摘要:阿爾茨海默病(AD)是一類(lèi)以認(rèn)知功能下降、精神行為異常、日常生活能力下降為臨床表現(xiàn)的神經(jīng)系統(tǒng)退行性疾病。該疾病病因多樣,發(fā)病隱匿,傳統(tǒng)神經(jīng)心理學(xué)量表評(píng)估費(fèi)時(shí)、影像學(xué)檢測(cè)敏感度低、藥物研發(fā)進(jìn)展緩慢。隨著認(rèn)知神經(jīng)科學(xué)和數(shù)字技術(shù)的迅速發(fā)展,AI、虛擬現(xiàn)實(shí)等數(shù)字化技術(shù)越來(lái)越受到關(guān)注。該文綜述近年來(lái)數(shù)字化技術(shù)在AD的預(yù)測(cè)、篩查、輔助診斷和治療領(lǐng)域的臨床研究,以及數(shù)字化技術(shù)在AD步態(tài)、精細(xì)運(yùn)動(dòng)、語(yǔ)音等多領(lǐng)域的進(jìn)展與突破,為臨床診療和進(jìn)一步探索提供方向。
關(guān)鍵詞:阿爾茨海默?。籄I;虛擬現(xiàn)實(shí);數(shù)字化技術(shù)
中圖分類(lèi)號(hào):R749.16 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20240039
The application progress of digital technology in Alzheimer's disease
RAN Longfei1, NIE Zhiqiang1, GUO Junhui1, 2△
1 Rehabilitation Medicine Center of Peking University Medical Offshore Oil Hospital, Tianjin 300452, China;
2 School of Engineering, Peking University
△Corresponding Author E-mail: gjh8207@126.com
Abstract: Alzheimer's disease (AD) is a neurodegenerative disease characterized by clinical manifestations of cognitive decline, abnormal mental behavior and decreased ability to engage in daily activities. The etiology of this disease is diverse and the onset is insidious. Traditional neuropsychological assessments are time-consuming, imaging detection sensitivity is low, and drug development progress is slow. With the rapid development of cognitive neuroscience and digital technology, digital technologies such as artificial intelligence and virtual reality are receiving increasing attention. This article aims to review the clinical research on digital technology in the prediction, screening, auxiliary diagnosis and treatment of AD in recent years, as well as the progress and breakthroughs in multiple fields such as AD gait, fine motor and speech, providing a directions for clinical diagnosis and further exploration.
Key words:Alzheimer's disease; artificial intelligence; virtual reality; digital technology
阿爾茨海默?。ˋD)是以進(jìn)行性認(rèn)知功能障礙及行為異常為主要特征的神經(jīng)系統(tǒng)疾病,表現(xiàn)為記憶和視空間能力障礙、人格和行為改變等,嚴(yán)重降低患者生活質(zhì)量[1]。隨著我國(guó)人口老齡化加劇,AD數(shù)量呈上升趨勢(shì),目前我國(guó)AD患者約983萬(wàn)[2],預(yù)計(jì)至2050年60歲以上AD患者將達(dá)2 765萬(wàn)人[3]。AD防治是世界性難題,早期篩查、診斷和干預(yù)是防治的關(guān)鍵。本文通過(guò)對(duì)數(shù)字化認(rèn)知測(cè)評(píng)工具、計(jì)算機(jī)輔助篩查、虛擬現(xiàn)實(shí)技術(shù)(VR)、人工智能(AI)等技術(shù)在AD診療領(lǐng)域的應(yīng)用進(jìn)行回顧,為促進(jìn)數(shù)字化技術(shù)在AD診療領(lǐng)域的發(fā)展提供參考。
1 計(jì)算機(jī)量化式AD認(rèn)知測(cè)評(píng)工具
2020版中國(guó)AD診療指南指出,AD診療過(guò)程中應(yīng)綜合評(píng)估患者認(rèn)知和至少4個(gè)特定領(lǐng)域(記憶、語(yǔ)言、視空間和執(zhí)行)的功能[4]。受試者通過(guò)數(shù)字化技術(shù)采集資料,建立電子檔案,自助完成輔助篩查,用時(shí)短暫,可極大提高診療效率。研究顯示,處于AD臨床前期人群往往伴有主觀認(rèn)知下降表現(xiàn),腦內(nèi)可檢測(cè)到A沉積和(或)Tau病理,如腦脊液分析顯示的β-淀粉樣蛋白(Aβ)和(或)Tau水平異常[5]。北京老年腦健康促進(jìn)計(jì)劃-主觀認(rèn)知評(píng)估量表(BABRI-SCE)在評(píng)估AD多維認(rèn)知主訴方面有突出的優(yōu)勢(shì),可為預(yù)測(cè)病情發(fā)展和調(diào)整干預(yù)計(jì)劃提供依據(jù)[6]。計(jì)算機(jī)化量表式認(rèn)知測(cè)評(píng)電子化系統(tǒng)[7]和計(jì)算機(jī)化任務(wù)式認(rèn)知測(cè)評(píng)[8]均為標(biāo)準(zhǔn)神經(jīng)心理測(cè)評(píng)在計(jì)算機(jī)框架下的數(shù)字化應(yīng)用,部分工具已被證實(shí)與原測(cè)試方式之間有良好的一致性[9]。
2 計(jì)算機(jī)建立預(yù)測(cè)AD篩查模型
開(kāi)發(fā)簡(jiǎn)捷高效、適合大規(guī)模人群的數(shù)字化認(rèn)知篩查工具是AD防控的關(guān)鍵舉措。應(yīng)用計(jì)算機(jī)算法建立AD預(yù)測(cè)模型是AD大規(guī)模篩查和隨訪的新途徑。James等[10]通過(guò)測(cè)試15 307例受試者數(shù)據(jù)并建立AD預(yù)測(cè)模型,結(jié)果發(fā)現(xiàn)僅需收集簡(jiǎn)易精神狀態(tài)檢查量表(MMSE)評(píng)分、完成連線測(cè)驗(yàn)時(shí)間以及臨床癡呆評(píng)定量表評(píng)分就可預(yù)測(cè)部分患者未來(lái)2年內(nèi)AD發(fā)生風(fēng)險(xiǎn),準(zhǔn)確率達(dá)91%,誤診率降低到84%。2022年全國(guó)首個(gè)AD數(shù)字化篩查小程序“ADC失智癥篩查”正式上線,標(biāo)志著AD篩查從線下人工協(xié)助變?yōu)榫€上數(shù)字化自助完成,將數(shù)字化技術(shù)與經(jīng)典認(rèn)知篩查量表充分結(jié)合,可使AD篩查更為便捷、高效[11]。
有研究應(yīng)用MemTrax記憶認(rèn)知評(píng)估系統(tǒng)進(jìn)行認(rèn)知數(shù)字化篩查并構(gòu)建非線性模型,成功擬合了認(rèn)知的非線性變化趨勢(shì),若測(cè)評(píng)結(jié)果處于人群參考值下限的3%~10%可被視為認(rèn)知障礙高危人群,若測(cè)評(píng)結(jié)果低于人群參考值下限3%提示可能存在認(rèn)知障礙,其研究成果為AD風(fēng)險(xiǎn)人群的主動(dòng)腦健康管理提供了新方案[12]。
3 VR和AI
3.1 VR VR已被初步證實(shí)具備與傳統(tǒng)手段等效的臨床價(jià)值[13]。有研究開(kāi)發(fā)了沉浸式VR認(rèn)知評(píng)估工具,在交互式虛擬現(xiàn)實(shí)廚房場(chǎng)景中評(píng)估AD患者的言語(yǔ)記憶、處理速度、注意力、工作記憶和規(guī)劃技能,其對(duì)于評(píng)估AD患者在現(xiàn)實(shí)生活中情緒和精神障礙的認(rèn)知功能價(jià)值較高,有效性、敏感性令人滿(mǎn)意[14]。Zygouris等[15]使用虛擬超市測(cè)試(VST)對(duì)輕度認(rèn)知障礙(MCI)患者和有主觀記憶障礙(SMC)的老年人進(jìn)行檢測(cè),與蒙特利爾認(rèn)知評(píng)估量表(MoCA)和MMSE比較,VST有81.91%的正確區(qū)分率(CCR),而MoCA平均CCR為72.04%,MMSE為64.89%,證明VST是篩查有SMC的老年人群是否存在MCI的強(qiáng)大工具,較傳統(tǒng)篩查工具更有效。
VR有望改善MCI老年人群的認(rèn)知功能。Maeng等[16]用基于虛擬現(xiàn)實(shí)的認(rèn)知訓(xùn)練(VRCT)對(duì)MCI患者和健康老年人的認(rèn)知功能改善情況的比較研究顯示,MCI組言語(yǔ)記憶、視覺(jué)空間和建構(gòu)能力、注意力和執(zhí)行功能得到改善。VR還可改善AD患者負(fù)性情緒狀態(tài)。Brimelow等[17]使用具有虛擬現(xiàn)實(shí)功能的Galaxy S7與Gear虛擬現(xiàn)實(shí)耳機(jī)為療養(yǎng)院伴或不伴AD者進(jìn)行課程培訓(xùn)以評(píng)估情緒改善狀況,結(jié)果顯示伴有AD者無(wú)不良反應(yīng),冷漠情緒得到明顯改善。然而,VR對(duì)就診醫(yī)療機(jī)構(gòu)水平和條件有較高的要求,同時(shí)應(yīng)綜合考慮AD患者及護(hù)理者自身資歷、臨床實(shí)際情況等。
3.2 AI 當(dāng)前AI應(yīng)用于AD早期診斷與預(yù)測(cè)研究較多[18]。研究顯示,AI可穿戴設(shè)備可監(jiān)測(cè)患者體溫、心率和血氧飽和度,提供日?;顒?dòng)期間的實(shí)時(shí)情況,特異度達(dá)95%,靈敏度達(dá)93%,為AD患者日常生活支持提供了一種可行性方案[19]?;贏I研發(fā)出的Xception等深度學(xué)習(xí)程序能夠辨別輕度癡呆患者和健康者的面部信息,這為后續(xù)研究開(kāi)辟了道路[20]。Aβ的42個(gè)殘基(Aβ42)的聚集是AD發(fā)生的關(guān)鍵。有研究利用AI和化學(xué)動(dòng)力學(xué)高度準(zhǔn)確地量化Aβ42,以期尋找新的藥物來(lái)抑制Aβ42的聚集,為通過(guò)AI開(kāi)發(fā)靶向藥物、延緩疾病進(jìn)展或預(yù)防AD的發(fā)生提供了可能[21]。
4 數(shù)字化技術(shù)在AD的具體應(yīng)用
4.1 步態(tài) 步態(tài)分析為AD認(rèn)知衰退的一種重要證據(jù),可在臨床上快速識(shí)別和輔助診斷AD[22]。有研究對(duì)55例aMCI、10例AD及33例健康者進(jìn)行步態(tài)機(jī)器學(xué)習(xí)模型的研究發(fā)現(xiàn),識(shí)別健康者和AD準(zhǔn)確率為90.56%,識(shí)別aMCI和AD準(zhǔn)確率為87.69%[23]。另有研究顯示,步態(tài)分析對(duì)于AD的早期識(shí)別和鑒別診斷同樣具有良好的臨床價(jià)值,AD患者額葉和頂葉的室周白質(zhì)高信號(hào)(WMH)與緩慢的步行速度、步行周期及角度變化有關(guān),而MCI患者僅表現(xiàn)出腦葉下白質(zhì)病變與較短的步幅、增加的步行角度間有相關(guān)性[24]。另一項(xiàng)通過(guò)平均隨訪約8年的大樣本前瞻性隊(duì)列研究發(fā)現(xiàn),步行速度下降與癡呆發(fā)生風(fēng)險(xiǎn)高度相關(guān),與步行正常者比較,完全癡呆、AD及血管性癡呆的風(fēng)險(xiǎn)比分別為0.857、0.874和0.788,認(rèn)為步行速度所反映的肌肉健康狀況是評(píng)估癡呆風(fēng)險(xiǎn)的必要條件[25]。
4.2 精細(xì)運(yùn)動(dòng) 手寫(xiě)涉及精細(xì)運(yùn)動(dòng)、動(dòng)覺(jué)成分和多個(gè)認(rèn)知領(lǐng)域,通常受到AD的損害者在文本書(shū)寫(xiě)中表現(xiàn)出較高的空中/地面時(shí)間比、較長(zhǎng)的文本持續(xù)時(shí)間、較長(zhǎng)的開(kāi)始/反應(yīng)時(shí)間以及更低的流暢性[26]。AD筆跡特征分析在輔助AD篩查或診斷方面具有廣闊的應(yīng)用前景。一項(xiàng)研究分析了AD患者和正常老年人的筆跡運(yùn)動(dòng)特征差異發(fā)現(xiàn),筆跡特征在圖形和文本任務(wù)中AD陽(yáng)性預(yù)測(cè)值分別為92.21%和97.81%,準(zhǔn)確度分別為96.30%和96.55%,特異度分別為93.41%和98.37%[27]。張劍紅[28]設(shè)計(jì)了精確抓握感知運(yùn)動(dòng)功能測(cè)試分析系統(tǒng),結(jié)果顯示,AD組運(yùn)動(dòng)速度、抓握精確度較正常者顯著降低,AD組預(yù)加載期時(shí)間延長(zhǎng)、握力-負(fù)載力的協(xié)調(diào)性下降,精確握力控制中的反饋控制比例增加,表明精確抓握運(yùn)動(dòng)學(xué)與動(dòng)力學(xué)參數(shù)的變化可部分反映AD早期的神經(jīng)系統(tǒng)退行性病變程度。另一種新的AD自動(dòng)評(píng)估方案通過(guò)對(duì)受試者輸入的混合圖像的壓力、速度和高度進(jìn)行分析發(fā)現(xiàn),其區(qū)分AD和健康者的準(zhǔn)確率可達(dá)81.5%[29]。
4.3 語(yǔ)音 AD語(yǔ)言功能受損常表現(xiàn)在語(yǔ)法、信息內(nèi)容以及語(yǔ)音特征等方面,語(yǔ)音已被證明對(duì)AD和MCI具有診斷有效性[30]。Qiao等[31]認(rèn)為計(jì)算機(jī)輔助的語(yǔ)音、沉默片段自動(dòng)分析是一種有前景的無(wú)創(chuàng)性工具,可用于區(qū)分MCI與AD在語(yǔ)言障礙上的相關(guān)特征。
自動(dòng)語(yǔ)音識(shí)別技術(shù)在AD的早期檢測(cè)和疾病嚴(yán)重程度評(píng)估方面具有廣闊的前景。通過(guò)對(duì)語(yǔ)音AI模型研究發(fā)現(xiàn),該模型預(yù)測(cè)受試者在85歲之前發(fā)展為AD的準(zhǔn)確率高達(dá)70%,AD受試者從建模錄制語(yǔ)音樣本到確診為早期AD的平均時(shí)間是7.59年,該模型可提前7年預(yù)測(cè)AD發(fā)生風(fēng)險(xiǎn)[32]。數(shù)字化自動(dòng)語(yǔ)音識(shí)別技術(shù)對(duì)于收集患者的語(yǔ)音資料較為容易,但設(shè)備質(zhì)量、錄音環(huán)境、受試者自身等因素也會(huì)影響語(yǔ)音內(nèi)容的準(zhǔn)確性。
4.4 眼動(dòng) AD患者眼球運(yùn)動(dòng)異常與大腦功能區(qū)的病理性結(jié)構(gòu)改變有關(guān),可反映認(rèn)知功能的衰退。Aβ在大腦的病理性沉積是AD特征性的病理改變之一。有研究證實(shí),在AD患者和實(shí)驗(yàn)?zāi)P托∈蟮囊暰W(wǎng)膜中均可檢測(cè)到Aβ,AD特征性眼動(dòng)變化與其病理改變相符合,眼動(dòng)可輔助AD早期診斷和臨床鑒別診斷[33]。另有研究顯示,受試者不需要完成復(fù)雜答題和操作,只通過(guò)眼動(dòng)的反應(yīng),就可以鑒別早期AD類(lèi)型并評(píng)估其嚴(yán)重程度[34]。另有研究應(yīng)用眼動(dòng)追蹤技術(shù)發(fā)現(xiàn),受試者反向眼跳延遲時(shí)間越長(zhǎng),錯(cuò)誤率越高,患AD的可能性越大,認(rèn)為基于眼動(dòng)追蹤技術(shù)構(gòu)建的診斷模型對(duì)于AD的預(yù)測(cè)具有良好的效果[35]。眼動(dòng)儀的誕生為家庭AD自我篩查提供了一種可行的途徑。對(duì)基于便攜式眼動(dòng)儀和深度學(xué)習(xí)框架的融合研究發(fā)現(xiàn),該眼動(dòng)儀區(qū)分正常人群和AD患者的準(zhǔn)確率可達(dá)97%[36]。
4.5 睡眠 研究顯示,50%以上的AD患者存在碎片化睡眠和晝夜節(jié)律改變,碎片化睡眠可導(dǎo)致AD發(fā)病風(fēng)險(xiǎn)提高1.5倍[37]。新近研究表明,睡眠障礙與認(rèn)知、學(xué)習(xí)及記憶功能下降有關(guān),可增加AD發(fā)生風(fēng)險(xiǎn)并促進(jìn)AD進(jìn)展[38]。腕動(dòng)計(jì)[39]、智能手機(jī)睡眠分析[40]、可穿戴式睡眠監(jiān)測(cè)[41]等可穿戴式睡眠監(jiān)測(cè)傳感器設(shè)備可以通過(guò)運(yùn)動(dòng)監(jiān)測(cè)數(shù)據(jù)來(lái)推斷睡眠狀態(tài),顯示出高水平的睡眠分期準(zhǔn)確性,利用這些技術(shù)追蹤睡眠數(shù)據(jù)能夠幫助捕捉預(yù)示AD變化的微小長(zhǎng)期睡眠偏差。然而,這種睡眠評(píng)估設(shè)備的有效性有待確認(rèn),尚不足以與多導(dǎo)睡眠監(jiān)測(cè)儀一樣作為臨床輔助評(píng)估工具。
5 總結(jié)與展望
數(shù)字化技術(shù)已被廣泛應(yīng)用于多種神經(jīng)系統(tǒng)疾病相關(guān)認(rèn)知障礙的篩查和防治。本文總結(jié)了數(shù)字化認(rèn)知測(cè)評(píng)工具、AD預(yù)測(cè)模型、VR、AI等技術(shù)的前沿資料,并且探究數(shù)字化技術(shù)應(yīng)用于AD步態(tài)、精細(xì)運(yùn)動(dòng)、語(yǔ)音等多領(lǐng)域進(jìn)展與突破,由此可知AD的診斷不再完全依賴(lài)臨床癥狀。數(shù)字化技術(shù)為AD篩查、輔助診斷提供了基于循證醫(yī)學(xué)證據(jù)的補(bǔ)充,并提供了基于智能算法的輔助干預(yù),可多維度地對(duì)極具復(fù)雜性的大數(shù)據(jù)進(jìn)行綜合處理,通過(guò)構(gòu)建計(jì)算機(jī)分類(lèi)預(yù)測(cè)模型,快速篩查疾病、提高診療效率,推動(dòng)健康老齡化的實(shí)現(xiàn)。然而,其作為一種新技術(shù),無(wú)論是使用方法還是臨床價(jià)值均需提高和完善,技術(shù)準(zhǔn)確性和可操作性也面臨著諸多挑戰(zhàn)。現(xiàn)階段還沒(méi)有一種方法可以準(zhǔn)確預(yù)警或早期診斷AD,通常需要多種技術(shù)聯(lián)合。隨著新的AD風(fēng)險(xiǎn)基因、性染色體基因表達(dá)等的發(fā)現(xiàn),未來(lái)AD早期診斷新技術(shù)有望獲得進(jìn)一步發(fā)展。
參考文獻(xiàn)
[1]"""" 邵蕊,李岱,韓召利,等. 基于老年綜合評(píng)估的個(gè)體化康復(fù)訓(xùn)練對(duì)阿爾茨海默病患者認(rèn)知功能、風(fēng)險(xiǎn)防范的影響[J]. 天津醫(yī)藥,2021,49(8):847-851. SHAO R,LI D,HAN Z L,et al. Effects of individualized rehabilitation training based on comprehensive geriatric assessment on cognitive function and risk prevention of patients with Alzheimer's disease[J]. Tianjin Med J,2021,49(8):847-851. doi:10.11958/20210643.
[2]"""" JIA L,QUAN M,F(xiàn)U Y,et al. Dementia in China: epidemiology,clinical management,and research advances[J]. Lancet Neurol,2020,19(1):81-92. doi:10.1016/S1474-4422(19)30290-X.
[3]""" 中國(guó)疾病預(yù)防控制中心慢性非傳染性疾病控制中心,國(guó)家衛(wèi)生健康委統(tǒng)計(jì)信息中心. 中國(guó)死因監(jiān)測(cè)數(shù)據(jù)集2021[M]. 北京:中國(guó)科學(xué)技術(shù)出版社,2022. Chronic Non communicable Disease Control Center of China Center for Disease Control and Prevention,Compiled by the Statistical Information Center of the National Health Commission. China Cause of Death Monitoring Dataset 2021[M]. Beijing:China Science and Technology Press,2022.
[4]"""" 田金洲,解恒革,王魯寧,等. 中國(guó)阿爾茨海默病癡呆診療指南(2020年版)[J]. 中華老年醫(yī)學(xué)雜志,2021,40(3):269-283. TIAN J Z,XIE H G,WANG L N,et al. Chinese guideline for the diagnosis and treatment of Alzheimer's disease dementia(2020)[J]. Chinese Journal of Geriatrics,2021,40(3):269-283. doi:10.3760/cma.j.issn.0254-9026.2021.03.001.
[5]"""" 萬(wàn)琪,謝曄,王蓉,等. Gal-3參與阿爾茨海默病的機(jī)制研究進(jìn)展[J]. 天津醫(yī)藥,2022,50(10):1115-1120. WAN Q,XIE Y,WANG R,et al. Research progress on the role of Gal-3 in Alzheimer's disease[J]. Tianjin Med J,2022,50(10):1115-1120. doi:10.11958/20220639.
[6]"""" YANG Y,LV C,LI H,et al. Community?based model for dementia risk screening:the Beijing aging brain rejuvenation initiative(BABRI)brain health system[J]. J Am Med Dir Assoc,2021,22(7):1500?1506.e3. doi:10.1016/j.jamda.2020.12.024.
[7]"""" 蔣平靜,譚小林,于婷婷,等. 基于電子化的癡呆與認(rèn)知障礙早期識(shí)別篩查和診斷流程的探討[J]. 阿爾茨海默病及相關(guān)病,2021,4(2):116-120. JIANG P J,TAN X L,YU T T,et al. Exploration of the early identification, screening,and diagnostic process for dementia and cognitive impairment based on electronicization[J]. Alzheimer's Disease and Related Diseases,2021,4(2):116-120. doi:10.3969/j.issn.2096-5516.2021.02.005.
[8]"""" CAMPOS-MAGDALENO M,LEIVA D,PEREIRO A X,et al. Changes in visual memory in mild cognitive impairment:a longitudinal study with CANTAB[J]. Psychol Med,2021,51(14):2465-2475. doi:10.1017/S0033291720001142.
[9]"""" SOLOMON T M, BARBONE J M, FEASTER H T,et al. Comparing the standard and electronic versions of the Alzheimer′s disease assessment scale-cognitive subscale:a validation study[J]. J Prev Alzheimers Dis,2019,6(4):237-241. doi:10.14283/jpad.2019.27.
[10]""" JAMES C,RANSON J M,EVERSON R,et al. Performance of machine learning algorithms for predicting progression to dementia in memory clinic patients[J]. JAMA Netw Open,2021,4(12):e2136553. doi:10.1001/jamanetworkopen.2021.36553.
[11]""" KLEIMAN M J,BARENHOLTZ E,GALVIN J E,et al. Screening for early-stage Alzheimer's disease using optimized feature sets and machine learning[J]. J Alzheimers Dis,2021,81(1):355-366. doi:10.3233/JAD-201377.
[12]""" 張雙虎. 上海交通大學(xué)醫(yī)學(xué)院附屬仁濟(jì)醫(yī)院阿爾茨海默病有了數(shù)字認(rèn)知篩查新方法[N]. 中國(guó)科學(xué)報(bào),2023-09-13(004). ZHANG S H. Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital has developed a new digital cognitive screening method for Alzheimer's disease[N]. China Science Daily,2023-09-13(004). doi:10.28514/n.cnki.nkxsb.2023.002181.
[13]""" FERNáNDEZ MONTENEGRO J M,VILLARINI B,ANGELOPOULOU A,et al. A survey of Alzheimer's disease early diagnosis methods for cognitive assessment[J]. Sensors(Basel),2020,20(24):7292. doi:10.3390/s20247292.
[14]""" MISKOWIAK K W,JESPERSEN A E,KESSING L V,et al. Cognition assessment in virtual reality:validity and feasibility of a novel virtual reality test for real-life cognitive functions in mood disorders and psychosis spectrum disorders[J]. J Psychiatr Res,2021,145:182-189. doi:10.1016/j.jpsychires.2021.12.002.
[15]""" ZYGOURIS S,ILIADOU P,LAZAROU E,et al. Detection of mild cognitive impairment in an At-risk group of older adults:can a novel self-administered serious game-based screening test improve diagnostic accuracy?[J]. J Alzheimers Dis,2020,78(1):405-412. doi:10.3233/JAD-200880.
[16]""" MAENG S,HONG J P,KIM W H,et al. Effects of virtual reality-based cognitive training in the elderly with and without mild cognitive impairment[J]. Psychiatry Investigation,2021,18(7):619-627. doi:10.30773/pi.2020.0446.
[17]""" BRIMELOW R E,DAWE B,DISSANAYKA N. Preliminary research:virtual reality in residential aged care to reduce apathy and improve mood[J]. Cyberpsychol Behav Soc Netw,2020,23(3):165-170. doi:10.1089/cyber.2019.0286.
[18]""" EL-SAPPAGH S,ALONSO J M,ISLAM S M R,et al. A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer's disease[J]. Sci Rep,2021,11(1):2660. doi:10.1038/s41598-021-82098-3.
[19]""" AL-NAAMI B,ABU OWIDA H,ABU MALLOUH M,et al. A new prototype of smart wearable monitoring system solution for Alzheimer's patients[J]. Med Devices(Auckl),2021,14:423-433. doi:10.2147/MDER.S339855.
[20]""" UMEDA-KAMEYAMA Y,KAMEYAMA M,TANAKA T,et al. Screening of Alzheimer's disease by facial complexion using artificial intelligence[J]. Aging(Albany NY),2021,13(2):1765-1772. doi:10.18632/aging.202545.
[21]""" HABCHI J,CHIA S,LIMBOCKER R,et al. Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer's disease[J]. Proc Natl Acad Sci USA,2017,114(2):E200-E208. doi:10.1073/pnas.1615613114.
[22]""" 中國(guó)老年保健協(xié)會(huì)阿爾茨海默病分會(huì). 阿爾茨海默病與帕金森病步態(tài)分析的中國(guó)專(zhuān)家共識(shí)[J]. 中華老年心腦血管病雜志,2021,23(11):1141-1145. Alzheimer's Disease Committee of Chinese Aging Well Association. Consensus of Chinese experts on gait analysis of Alzheimer's disease and Parkinson's disease[J]. Chinese Journal of Geriatric Cardiovascular Diseases,2021,23(11):1141-1145. doi:10.3969/j.issn.1009-0126.2021.11.006.
[23]""" 陶帥,韓星,孔麗文,等. 基于步態(tài)的機(jī)器學(xué)習(xí)模型識(shí)別遺忘型輕度認(rèn)知障礙和阿爾茨海默病[J]. 中國(guó)全科醫(yī)學(xué),2022,25(31):3857-3865. TAO S,HAN X,KONG L W,et al. Gait based machine learning model for identifying amnestic mild cognitive impairment and Alzheimer's disease[J]. Chinese Journal of General Medicine,2022,25(31):3857-3865.
[24]""" OGAMA N,ENDO H,SATAKE S,et al. Impact of regional white matter hyperintensities on specific gait function in Alzheimer's disease and mild cognitive impairment[J]. J Cachexia Sarcopenia Muscle,2021,12(6):2045-2055. doi:10.1002/jcsm.12807.
[25]""" KUO K,ZHANG Y R,CHEN S D,et al. Associations of grip strength,walking pace,and the risk of incident dementia:a prospective cohort study of 340212 participants[J]. Alzheimers Dement,2023,19(4):1415-1427. doi:10.1002/alz.12793.
[26]""" FERNANDES C P,MONTALVO G,CALIGIURI M,et al. Handwriting changes in Alzheimer's disease:a systematic review[J]. J Alzheimers Dis,2023,96(1):1-11. doi:10.3233/JAD-230438.
[27]""" QI H,ZHANG R,WEI Z,et al. A study of auxiliary screening for Alzheimer's disease based on handwriting characteristics[J]. Front Aging Neurosci,2023,15:1117250. doi:10.3389/fnagi.2023.1117250.
[28]""" 張劍紅. 面向阿爾茨海默病早期檢測(cè)的精確抓握感知運(yùn)動(dòng)融合研究[D]. 山東大學(xué),2023. ZHANG J H. Research on accurate grasp perception and motion fusion for early detection of Alzheimer's disease[D]. Shandong University,2023. doi:10.27272/d.cnki.gshdu.2022.002729.
[29]""" KACHOURI M,HOUMANI N,GARCIA-SALICETTI S,et al. A new scheme for the automatic assessment of Alzheimer's disease on a fine motor task with transfer learning[J]. Annu Int Conf IEEE Eng Med Biol Soc,2021,2021:3823-3829. doi:10.1109/EMBC46164.2021.9630539.
[30]""" AHMED S,HAIGH A M,DE JAGER C A,et al. Connected speech as a marker of disease progression in autopsy-proven Alzheimer's disease[J]. Brain,2013,136(Pt 12):3727-3737. doi:10.1093/brain/awt269.
[31]""" QIAO Y,XIE X Y,LIN G Z,et al. Computer-assisted speech analysis in mild cognitive impairment and Alzheimer's disease:a pilot study from Shanghai,China[J]. J Alzheimers Dis,2020,75(1):211-221. doi:10.3233/JAD-191056.
[32]""" EYIGOZ E,MATHUR S,SANTAMARIA M,et al. Linguistic markers predict onset of Alzheimer's disease[J]. EClinical Medicine,2020,28:100583. doi:10.1016/j.eclinm.2020.100583.
[33]""" 郭愛(ài)華,潘小平. 阿爾茨海默病的眼動(dòng)跟蹤研究[J]. 廣東醫(yī)學(xué),2021,42(9):1132-1135. GUO A H,PAN X P. Eye tracking research on Alzheimer's disease[J]. Guangdong Medical Journal,2021,42(9):1132-1135. doi:10.13820/j.cnki.gdyx.20210042.
[34]""" WILCOCKSON T D W,MARDANBEGI D,XIA B,et al. Abnormalities of saccadic eye movements in dementia due to Alzheimer's disease and mild cognitive impairment[J]. Aging(Albany NY),2019,11(15):5389-5398. doi:10.18632/aging.102118.
[35]""" 王立松,宋佳琦,呂洋. 基于眼動(dòng)跟蹤技術(shù)診斷阿爾茨海默病的Logistics回歸模型的初步建立[J]. 陸軍軍醫(yī)大學(xué)學(xué)報(bào),2023,45(2):102-110. WANG L S,SONG J Q,LYU Y. Preliminary establishment of a logistic regression model for diagnosing Alzheimer's disease based on eye tracking technology[J]. Journal of Army Medical University,2023,45(2):102-110. doi:10.16016/j.2097-0927.202206109.
[36]""" 周鵬. 阿爾茨海默病評(píng)價(jià)儀[D]. 中國(guó)醫(yī)科大學(xué),2022. ZHOU P. Alzheimer's disease evaluation instrument[D]. China Medical University,2022. doi:10.27652/d.cnki.gzyku.2021.001042.
[37]""" MATSUMOTO S,TSUNEMATSU T. Association between sleep,Alzheimer's,and Parkinson's disease[J]. Biology(Basel),2021,10(11):1127. doi:10.3390/biology10111127.
[38]""" LIU Y S,WANG Y M,ZHA D J. Brain functional and structural changes in Alzheimer's disease with sleep disorders:a systematic review[J]. Front Psychiatry,2021,12:772068. doi:10.3389/fpsyt.2021.772068.
[39]""" ROBERTS D M,SCHADE M M,MATHEW G M,et al. Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables,relative to wrist actigraphy and polysomnography[J]. Sleep,2020,43(7):zsaa045. doi:10.1093/sleep/zsaa045.
[40]""" HATHORN T,BYUN Y J,ROSEN R,et al. Clinical utility of smartphone applications for sleep physicians[J]. Sleep Breath,2023,27(6):2371-2377. doi:10.1007/s11325-023-02851-y.
[41]""" GUMUSSU T C,DA POIAN G,CORTESI S,et al. Real-time detection of sleep arousals with a head-mounted accelerometer[J]. Annu Int Conf IEEE Eng Med Biol Soc,2023,2023:1-4. doi:10.1109/EMBC40787.2023.10340686.
(2024-01-08收稿 2024-04-16修回)
(本文編輯 陸榮展)
基金項(xiàng)目:吳階平醫(yī)學(xué)基金會(huì)臨床科研專(zhuān)項(xiàng)資助基金課題(320.6750.2023—15—12)
作者單位:1北大醫(yī)療海洋石油醫(yī)院康復(fù)醫(yī)學(xué)中心(郵編300452);2北京大學(xué)工學(xué)院
作者簡(jiǎn)介:冉龍飛(1990),男,主管康復(fù)治療師,主要從事神經(jīng)系統(tǒng)領(lǐng)域康復(fù)治療研究。E-mail:564171630@qq.com
△通信作者 E-mail:gjh8207@126.com