成為成熟DC的狀態(tài),CD83、CD86、CD40表達(dá)上調(diào),促炎細(xì)胞因子分泌增多,而長(zhǎng)期暴露于香煙煙霧提取物則抑制功能性DC的發(fā)育,CD11c、CD83、CD86和CD40表達(dá)下降,DC成熟障礙,同時(shí)產(chǎn)生細(xì)胞因子和刺激T淋巴細(xì)胞能力下降。Paplinska-Goryca等[24]研究表明,在哮喘、COPD患者及健康人中,單核細(xì)胞衍生的DC中胸腺基質(zhì)淋巴細(xì)胞生成素、白細(xì)胞介素(IL)-33和IL-17A的表達(dá)受到上皮細(xì)胞的不同調(diào)控,這些細(xì)胞間復(fù)雜的相互作用可能會(huì)影響氣道炎癥,并成為哮喘和COPD發(fā)生發(fā)展的重要因素。
綜上,本研究發(fā)現(xiàn)煙熏COPD小鼠的肺組織CD1a+ DC數(shù)量增多,CD83+ DC數(shù)量減少,DC成熟障礙,但DC成熟障礙的機(jī)制尚待闡明。
參考文獻(xiàn)
[1] CHRISTENSON S A,SMITH B M,BAFADHEL M,et al. Chronic obstructive pulmonary disease[J]. Lancet,2022,399(10342):2227-2242. doi:10.1016/S0140-6736(22)00470-6.
[2] HALPIN D,CRINER G J,PAPI A,et al. Global Initiative for the Diagnosis,Management,and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease[J]. Am J Respir Crit Care Med,2021,203(1):24-36. doi:10.1164/rccm.202009-3533SO.
[3] BHAT T A,PANZICA L,KALATHIL S G,et al. Immune dysfunction in patients with chronic obstructive pulmonary disease[J]. Ann Am Thorac Soc,2015,12Suppl2(Suppl2):S169-175. doi:10.1513/AnnalsATS.201503-126AW.
[4] XU Y D,CHENG M,SHANG P P,et al. Role of IL-6 in dendritic cell functions[J]. J Leukoc Biol,2022,111(3):695-709. doi:10.1002/JLB.3MR0621-616RR.
[5] WHITEHOUSE A L,MUSHTAQ N,MIYASHITA L,et al. Airway dendritic cell maturation in children exposed to air pollution[J]. PLoS One,2020,15(5):e0232040. doi:10.1371/journal.pone.0232040.
[6] GAMA-CUELLAR A G,F(xiàn)RANCISCO A,SCARINI J F,et al. Decreased CD1a+ and CD83+ cells in tonsillar squamous cell carcinoma regardless of HPV status[J]. J Appl Oral Sci,2022,30:e20210702. doi:10.1590/1678-7757-2020-0702.
[7] LI Z,JU X,SILVEIRA P A,et al. CD83:activation marker for antigen presenting cells and its therapeutic potential[J]. Front Immunol,2019,10:1312. doi:10.3389/fimmu.2019.01312.
[8] HU W,F(xiàn)ANG L,ZHANG H,et al. Global disease burden of COPD from 1990 to 2019 and prediction of future disease burden trend in China[J]. Public Health,2022,208:89-97. doi:10.1016/j.puhe.2022.04.015.
[9] YANG Y,CHEN K,TANG W,et al. Influence of Baduanjin on lung function,exercise capacity,and quality of life in patients with mild chronic obstructive pulmonary disease[J]. Medicine (Baltimore),2020,99(37):e22134. doi:10.1097/MD.0000000000022134.
[10] AGHAPOUR M,RAEE P,MOGHADDAM S J,et al. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease:role of cigarette smoke exposure[J]. Am J Respir Cell Mol Biol,2018,58(2):157-169. doi:10.1165/rcmb.2017-0200TR.
[11] 張?zhí)m英,張婧,歐陽(yáng)瑤. 煙熏誘導(dǎo)慢性阻塞性肺疾病小鼠模型的建立及驗(yàn)證[J]. 山東醫(yī)藥,2016,56(32):35-38. ZHANG L Y,ZHANG J,OUYANG Y. Establishment and validation of a smoke-induced chronic obstructive pulmonary disease mouse model[J]. Shandong Medical Journal,2016,56(32):35-38. doi:10.3969/j.issn.1002-266X.2016.32.011.
[12] 聶進(jìn),劉代順,張建勇,等. 臍帶間充質(zhì)干細(xì)胞外泌體對(duì)慢性阻塞性肺疾病大鼠肺部炎癥的作用機(jī)制探討[J]. 天津醫(yī)藥,2023,51(12):1326-1331. NIE J,LIU D S,ZHANG J Y,et al. The effect and mechanism of exosomes from umbilical cord mesenchymal stem cells on pulmonary inflammation in chronic obstructive pulmonary disease rats[J]. Tianjin Med J,2023,51(12):1326-1331.doi:10.11958/20230708.
[13] LI L,GONG Y,HOU D,et al. Contribution of small airway inflammation to the development of COPD[J]. BMC Pulm Med,2024,24(1):116. doi:10.1186/s12890-024-02911-3.
[14] BANCHEREAU J,STEINMAN R M. Dendritic cells and the control of immunity[J]. Nature,1998,392(6673):245-252. doi:10.1038/32588.
[15] LIU J,CAO X. Regulatory dendritic cells in autoimmunity:a comprehensive review[J]. J Autoimmun,2015,63:1-12. doi:10.1016/j.jaut.2015.07.011.
[16] 金丹,王雪峰,王唯一,等. S-100和CD83+DC在喉黏膜病變中的表達(dá)及意義[J]. 天津醫(yī)藥,2014,42(10):995-997,1058. JIN D,WANG X F,WANG W Y,et al. Significance of S-100 and CD83+DC expression in laryngeal mucosa lesions[J]. Tianjin Med J,2014,42(10):995-997,1058. doi:10.3969/j.issn.0253-9896.2014.10.010.
[17] GIORELLO M B,MATAS A,MARENCO P,et al. CD1a- and CD83- positive dendritic cells as prognostic markers of metastasis development in early breast cancer patients[J]. Breast Cancer,2021,28(6):1328-1339. doi:10.1007/s12282-021-01270-9.
[18] BARBIERI S,SCHUCH L F,CASCAES A M,et al. Does smoking habit affect dendritic cell expression in oral squamous cell carcinoma?[J]. Braz Oral Res,2022,36:e044. doi:10.1590/1807-3107bor-2022.vol36.0044.
[19] ST?HELIN H,F(xiàn)RANCISCO A,MARIANO F V,et al. Impact of smoking on dendritic cells in patients with oral squamous cell carcinoma[J]. Braz Oral Res,2021,35:e075. doi:10.1590/1807-3107bor-2021.vol35.0075.
[20] LIAO S X,DING T,RAO X M,et al. Cigarette smoke affects dendritic cell maturation in the small airways of patients with chronic obstructive pulmonary disease[J]. Mol Med Rep,2015,11(1):219-225. doi:10.3892/mmr.2014.2759.
[21] ZHENG X,ZHANG L,CHEN J,et al. Dendritic cells and Th17/Treg ratio play critical roles in pathogenic process of chronic obstructive pulmonary disease[J]. Biomed Pharmacother,2018,108:1141-1151. doi: 10.1016/j.biopha.2018.09.113.
[22] ZANINI A,SPANEVELLO A,BARALDO S,et al. Decreased maturation of dendritic cells in the central airways of COPD patients is associated with VEGF,TGF-β and vascularity[J]. Respiration,2014,87(3):234-242. doi:10.1159/000356749.
[23] GIVI M E,F(xiàn)OLKERTS G,WAGENAAR G T,et al. Cigarette smoke differentially modulates dendritic cell maturation and function in time[J]. Respir Res,2015,16:131. doi:10.1186/s12931-015-0291-6.
[24] PAPLINSKA-GORYCA M,MISIUKIEWICZ-STEPIEN P,PROBOSZCZ M,et al. The expressions of TSLP, IL-33, and IL-17A in monocyte derived dendritic cells from asthma and COPD patients are related to epithelial-macrophage interactions[J]. Cells,2020,9(9):1944. doi:10.3390/cells9091944.
(2024-03-19收稿 2024-04-28修回)
(本文編輯 李國(guó)琪)