摘要:【目的】研究硅藻土對(duì)硅酸鈉的吸附效果,探討油井水泥環(huán)微裂縫的修復(fù)問(wèn)題?!痉椒ā坎捎霉杷徕c作為自愈合劑,硅藻土為載體,利用真空浸漬法制備硅藻土基自愈合材料;借助掃描電子顯微鏡(scanning electron microscope,SEM)、紅外光譜儀(infrared spectrometer,F(xiàn)TIR)、全自動(dòng)表面積和孔結(jié)構(gòu)分析儀(automatic surface area and pore structure analyzer,BET)進(jìn)行分析;通過(guò)對(duì)比分析摻入硅藻土基自愈合材料前、后水泥石的抗壓強(qiáng)度、恢復(fù)率和滲透率等,對(duì)自愈合效果進(jìn)行評(píng)價(jià);通過(guò)對(duì)水泥石裂縫表面物質(zhì)進(jìn)行X射線衍射分析(X-ray diffraction,XRD)、熱重分析(thermal analysis,TG)和SEM分析評(píng)價(jià)材料的自愈合機(jī)制。【結(jié)果】利用真空浸漬法能夠成功制得硅藻土基自愈合材料;硅藻土基自愈合材料在油井水泥中最佳摻量為9%(質(zhì)量分?jǐn)?shù)),該試樣劈裂造縫后自愈合14 d的抗壓強(qiáng)度比純水泥的提高99.57%,自愈合14 d后滲透率為0.42 mD,滲透率降低率達(dá)到75.44%,比純水泥試樣的高40.94%,且自愈合14 d后裂縫表面已經(jīng)閉合?!窘Y(jié)論】硅藻土基自愈合材料制備工藝簡(jiǎn)單,在油井水泥漿中具有良好的分散性和穩(wěn)定性,可以促進(jìn)油井水泥石微裂縫自愈合。
關(guān)鍵詞:硅酸鈉;硅藻土;油井水泥;微裂縫;自愈合
中圖分類號(hào):TE256;TB4;TQ324.8文獻(xiàn)標(biāo)志碼:A
引用格式:
李錕,張春梅,劉成,等.基于硅酸鈉和硅藻土的油井水泥自愈合材料的制備及表征[J].中國(guó)粉體技術(shù),2024,30(3):64-75.
LI K,ZHANG C M,LIU C,et al.Preparation and characterization of oil well cement self-healing materials based on sodium silicate and diatomite[J].China Powder Science and Technology,2024,30(3):64?75.
油氣勘探開(kāi)發(fā)是國(guó)家安全和經(jīng)濟(jì)與社會(huì)高速發(fā)展的重要保障,固井是油氣勘探開(kāi)發(fā)過(guò)程中極為關(guān)鍵的一環(huán)。固井過(guò)程是向套管和井壁間的環(huán)空泵注入水泥漿,水泥漿凝結(jié)硬化后稱為水泥環(huán)[1-2]。固井水泥環(huán)本身固有的脆性、井底壓力變化和后期產(chǎn)層改造(射孔、壓裂等)會(huì)使其受損產(chǎn)生裂縫,從而破壞水泥環(huán)的密封完整性,導(dǎo)致地層流體竄流、環(huán)空帶壓等,影響油氣正常安全地開(kāi)采[3-4],因此,保證水泥環(huán)的密封完整性在油氣勘探開(kāi)采過(guò)程中至關(guān)重要[5-6]。
為了解決固井水泥環(huán)微裂縫問(wèn)題,自愈合水泥漿的開(kāi)發(fā)成為學(xué)者們研究的熱點(diǎn)。自愈合水泥漿是在水泥漿中加入具有遇流體膨脹或反應(yīng)的材料(自愈合劑),在微裂縫形成時(shí),自愈合劑進(jìn)入微裂縫的地層流體,激活發(fā)生膨脹或產(chǎn)生沉淀,填堵裂縫,從而實(shí)現(xiàn)裂縫自愈合[7-9]。目前,用于固井水泥環(huán)微裂縫修復(fù)的自愈合水泥漿按觸發(fā)愈合機(jī)制分為遇油自愈合、遇氣自愈合、遇水自愈合3類。實(shí)現(xiàn)遇油和遇氣自愈合的自愈合劑主要是有機(jī)類材料,這些有機(jī)材料大多與水不相容,在水泥漿中存在分散不均勻等問(wèn)題。實(shí)現(xiàn)遇水自愈合的自愈合劑若不進(jìn)行表面包覆處理,可能會(huì)在水泥水化硬化前發(fā)生反應(yīng)[7]。微膠囊技術(shù)是對(duì)自愈合劑進(jìn)行包覆處理的有效方法之一,但要求殼體材料不僅要與水泥漿體具有良好的相容性,而且要具有良好的機(jī)械性能,以保證在攪拌過(guò)程中微膠囊不會(huì)破碎,因此,在利用遇水自愈合材料作為油井水泥自愈合劑時(shí),需要使用與水泥漿體相容性良好、機(jī)械性能優(yōu)異的材料對(duì)自愈合劑進(jìn)行包覆[10-12]。
硅酸鈉作為水泥基材料中遇水自愈合劑之一,可以與水泥水化產(chǎn)物中的氫氧化鈣(calcium hydroxide,CH)發(fā)生反應(yīng)生成水化硅酸鈣(calcium silicate hydrate,C-S-H),填充裂縫,具有應(yīng)用于固井水泥環(huán)微裂縫自愈合的潛力,但是若要將C-S-H應(yīng)用于固井水泥環(huán)微裂縫的修復(fù)需要有滿足于油氣井下高溫高壓、腐蝕性環(huán)境的材料作為硅酸鈉的載體[13-14]。硅藻土作為多孔礦物材料,具有豐富的孔結(jié)構(gòu)和較大的比表面積,可以為硅酸鈉提供良好的吸附場(chǎng)所,而且硅藻土的耐高溫、耐腐蝕性能可以滿足油井水泥的使用環(huán)境要求。
針對(duì)油井水泥環(huán)微裂縫修復(fù)問(wèn)題,本文中采用硅酸鈉作為自愈合劑,硅藻土為載體,利用真空浸漬法制備硅藻土基自愈合材料,并探究硅藻土基自愈合材料對(duì)油井水泥石自愈合效果的影響。
1材料與方法
1.1試劑材料
硅藻土(diatomite,DE,國(guó)藥集團(tuán)化學(xué)試劑有限公司),形貌及粒徑見(jiàn)圖1,中值粒徑為22.233μm;硅酸鈉(山東優(yōu)索化工科技有限公司)為三模粉狀硅酸鈉(tri-mold powdered sodium silicate,SA)。
制備水泥漿的原料:G級(jí)油井水泥(Class G oil well cement,嘉華特種水泥股份有限公司),中值粒徑為15.277μm,化學(xué)組分如表1所示;降失水劑G33S(河南衛(wèi)輝化工有限公司);分散劑SXY-2(成都川鋒化學(xué)工程有限責(zé)任公司)。
1.2硅藻土基自愈合材料的制備
將硅藻土在KLX14D型箱式電爐(天津市凱恒電熱技術(shù)有限公司)中煅燒預(yù)處理,去除硅藻土孔內(nèi)雜質(zhì)。煅燒條件為:從室溫25℃升溫至400℃,保溫2 h,隨爐溫冷卻,得到煅燒硅藻土(calcined diatomite,DE-400)。取10 g的煅燒硅藻土裝入抽濾瓶?jī)?nèi),將抽濾瓶與真空泵連接。稱取8 g的硅酸鈉在60℃條件下攪拌溶解于水中,配制成質(zhì)量分?jǐn)?shù)為30%的硅酸鈉溶液,隨后將硅酸鈉溶液倒入長(zhǎng)頸漏斗中,連接抽濾瓶。檢查氣密性后,啟動(dòng)真空泵,逐漸滴加硅酸鈉溶液,大約30 min完成。滴加結(jié)束后繼續(xù)保持真空,30 min后關(guān)閉真空泵。將抽濾瓶?jī)?nèi)樣品倒入燒杯,置于真空冷凍干燥機(jī)中,冷凍干燥24 h,得到白色粉末,即硅藻土基自愈合材料(diatomite-based self-healing material,SS)。
1.3水泥石試樣的制備
根據(jù)GB/T 10238—2015《油井水泥》的方法制備和養(yǎng)護(hù)水泥漿,水灰比為0.44(質(zhì)量比,下同)。用D0、D1、D2、D3、D4分別表示質(zhì)量分?jǐn)?shù)分別為0、3%、6%、9%、12%的硅藻土基自愈合材料的水泥試樣,外加劑減水劑和分散劑及添加量(質(zhì)量分?jǐn)?shù),下同)如表2所示。在60℃條件下養(yǎng)護(hù)3 d后制得水泥石試樣。從模具中各取出4組,用巴西劈裂法進(jìn)行人造裂縫。使用橡皮筋固定后放入60℃水浴鍋中分別養(yǎng)護(hù)1、3、7、14 d,用于抗壓強(qiáng)度恢復(fù)測(cè)試、滲透率實(shí)驗(yàn)、裂縫觀察等。
1.4硅藻土基自愈合材料及水泥試樣的分析與測(cè)試
采用Nicolet Avatar 360型傅里葉變換紅外光譜儀(FTIR,美國(guó)熱電公司)對(duì)DE、DE-400和SS進(jìn)行測(cè)試分析,波數(shù)為4 000~400 cm-1,分辨率為4 cm-1;使用ZEISS EVO/MA 15型掃描電子顯微鏡(SEM,卡爾蔡司顯微圖像有限公司)對(duì)DE、DE-400和SS的表面形貌進(jìn)行觀察;采用STMP9型全自動(dòng)表面積和孔結(jié)構(gòu)分析儀(美國(guó)康塔儀器公司)進(jìn)行SS比表面積及孔徑分布測(cè)試:先將待測(cè)樣品在溫度為120℃環(huán)境下脫氣3 h,在熱力學(xué)溫度為77 K的液氮環(huán)境下進(jìn)行氮吸附-脫附實(shí)驗(yàn)。
依據(jù)GB/T 19139—2012《油井水泥試驗(yàn)方法》中規(guī)定的強(qiáng)度測(cè)試要求,使用模具制作邊長(zhǎng)為50.8 mm的立方體試樣,每組試樣取3個(gè)進(jìn)行測(cè)試,取平均值,對(duì)養(yǎng)護(hù)不同時(shí)間、不同配比的水泥石進(jìn)行抗壓強(qiáng)度測(cè)試,加載速率為(71.7±7.2)kN/min。將60℃養(yǎng)護(hù)3 d的試樣取出,用巴西劈裂法劈裂,人工制造裂縫,然后放入60℃水浴中養(yǎng)護(hù)。分別測(cè)試試樣1、3、7、14 d的抗壓強(qiáng)度和滲透率,抗壓強(qiáng)度恢復(fù)率
φ=(Sd-S0)/S0×100%,(1)
式中:φ為自愈合后試樣的抗壓強(qiáng)度恢復(fù)率,精確到0.1%;Sd為一定愈合齡期試樣的抗壓強(qiáng)度;S0為相同愈合齡期純水泥試樣的抗壓強(qiáng)度。
使用HKY/DRD-1型氣體滲透率自動(dòng)測(cè)定儀(海安縣石油科研儀器有限公司)進(jìn)行試樣滲透率的測(cè)定,根據(jù)滲透率測(cè)試數(shù)據(jù),以自愈合1 d的純水泥試樣滲透率結(jié)果為基準(zhǔn),計(jì)算不同自愈合齡期的滲透率降低率
η=-(Pd-P0)P0×100%,(2)
式中:η為自愈合后試樣的滲透率降低率,精確到0.1%;Pd為一定愈合齡期試樣的滲透率,精確到0.01 mD;P0為純水泥試樣自愈合1 d的滲透率,精確到0.01 mD。使用體視顯微鏡觀察水泥石試樣自愈合前后裂縫表面變化情況。
對(duì)水泥石裂縫表面物質(zhì)進(jìn)行微觀分析,將水泥石裂縫表面處的物質(zhì)通過(guò)刮擦的方式進(jìn)行收集,并通過(guò)研磨,制成粉末樣品后分別進(jìn)行XRD和TG分析。采用SEM觀察薄片樣品(水泥樣品裂縫處切下)觀察水泥石裂縫表面微觀形貌。
2結(jié)果與分析
2.1硅藻土基自愈合材料的表征
2.1.1微觀形貌觀察
圖2所示為DE在放大倍數(shù)分別為2 000、5 000時(shí)微觀形貌SEM圖像。從圖中可以看出,DE呈疏松多孔的圓盤狀結(jié)構(gòu),表面存在微孔和介孔,以及很多碎屑。圖3為DE-400的SEM圖像,與DE的對(duì)比發(fā)現(xiàn),DE-400的骨架結(jié)構(gòu)尚未破壞,圓盤表面清潔度提高,孔隙分布均勻且密集,孔的排列變得更加有序,孔結(jié)構(gòu)清晰可見(jiàn)。
圖4所示為SS微觀形貌SEM圖像。由圖可以看出,SS仍保持著原有圓盤狀結(jié)構(gòu),但表面的孔數(shù)量與煅燒硅藻土相比明顯減少很多,大部分孔被填充,說(shuō)明由于毛細(xì)管作用力和表面張力,硅藻土將物質(zhì)吸附在孔內(nèi),這與文獻(xiàn)[15-16]報(bào)道相似。吸附的物質(zhì)是否為硅酸鈉需根據(jù)紅外光譜圖進(jìn)行驗(yàn)證。
2.1.2紅外光譜分析
圖5所示為DE、DE-400和SS的紅外光譜圖。從圖中可以看出,DE在波數(shù)為3 454 cm-1處附近存在一個(gè)寬的波段,這是吸附水后造成的—OH振動(dòng)譜帶,波數(shù)為1 891 cm-1處附近的特征峰為Si—O的對(duì)稱振動(dòng)吸收峰,波數(shù)為787 cm-1處為Si—O—Si的對(duì)稱伸縮振動(dòng)產(chǎn)生的峰,波數(shù)為616 cm-1處出現(xiàn)的峰是硅氧四面體的六元環(huán)振動(dòng)[17-19]。DE-400的紅外光譜圖的特征吸收峰無(wú)明顯變化,說(shuō)明煅燒處理后硅藻土只是表面孔結(jié)構(gòu)發(fā)生變化,硅藻土化學(xué)結(jié)構(gòu)并未發(fā)生變化。SS在波數(shù)為1 457 cm-1處附近的特征吸收峰為SA中的—ONa的彎曲振動(dòng)。對(duì)比3種樣品的紅外圖譜可以看出,SS的紅外圖譜中沒(méi)有出現(xiàn)新的紅外吸收峰,且SS的紅外圖譜出現(xiàn)SA相應(yīng)的特征吸收峰,說(shuō)明硅藻土與硅酸鈉的作用只是單純的物理作用,沒(méi)有發(fā)生化學(xué)反應(yīng)。
2.1.3比表面積及孔體積分析
圖6所示為DE、DE-400和SS的比表面積及孔體積分析結(jié)果。從圖中可以看出,煅燒處理后的硅藻土比表面積增大,說(shuō)明煅燒處理后硅藻土吸附能力增強(qiáng)[20];處理后的硅藻土平均孔徑大大增加,表明煅燒后硅藻土圓盤上的孔隙直徑變大,產(chǎn)生一些新的大孔和介孔,有利于硅酸鈉的吸附。從圖中還可以看出,硅藻土基自愈合材料SS的比表面積、孔體積和平均孔徑均小于DE-400的,結(jié)合SEM圖像分析,原因可能是硅酸鈉填充在硅藻土內(nèi)部孔道和表面孔隙中占據(jù)部分空間,大孔徑數(shù)量均減少,導(dǎo)致孔體積和平均孔徑減小,從而使比表面積減小。說(shuō)明通過(guò)真空浸漬法成功制備得到硅藻土基自愈合材料,硅酸鈉被吸附在硅藻土孔內(nèi)。
2.2硅藻土基自愈合材料對(duì)水泥石自愈合性能的影響
2.2.1水泥石抗壓強(qiáng)度恢復(fù)率
圖7所示為不同摻量的硅藻土基自愈合材料-水泥石的抗壓強(qiáng)度。從圖中可以看出,D1、D2、D3試樣在各養(yǎng)護(hù)齡期內(nèi)的抗壓強(qiáng)度均大于D0試樣的,而D4試樣的抗壓強(qiáng)度小于D0試樣的??梢钥闯觯柙逋粱杂喜牧蠐搅啃∮?%時(shí),水泥石抗壓強(qiáng)度比純水泥試樣的高,其原因是硅藻土基自愈合材料填充在水泥石孔隙,使內(nèi)部結(jié)構(gòu)更加致密,對(duì)水泥石的強(qiáng)度有積極的影響。隨著摻量的增大,過(guò)多的硅藻土基自愈合材料會(huì)在水泥基體形成結(jié)構(gòu)薄弱點(diǎn)導(dǎo)致水泥石抗壓強(qiáng)度降低。D1和D2試樣的1、3 d的抗壓強(qiáng)度與D0試樣的相近,7 d的抗壓強(qiáng)度較D0試樣的有較大提升,但養(yǎng)護(hù)14 d時(shí),D1和D2試樣的抗壓強(qiáng)度存在減小現(xiàn)象。D3試樣的早期強(qiáng)度優(yōu)于D1和D2試樣的,養(yǎng)護(hù)14 d時(shí),D3試樣抗壓強(qiáng)度沒(méi)有減小,D3試樣14 d的抗壓強(qiáng)度為(39.56±1.98)MPa,較D0試樣14 d的提高17.95%。
根據(jù)抗壓強(qiáng)度測(cè)試結(jié)果對(duì)D0、D1、D2、D3試樣進(jìn)行抗壓強(qiáng)度恢復(fù)測(cè)試,結(jié)果如圖8所示。從圖中可以看出,隨著養(yǎng)護(hù)齡期的延長(zhǎng),水泥石抗壓強(qiáng)度逐漸恢復(fù)。對(duì)比可以看出,在各養(yǎng)護(hù)齡期內(nèi)抗壓強(qiáng)度恢復(fù)值從大到小依次為D3、D2、D1、D0,說(shuō)明隨著硅藻土基自愈合材料的增加,水泥石抗壓強(qiáng)度恢復(fù)更快。D0試樣僅靠二次水化產(chǎn)物,抗壓強(qiáng)度恢復(fù)緩慢,養(yǎng)護(hù)14 d抗壓強(qiáng)度僅為(18.49±0.92)MPa。摻入有硅藻土基自愈合材料的試樣,隨摻量的增加,抗壓強(qiáng)度逐漸增加,D3試樣自愈合14 d的抗壓強(qiáng)度達(dá)到(36.90±1.85)MPa,比純水泥試樣自愈合14 d的提高99.57%,說(shuō)明硅藻土基自愈合材料的加入可以促進(jìn)水泥石微裂縫的愈合。
2.2.2水泥石滲透率測(cè)試
圖9所示為不同摻量硅藻土基自愈合材料-水泥石造縫后養(yǎng)護(hù)1、3、7和14 d的滲透率測(cè)試結(jié)果。從圖中可以看出,試樣的滲透率變化均呈下降趨勢(shì),但D1、D2、D3試樣的滲透率均比D0試樣的低,說(shuō)明硅藻土基自愈合材料的加入有利于滲透率的降低。在水泥石自愈合初期,試樣的滲透率降低速率從高到低依次為D3、D2、D1、D0,說(shuō)明D3試樣的微裂縫可以更快地閉合。自愈合14 d后,D0、D1、D2、D3試樣滲透率分別為1.12、0.82、0.64、0.42 mD,D3試樣養(yǎng)護(hù)14 d后的滲透率比D2、D1和D0試樣的滲透率低。養(yǎng)護(hù)14 d后,D3試樣滲透率降低率最大,為75.44%,而D0試樣滲透率降低率為34.50%,說(shuō)明摻入9%硅藻土基自愈合材料的水泥石微裂縫的愈合效果更好。
2.2.3微裂縫寬度觀察
圖10所示為D0試樣自愈合前后的裂紋變化情況。從圖中可以看出,D0試樣自愈合1 d和7d后裂縫寬度變化不大,圖10(c)可以看出D0試樣的裂紋在自愈合14 d后仍未完全閉合。圖11所示為D3試樣自愈合前后的裂紋變化情況。從圖11(a)中可以看出,D3試樣自愈合1 d后已有部分物質(zhì)填充在裂縫中。從圖11(c)可以看出,D3試樣長(zhǎng)度為10.33 mm、寬度為137.97μm的裂紋在自愈合14 d后表面已經(jīng)閉合。
2.3裂縫表面物質(zhì)微觀分析
通過(guò)水泥石抗壓強(qiáng)度恢復(fù)率測(cè)試和滲透率測(cè)試,D3試樣具有更好的自愈合效果,為進(jìn)一步分析硅藻土基自愈合材料對(duì)水泥石裂縫表面物質(zhì)的影響,對(duì)D0和D3試樣不同自愈合齡期的水泥石的裂縫表面物質(zhì)進(jìn)行分析。
2.3.1熱分析
為了方便描述,用D0H1、D0H3、D0H7、D0H14分別代表D0試樣自愈合1、3、7、14 d的裂縫表面物質(zhì);用D3H1、D3H3、D3H7、D3H14分別代表D3試樣自愈合1、3、7、14 d的裂縫表面物質(zhì)。圖12所示為D0和D3試樣的裂縫表面物質(zhì)TG圖。從圖中可以看出,D0和D3試樣的裂縫表面物質(zhì)在溫度為105~380、gt;380~500℃時(shí)有質(zhì)量損失,分別對(duì)應(yīng)的是C-S-H的脫水和CH的失水[21-22]。
圖13所示為D0、D3試樣裂縫表面物質(zhì)中C-S-H和CH的質(zhì)量損失隨自愈合齡期的變化趨勢(shì)。從圖13(a)中可以看出,D0和D3試樣中C-S-H含量隨自愈合齡期延長(zhǎng)呈增加趨勢(shì),但在各自愈合齡期內(nèi)D3試樣中的C-S-H含量高于D0試樣中的。這是因?yàn)樵贒0試樣自愈合過(guò)程中僅靠二次水化來(lái)實(shí)現(xiàn)自愈合,而D3試樣中除部分為水化顆粒的二次水化,還有加入的硅藻土基自愈合材料參與自愈合過(guò)程,硅酸鈉與CH反應(yīng)生成C-S-H,從而使D3試樣中的C-S-H含量高于D0試樣中的。從圖13(b)中可以看出,D3試樣中的CH含量低于D0試樣中的,說(shuō)明硅藻土基自愈合材料參與自愈合過(guò)程中會(huì)消耗水泥石中CH。
2.3.2物相分析
圖14所示為D0和D3試樣自愈合1、14 d后的裂縫表面物質(zhì)XRD圖譜。從圖中可以看出,D0和D3試樣的裂縫表面的物質(zhì)中具有相同的物相,分別為CH(PDF#44-1481)和未水化的硅酸二鈣Ca2SiO4(PDF#33-0302)[23-25]。對(duì)比D0和D3的衍射圖譜可以看出,D3試樣中CH衍射峰的強(qiáng)度比D0試樣中CH衍射峰的強(qiáng)度弱,說(shuō)明摻有硅藻土基自愈合材料的水泥石在自愈合過(guò)程中消耗的CH比純水泥試樣自愈合過(guò)程消耗的CH多。
從D3試樣的裂縫表面物質(zhì)的衍射圖譜中可以看出,D3H14試樣的CH衍射峰的強(qiáng)度比D3H1試樣的CH衍射峰的強(qiáng)度弱,說(shuō)明摻有硅藻土基自愈合材料的水泥石在自愈合過(guò)程中會(huì)不斷消耗CH,與熱分析結(jié)果吻合。
2.3.3微觀形貌觀察
圖15、16所示為D0和D3試樣自愈合14 d后裂縫截面的微觀形貌。從圖15可以看出,D0試樣裂縫截面中CH含量豐富,CH呈現(xiàn)大小不一的六方片狀。值得注意的是,在D3試樣裂縫斷面處觀察到硅藻土基自愈合材料在裂縫表面仍保持較完整的硅藻土圓盤狀,因此可以說(shuō)明硅藻土基自愈合材料在水泥石中可以穩(wěn)定地維持硅藻土原有的圓盤狀結(jié)構(gòu),如圖16(a)所示。同時(shí),在硅藻土基自愈合材料圓盤狀周圍有密集分布的網(wǎng)絡(luò)狀C-S-H,如圖16(b)所示,進(jìn)一步說(shuō)明硅藻土基自愈合材料的加入可以使水泥
石在愈合過(guò)程中產(chǎn)生更多的CSH填堵裂縫,從而使裂縫愈合。
3結(jié)論
本文中采用硅酸鈉作為自愈合劑,硅藻土為載體,利用真空浸漬法制備硅藻土基自愈合材料并探究其對(duì)水泥石自愈合效果的影響。
1)通過(guò)掃描電鏡觀察吸附前后硅藻土微觀形貌變化、紅外光譜分析,以及比表面積及孔徑分析表明,硅酸鈉被吸附在硅藻土的孔內(nèi),成功制備得到硅藻土基自愈合材料。
2)硅藻土基自愈合材料在水泥中的最佳摻量為9%,摻有硅藻土基自愈合材料的水泥石劈裂造縫后自愈合14 d的抗壓強(qiáng)度比純水泥試樣自愈合14 d的抗壓強(qiáng)度提高了99.57%。試樣自愈合14 d后滲透率降低率為75.44%,比純水泥試樣的滲透率降低率高40.94%。
3)通過(guò)XRD、TG、SEM測(cè)試分析證實(shí)硅藻土基自愈合材料-水泥試樣的裂縫表面物質(zhì)中C-S-H含量比純水泥試樣中C-S-H含量高,表明硅藻土基自愈合材料中的自愈合劑硅酸鈉與CH反應(yīng)生成C-S-H,填堵在裂縫中促使裂縫愈合。
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(xiàn)(Author’s Contributions)
李錕、張春梅參與了實(shí)驗(yàn)設(shè)計(jì),劉成、梅開(kāi)元、胡陳、程小偉參與了論文的寫作和修改。所有作者均閱讀并同意了最終稿件的提交。
The study was designed by LI Kun and ZHANG Chunmei.The manuscript was drafted and revised by LIU Cheng,MEI Kaiyuan,HU Chen and CHENG Xiaowei.All authors have read the last version of paper and consented for submission.
參考文獻(xiàn)(References)
[1]蒙飛,袁進(jìn)平,丁煜翰,等.氧化石墨油井水泥基復(fù)合材料的力學(xué)性能研究[J].硅酸鹽通報(bào),2016,35(1):39-43.
MEN G F,YUAN J P,DING Y H,et al.Study on mechanical properties of graphite oxide oil well cement-based composite materials[J].Bulletin of the Chinese Ceramic Society,2016,35(1):39-43.
[2]SALIMI A,BENI A H,BAZVAND M.Evaluation of a water-based spacer fluid with additives for mud removal in well ceme-nting operations[J].Heliyon,2024,10(4):25638.
[3]WANG Y,LIU S,ZHANG L,et al.Evidence of self-sealing in wellbore cement under geologic CO2 storage conditions by micro-computed tomography(CT),scanning electron microscopy(SEM)and Raman observations[J].Applied Geochemis try,2021,128:104937.
[4]趙勝緒,項(xiàng)先忠,王有偉.一種油氣響應(yīng)型固井自修復(fù)材料的研究及應(yīng)用[J].石油化工應(yīng)用,2023,42(10):68-71.
ZHAO S X,XIANG X Z,WANG Y W.Research and application of an oil-gas responsive cementing self-healing material[J].Petrochemical Industry Application,2023,42(10):68-71.
[5]ZHENG Y,LI J,PENG Z,et al.Study on the properties of urea-formaldehyde resin in repairing microcracks of cement stone in oil well under CO2 acid environment[J].Reactive and Functional Polymers,2023,191:105688.
[6]杜靜,曾雪玲,張洋勇,等.固井自愈合水泥技術(shù)的研究現(xiàn)狀與發(fā)展趨勢(shì)[J].石油化工應(yīng)用,2023,42(1):12-17.
DU J,ZENG X L,ZHANG Y Y,et al.Research status and development trend of cementing self-healing cement technology[J].Petrochemical Industry Application,2023,42(1):12-17.
[7]LI Y,HAO P,ZHANG M.Fabrication,characterization and assessment of the capsules containing rejuvenator for improving the self-healing performance of asphalt materials:a review[J].Journal of Cleaner Production,2021,287:125079.
[8]WANG C,BU Y,GUO S,et al.Self-healing cement composite:amine-and ammonium-based pH-sensitive superabsor bent polymers[J].Cement and Concrete Composites,2019,96:154-162.
[9]LEE S,JO M,KIM J,et al.Application of Ca-doped mesoporous silica to well-grouting cement for enhancement of self-healing capacity[J].Materialsamp;Design,2016,89:362-368.
[10]ZHENG Y,SHE C,F(xiàn)U H,et al.A viscosity-soluble type biomimetic self-healing cement slurry system[J].Natural Gas Industry B,2023,10(6):547-554.
[11]HUANG X,ZHANG H,WANG X,et al.H2S-responsive zwitterionic hydrogel as a self-healing agent for plugging micro?cracks in oil-well cement[J].Journal of Industrial and Engineering Chemistry,2023,127:523-532.
[12]LI W,JIANG Z,YANG Z.Acoustic characterization of damage and healing of microencapsulation-based self-healing cement matrices[J].Cement and Concrete Composites,2017,84:48-61.
[13]BEGLARIGALE A,EYICE D,SEKI Y,et al.Sodium silicate/polyurethane microcapsules synthesized for enhancing self-healing ability of cementitious materials:optimization of stirring speeds and evaluation of self-healing efficiency[J].Journal of Building Engineering,2021,39:102279.
[14]BEGLARIGALE A,SEKI Y,DEMIR N Y,et al.Sodium silicate/polyurethane microcapsules used for self-healing in cementitious materials:monomer optimization,characterization,and fracture behavior[J].Construction and Building Materials,2018,162:57-64.
[15]魏思雨,周偉,韓瑞,等.硅藻土/CaCl2制備及熱化學(xué)吸附儲(chǔ)熱性能研究[J].工程熱物理學(xué)報(bào),2022,43(4):883-888.
WEI S Y,ZHOU W,HAN R,et al.Study on preparation of diatomite/CaCl2 and its thermochemical adsorption heat storage performance[J].Journal of Engineering Thermophysics,2022,43(4):883-888.
[16]LIU Z,ZANG C,ZHANG Y,et al.Mechanical properties and antifreeze performance of cement-based composites with liquid paraffin/diatomite capsule low-temperature phase change[J].Construction and Building Materials,2022,341:127773.
[17]臧初越.水泥基封裝膠囊相變材料的力學(xué)和抗凍性能研究[D].徐州:中國(guó)礦業(yè)大學(xué),2021.
ZANG C Y.Study on mechanical and frost resistance properties of cement-based encapsulated capsule phase change mate-rials[D].Xuzhou:China University of Mining and Technology.
[18]武衛(wèi)莉,陳豐雨.改性硅藻土/高密度聚乙烯復(fù)合材料制備及其性能研究[J].化工新型材料,2020,48(12):61-64.
WU W L,CHEN F Y.Preparation and properties of modified diatomite/high density polyethylene composites[J].NewChemical Materials,2020,48(12):61-64.
[19]SONG J,CAO X,HUANG Z.Diatomite-chitosan composite with abundant functional groups as efficient adsorbent for vanadium removal:key influencing factors and influence of surface functional groups[J].Journal of Molecular Liquids,2022,367:120428.
[20]代楠,張育新,李凱霖,等.硅藻土在膠凝材料領(lǐng)域的應(yīng)用進(jìn)展[J].材料導(dǎo)報(bào),2022,36(14):145-153.
DAI N,ZHANG Y X,LIK L,et al.Application progress of diatomite in the field of cementitious materials[J].Material Reports,2022,36(14):145-153.
[21]GONG P,ZHANG C,WU Z,et al.Study on the effect of CaCO3 whiskers on carbonized self-healing cracks of cement paste:application in CCUS cementing[J].Construction and Building Materials,2022,321:126368.
[22]GE Y,HU H,ZHAN Q,et al.Study on self-healing effect of cement-based materials cracks based on various inorganic minerals[J].Journal of Building Engineering,2024,82:108202.
[23]WU X,HUANG H,LIU H,et al.Artificial aggregates for self-healing of cement paste and chemical binding of aggressive ions from seawater[J].Composites Part B:Engineering,2020,182:107605.
[24]GWON S,AHN E,SHIN M.Self-healing of modified sulfur composites with calcium sulfoaluminate cement and superab?sorbent polymer[J].Composites Part B:Engineering,2019,162:469-483.
[25]PANG X,SUN L,CHEN M,et al.Influence of curing temperature on the hydration and strength development of glass Portland cement[J].Cement and Concrete Research,2022,156:106776.
Preparation and characterization of oil well cement self-healing materials based on sodium silicate and diatomite
LI Kun1,ZHANG Chunmei1,LIU Cheng2,MEI Kaiyuan1,HU Chen1,CHENG Xiaowei1
1.School of New Energy and Materials,State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China;
2.Exploration Division,Southwest Oil and Gas Field Branch,Chengdu 610000,China
Abstract
Objective The expansion of micro-cracks in oil well cement seriously affects the safe exploitation of oil and gas.Self-healing cement slurry can respond timely to repair these micro-cracks.When micro-cracks form,the self-healing agent activates to repair them.As a potential self-healing agent in cement-based materials,sodium silicate reacts with calcium hydroxide(CH)to form calcium silicate hydrate(C-S-H).Microcapsule technology is usually used to encapsulate sodium silicate.However,these microcapsules have poor compatibility with cement paste.To overcome this problem,this paper aims to use diatomite,an inorganic porous mineral with an intricate pore structure and excellent physical and chemical properties,to adsorb sodium sili?cate to prepare diatomite-based self-healing materials.Also,the paper explores their effect on the self-healing properties of oil well cement.
Methods Diatomite-based self-healing materials were prepared using the vacuum impregnation method.The materials were characterized by scanning electron microscopy(SEM),F(xiàn)ourier-transform infrared spectroscopy(FTIR),and an automatic sur?face area and pore structure analyzer(BET).The self-healing effect was evaluated by comparing and analyzing cement stone's compressive strength,recovery rate,and permeability before and after the incorporation of diatomite-based self-healing materi?als.The self-healing mechanism was analyzed using X-ray diffraction(XRD),thermal analysis(TG),and SEM.
Results and Discussion After adsorption,it was found that the number of pores on the sample surface was significantly reduced compared to pre-adsorption,and most of the pores were filled.BET analysis also showed that the pore volume and aver?age pore size were smaller after adsorption.FTIR analysis confirmed that sodium silicate filled the pores of diatomite.Then,diatomite-based self-healing materials were added to cement at different mass fractions of 0%,3%,6%,9%,and 12%.The 14-day compressive strength of the sample with 9%content was(39.56±1.98)MPa,17.95%higher than that of pure cement.At the same time,the self-healing experiment of cement stone after the Brazilian splitting method was carried out.After 14-day self-healing,the compressive strength of the 9%cement sample reached(36.90±1.85)MPa,99.57%higher than that of pure cement.Its permeability was 0.42 mD after 14-day of self-healing,and the permeability reduction rate was 75.44%,40.94%higher than that of pure cement.XRD analysis of the cracked sample surface showed a lower CH content indiatomite-based self-healing material compared to pure cement.TG analysis further confirmed that CH content was lower,and C-S-H content was higher than that of the pure cement.SEM analysis confirmed that the self-healing product of the diatomite-based self-healing material at the cement stone cracks was C-S-H.
Conclusion The preparation and characterization of a sodium silicate and diatomite-based self-healing material for oil well cement were reported in this paper.The prepared samples were analyzed by SEM,F(xiàn)TIR,and BET.The diatomite-based self-healing materials could be successfully prepared using vacuum impregnation method.At the same time,the diatomite-based self-healing material was added to the cement to explore its effect on the self-healing performance of the oil well cement stone.The optimum content of the material in cement was 9%(mass fraction).Diatomite-based self-healing materials exhibited good dispersibility and stability in cement slurry,which could promote the self-healing of micro-cracks in oil well cement stone.Their simple preparation process and compatibility with cement paste suggest that inorganic porous materials can provide a refer?ence for further research on the repair of micro-cracks in cement sheath.
Keywords:sodium silicate;diatomite;oil well cement;micro-crack;self-healing
(責(zé)任編輯:吳敬濤)