摘要:為探究生長(zhǎng)素和細(xì)胞分裂素對(duì)水生植物組培苗的作用規(guī)律,研究了生長(zhǎng)素(IAA、IBA和2,4-D)與細(xì)胞分裂素(6-KT)對(duì)典型水生觀賞植物紅絲青葉(Hygrophila polysperma)的影響。結(jié)果表明,組培培養(yǎng)基中單獨(dú)添加不同濃度梯度的IAA、IBA、2,4-D或6-KT,組培苗在各種激素處理下,隨著濃度的升高,均表現(xiàn)出先促進(jìn)后抑制的表型,其中 IAA組表現(xiàn)顯著,因此進(jìn)一步研究IAA與6-KT的組合使用對(duì)組培苗的影響。組合添加IAA與6-KT處理18 d后,隨著處理濃度的升高,整體有促進(jìn)組培苗生長(zhǎng)的趨勢(shì),其中1.0 μg·μL-1 IAA+1.0 μg·μL-1 6-KT的處理效果最好,但隨著 6-KT濃度的升高,組培苗的葉片更為膨大。組培苗在培養(yǎng)瓶中繼續(xù)生長(zhǎng)67 d后,較高濃度的IAA+6-KT組合的葉片出現(xiàn)卷曲,底部變焦枯。其中1.0~2.0 μg·μL-1 IAA+2.0 μg·μL-1 6-KT組合使其組培苗分孽較多,葉片較大,特別是2.0 μg·μL-1 IAA+2.0 μg·μL-1 6-KT的處理,進(jìn)一步檢測(cè)葉片的可溶性物質(zhì)含量,發(fā)現(xiàn)該組合葉片的丙二醛含量較高,脯氨酸含量較低。綜上可知,植物激素在紅絲青葉的組織培養(yǎng)中應(yīng)用濃度不宜過高,1.0 μg·μL-1 IAA+1.0 μg·μL-1 6-KT組合短期處理效果最適宜。
關(guān)鍵詞:組織培養(yǎng); 紅絲青葉; IAA; 6-KT
水生植物擁有龐大的數(shù)量和不同的生命周期架構(gòu)[1-4],具有多種生物學(xué)功能[5-7]。近年來,隨著國內(nèi)外水草景觀藝術(shù)的興起, 水生觀賞植物在傳統(tǒng)的水族館或水上花園中越來越受歡迎,因此,
Influence of Substrate and IBA Concentration on Hard BranchCuttings of Table Grape ‘Tiangongmoyu’
WANG Mingjie LU Huiling YANG Ruihua HU Xixi LIANG Wenwei YE Wanjun WANG Juan
(1. Horticulture Branch,Heilongjiang Academy of Agricultural Sciences, Harbin 150069,China; 2. Daqing Branch,Heilongjiang Academy of Agricultural Sciences, Daqing 163316,China; 3. Institute of Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150023,China; 4. Heilongjiang Academy of Agricultural Sciences, Harbin 150086,China)
Abstract:In order to promote the breeding and promotion of table grape varieties,in this study, the effects of different substrates + different concentrations of IBA on the cuttings of table grape ‘Tiangongmoyu’ were studied. The results showed that with the increase of IBA concentration, the rooting rate of ‘Tiangongmoyu’ hard branch cuttings gradually increases. Under the same IBA concentration, perlite was used as the cutting medium, and the rooting rate of ‘Tiangongmoyu’ was the highest. Using elastic medium as cutting medium, ‘Tiangongmoyu’ hard branch cutting had the lowest rooting rate. When the concentrations of IBA were 750 and 1 000 mg·L-1 there was no significant difference in the number of hard cuttings of ‘Tiangongmoyu’ under the same medium condition. Leaf number, root fresh weight, root dry weight, leaf fresh weight, leaf dry weight and other indexes of ‘Tiangongmoyu’ were evaluated comprehensively, the perlite was used as cutting medium and 750 mg·L-1IBA was used as hormone.
Keywords:grape; matrix; IBA; hard branch cutting
需求也越來越大[8-9]。紅絲青葉(Hygrophila polysperma),屬于爵床科,俗稱為青葉紅絲、青絲紅葉、紅青葉草等,系青葉草的改良品種,水上草外觀與青葉草相似,但葉脈明顯,葉色翠綠,披針形十字對(duì)生葉。水中草的葉型較為狹長(zhǎng),葉色可轉(zhuǎn)為紅色,顏色會(huì)隨著環(huán)境的不同而不同,并且有明顯白色的葉脈[9],具有極高觀賞價(jià)值,深受人們喜愛。然而,由于栽培周期長(zhǎng),環(huán)境條件不穩(wěn)定,紅絲青葉等水生植物繁殖效率不高[10],而植物組織培養(yǎng)技術(shù)可以打破這些限制。但是,植物組織培養(yǎng)的成功取決于多種因素,包括激素調(diào)節(jié)、最佳營養(yǎng)平衡、外植體類型和生理狀態(tài)以及微生物污染的控制[4,11-12]。其中,植物激素,包括生長(zhǎng)素和細(xì)胞分裂素,是植物組織培養(yǎng)過程中關(guān)鍵調(diào)控因子,可誘導(dǎo)芽和根的發(fā)生[13]。到目前為止,對(duì)生長(zhǎng)素和細(xì)胞分裂素作用的研究大多集中在陸地植物上,關(guān)于植物組織培養(yǎng)水生植物的報(bào)道很少。
研究表明,生長(zhǎng)素在植物組織培養(yǎng)中具有誘導(dǎo)根形成、促進(jìn)體細(xì)胞胚發(fā)育、抵抗外源微生物侵染的作用[14-17]。在植物組織培養(yǎng)中,一些生長(zhǎng)素類似物,包括1-萘乙酸(1-Naphthaleneacetic acid, NAA)、吲哚丁酸(Indolebutyric acid, IBA)、2,4-二氯苯氧基乙酸(2,4-dichlorophenoxy acetic acid, 2,4-D),與天然吲哚-3-乙酸(Indole-3-acetic acid, IAA)接近,常被添加應(yīng)用于組培培養(yǎng)基中[9,18-23]。細(xì)胞分裂素作為腺嘌呤衍生物,在植物組織培養(yǎng)中主要誘導(dǎo)芽的形成[13-14,24-26]。一些細(xì)胞分裂素類化合物[Benzilaminopurine (BAP), Kinetin (Kin), 2-異戊烯腺苷(2-IP)和Thidiazuron (TDZ)]早在50年前就被發(fā)現(xiàn)并分離出來,其中Kin可以誘導(dǎo)愈傷組織再分化為不定芽[26]。此外,據(jù)報(bào)道,細(xì)胞分裂素還可緩解非生物和生物脅迫的滲透壓力[27-28]。值得注意的是,細(xì)胞分裂素與生長(zhǎng)素存在拮抗互作,例如,在胚胎發(fā)育早期,生長(zhǎng)素拮抗細(xì)胞分裂素信號(hào)以誘導(dǎo)胚胎根干細(xì)胞的產(chǎn)生,而細(xì)胞分裂素介導(dǎo)的下胚軸外植體器官發(fā)生是通過抑制生長(zhǎng)素的極性運(yùn)輸而產(chǎn)生的[13,25,29-30]。這兩種激素的拮抗互作對(duì)于維持根和芽的再生、側(cè)根的出苗和葉片形成至關(guān)重要[13,25,30]。在植物組織培養(yǎng)中,不同的激素濃度比例可以誘導(dǎo)不同組織的生長(zhǎng)分化并決定器官類型,因此生長(zhǎng)素細(xì)胞分裂素的比例對(duì)于誘導(dǎo)根或芽的形成過程非常重要[12]。
前期,水草紅絲青葉已在本實(shí)驗(yàn)室成功進(jìn)行了組織培養(yǎng)[4]。因此,本研究繼續(xù)聚焦于紅絲青葉,進(jìn)一步比較研究生長(zhǎng)素IAA、IBA、2,4-D和細(xì)胞分裂素6-KT單獨(dú)與聯(lián)合使用對(duì)水草紅絲青葉組培苗生長(zhǎng)的影響,和組培苗的相關(guān)生理應(yīng)答變化。本研究主要考查生長(zhǎng)素和細(xì)胞分裂素對(duì)水生植物組培苗生長(zhǎng)的影響,為今后更多激素在水草組織培養(yǎng)中的成功應(yīng)用提供技術(shù)參考。
1材料與方法
1.1材料
供試材料:生長(zhǎng)健壯、葉片翠綠、無染菌情況的生長(zhǎng)30 d左右的紅絲青葉組織培養(yǎng)苗。
供試培養(yǎng)基和藥劑:MS完全培養(yǎng)基(在MS基礎(chǔ)培養(yǎng)基中加入3%蔗糖,0.65%瓊脂固化,pH調(diào)至5.8±0.1,并進(jìn)行118 kPa大氣壓,121 ℃,高壓滅菌20 min);0.5,1.0,2.0和3.0 μg·μL-1 的吲哚乙酸(IAA)、吲哚丁酸(IBA)、2,4-二氯苯氧乙酸(2,4-D)和激動(dòng)素(6-KT)母液。
1.2方法
1.2.1組織培養(yǎng)
前期已對(duì)紅絲青葉進(jìn)行組培[4],本研究任意選取正常生長(zhǎng)的組培苗在MS完全培養(yǎng)基上進(jìn)行繼代培養(yǎng)后的組培苗作為研究材料,將組培苗在MS完全培養(yǎng)基上繼代后,繼續(xù)放入光照培養(yǎng)箱(寧波,中國)進(jìn)行組培生長(zhǎng),生長(zhǎng)溫度(26±1) ℃,濕度60%~70%,光照條件為白天∶黑夜=16 h∶8 h (5 000 lx)。
1.2.2單一生長(zhǎng)激素添加培養(yǎng)紅絲青葉組培苗
將IAA、IBA、2,4-D和6-KT 4種生長(zhǎng)激素各自配制成0.5,1.0,2.0 和3.0 μg·μL-1 ,分別添加到MS固體培養(yǎng)基培養(yǎng)瓶中,按照1∶1 000的體積進(jìn)行添加,搖勻后,高壓蒸汽滅菌(121 ℃,20 min),待培養(yǎng)基分裝冷卻后,在超凈臺(tái)接入離體快繁培養(yǎng)的紅絲青葉的帶芽莖段,放入光照培養(yǎng)箱(26±1) ℃培養(yǎng)10 d后觀察組培苗表型。未經(jīng)激素處理的作為對(duì)照組進(jìn)行同等環(huán)境培養(yǎng);各激素濃度處理5次重復(fù),選擇其中最具代表性的一組進(jìn)行拍照。
1.2.3組合生長(zhǎng)激素添加培養(yǎng)紅絲青葉組培苗
在單一激素作用效果明晰后,進(jìn)行組合使用生長(zhǎng)激素(IAA)和細(xì)胞分裂素(6-KT)后,觀察其表型應(yīng)答情況,將吲哚乙酸(IAA)設(shè)置不同濃度(0.5,1.0和2.0 μg·μL-1 )分別和激動(dòng)素(6-KT)不同濃度(0.5,1.0和2.0 μg·μL-1 )進(jìn)行組合添加到MS固體培養(yǎng)基培養(yǎng)瓶中,按照1∶1 000的體積比進(jìn)行添加,搖勻后,121 ℃,20 min高壓蒸汽滅菌,待冷卻后,在超凈臺(tái)接入離體的2~4 cm紅絲青葉莖段,放入光照培養(yǎng)箱(26±1) ℃培養(yǎng)。培養(yǎng)18 d和67 d觀察組培苗表型,各處理5次重復(fù)。
1.2.4不同濃度梯度的IAA和6-KT處理試驗(yàn)
待組合激素處理60 d左右,觀察組培苗在組培瓶中的狀態(tài)并進(jìn)行拍照記錄,包括單株植物的高度、葉片大小、葉脈凸顯情況、有無葉面卷曲、葉芽多少、植物顏色、染菌情況等,激素濃度單一變量組之間的差異情況,包括生長(zhǎng)高度差異、葉脈是否存在相同變異等,對(duì)其外觀進(jìn)行記錄整理。之后采集組培苗中部生長(zhǎng)良好且大小均勻的葉片3~5片,用直尺測(cè)定葉片寬度、葉片長(zhǎng)度,進(jìn)行記錄,每瓶組培苗進(jìn)行3次重復(fù)測(cè)量,記錄根的條數(shù)以及長(zhǎng)度。之后將測(cè)量后的葉片用液氮進(jìn)行冷凍保存測(cè)定其一系列的生理生化指標(biāo),取其組培苗中間3~4片葉,檢測(cè)丙二醛、葉綠素、可溶性蛋白、脯氨酸含量,各處理5次重復(fù),每次處理3片。
1.2.5測(cè)定項(xiàng)目及方法
丙二醛含量測(cè)定:取莖段中部葉片3~5片,準(zhǔn)確稱量葉片并記下質(zhì)量。將稱量后的葉片加入到含 10%TCA (三氯乙酸)中(避光),在研磨機(jī)中60 Hz研磨后4 ℃ 離心(3 min,12 000 r·mim-1)后取出。吸取上清液,加入 0.67%TBA (硫代巴比妥酸)溶液,充分震蕩混勻,沸水顯色15 min后冰浴冷卻,離心后吸取上清提取液,于600,532和450 nm處測(cè)定OD值,0.67%TBA溶液作為空白對(duì)照,根據(jù)如下公式計(jì)算丙二醛濃度和丙二醛含量。
丙二醛濃度(M)=6.45(OD532-OD600)-0.56 OD450
丙二醛含量(nmol·g-1 )=丙二醛濃度×提取液總體積/測(cè)定吸光度所用體積/葉片鮮重[31]
葉綠素含量測(cè)定:取莖段中部葉片3~5片,準(zhǔn)確稱量葉片并記下質(zhì)量。將稱量后的葉片加入到含96%乙醇中(避光)。 60 Hz研磨180 s,然后4 ℃ 離心(3 min,12 000 r·mim-1) 獲取上清提取液,在665 nm和649 nm下測(cè)定吸光度值,以96%乙醇作為空白對(duì)照,根據(jù)如下公式計(jì)算葉綠素含量。
Ca=13.95OD665-6.88OD649;
Cb=24.96OD649-7.32OD665;
Ca+b=6.63OD665+18.08OD649
葉綠素含量(mg·g-1 )=(葉綠素濃度×提取液總體積×稀釋倍數(shù)/測(cè)定吸取體積)/葉片鮮重[32]
脯氨酸含量測(cè)定:取莖段中部葉片3~5片,準(zhǔn)確稱量葉片并記下質(zhì)量,加入到3%磺基水楊酸溶液,沸水浴10 min后冷卻。4 ℃ 離心(10 min,2 500 r·mim-1)。取上清加入2.5%的酸性茚三酮顯色液及冰醋酸, 沸水浴40 min,溶液即呈紅色,冷卻后向各試管中加入甲苯,充分振蕩30 s,靜置分層,輕輕吸取上層紅色脯氨酸甲苯溶液于酶標(biāo)板中,以甲苯為空白對(duì)照(操作時(shí)酶標(biāo)板中要避免有氣泡),在酶標(biāo)分析儀上測(cè)吸光度值(520 nm波長(zhǎng))并計(jì)算葉片組織中脯氨酸含量(如下):
脯氨酸含量(mg·g-1 )=(提取液中脯氨酸濃度×提取液總體積/測(cè)定吸取體積)/樣品鮮重[33]
可溶性蛋白含量測(cè)定:取莖段中部葉片3~5片,準(zhǔn)確稱量葉片并記下質(zhì)量。將稱量后的葉片液氮冷凍處理后,60 Hz研磨180 s,加入預(yù)冷的0.05 mol·L-1 磷酸鈉緩沖液(pH=7.8),震蕩搖勻, 4 ℃靜置5 min。然后4 ℃ 離心(20 min,12 000 r·mim-1),移取上清液于試管中,加入5倍體積的考馬斯亮藍(lán)G-250試劑并充分混勻,放置2 min后,30 ℃水浴10 min,冷卻后吸取上清液置入酶標(biāo)板,于595 nm處測(cè)吸光度值并計(jì)算可溶性蛋白含量(如下)。
可溶性蛋白含量(mg·g-1 )=(提取液中蛋白質(zhì)濃度×提取液總體積/測(cè)定吸取體積)/樣品鮮重[34]
1.2.6數(shù)據(jù)分析
試驗(yàn)各指標(biāo)測(cè)定均采用3個(gè)生物重復(fù),數(shù)據(jù)以平均值±標(biāo)準(zhǔn)差表示。試驗(yàn)數(shù)據(jù)采用GraphPad Prism 6.0軟件進(jìn)行數(shù)據(jù)整理和方差分析(ANOVA),處理間顯著性差異采用LSD檢驗(yàn),(Plt;0.05)。
2結(jié)果與分析
2.1單一生長(zhǎng)激素對(duì)紅絲青葉生長(zhǎng)效果分析
2.1.1IAA
由圖1可知,在MS培養(yǎng)基上處理10 d后,0.5~1.0 μg·μL-1 的IAA濃度對(duì)組培苗的生長(zhǎng)有促進(jìn)作用,其中1.0 μg·μL-1 IAA組的組培苗生長(zhǎng)效果最好,莖最高,葉片舒展,葉片也比其他IAA組大、長(zhǎng)(圖1c)。當(dāng)IAA濃度等于或大于2.0 μg·μL-1 時(shí),特別是當(dāng)IAA濃度達(dá)到3.0 μg·μL-1 時(shí),與對(duì)照相比,處理后的植株生長(zhǎng)發(fā)育遲緩(圖1e)。
2.1.2IBA
相對(duì)于對(duì)照組,IBA處理組整體生長(zhǎng)趨勢(shì)明顯優(yōu)于IAA組,在0.5 μg·μL-1 和2.0 μg·μL-1 時(shí),表現(xiàn)出對(duì)組培苗生長(zhǎng)的促進(jìn)作用(圖1g和i)。隨著IBA濃度升高,組培苗生長(zhǎng)影響呈現(xiàn)波動(dòng),在1.0 μg·μL-1 時(shí),葉片少,莖相對(duì)短(圖1h),但總體而言,各組IBA處理后均對(duì)組培苗生長(zhǎng)有促進(jìn)作用,生長(zhǎng)效果優(yōu)于對(duì)照組,但I(xiàn)BA各組均未達(dá)到IAA組的莖長(zhǎng)及生長(zhǎng)狀態(tài)。
2.1.32,4-D
2,4-D處理后的紅絲青葉組培苗與IBA處理組生長(zhǎng)趨勢(shì)相似,各組與對(duì)照組相比均對(duì)組培苗生長(zhǎng)有促進(jìn)作用,在0.5 μg·μL-1 時(shí)葉片多、莖長(zhǎng)(圖1l),而整體用2,4-D處理后的各組組培苗葉片呈現(xiàn)狹長(zhǎng)態(tài),稍有卷曲、不舒展,所以相比1.0 μg·μL-1 IAA,2,4-D處理不能達(dá)到最佳組培苗生長(zhǎng)狀態(tài)。
2.1.46-KT
與IAA相似, 6-KT處理組在1.0 μg·μL-1 (圖1r)時(shí)明顯有利于紅絲青葉的生長(zhǎng)(圖1p~t),莖長(zhǎng),葉芽多,但同時(shí)可明顯看到其葉片的葉脈與其他組相比有明顯白化,且葉片卷曲,所以也不能滿足組培苗的最佳生長(zhǎng)狀態(tài)。而其他處理組與對(duì)照組相比幾乎無差異或有很少差異,0.5 μg·μL-1 2,4-D處理后抑制葉片的正常生長(zhǎng),葉片變得細(xì)長(zhǎng)且抑制莖變長(zhǎng)(圖1q),2.0~3.0 μg·μL-1 6-KT處理后與對(duì)照組的生長(zhǎng)狀態(tài)幾乎相同,對(duì)其沒有促進(jìn)作用(圖1s和t)。
由此可見,在MS培養(yǎng)基中補(bǔ)充適宜濃度的IAA、IBA、2,4-D和6-KT均有利于紅絲青葉組培苗的生長(zhǎng)。其中,1.0 μg·μL-1 IAA和1.0 μg·μL-1 6-KT添加入培養(yǎng)基后,能促進(jìn)紅絲青葉組培苗的生長(zhǎng),且長(zhǎng)勢(shì)最為明顯。所以,進(jìn)一步對(duì)IAA和6-KT進(jìn)行組合配比添加,研究二者互作對(duì)紅絲青葉組培苗的生長(zhǎng)影響。
2.2組合生長(zhǎng)激素對(duì)紅絲青葉的生長(zhǎng)效果分析
2.2.1生長(zhǎng)狀態(tài)觀察
由圖2可知,整體來看,處理18 d后,隨著IAA濃度的升高,紅絲青葉組培苗生長(zhǎng)呈現(xiàn)變好趨勢(shì),其中,1.0 μg·μL-1 IAA和1.0 μg·μL-1 6-KT處理組的組培苗生長(zhǎng)顯著優(yōu)于其他處理組(圖2h)。值得關(guān)注的是,較高的2.0 μg·μL-1 6-KT的組合應(yīng)用雖促進(jìn)了組培苗的生長(zhǎng),但葉片形態(tài)呈現(xiàn)過于膨大的非正常狀態(tài)(圖2 i和o),表明過高的6-KT不利于組培苗的正常生長(zhǎng)。進(jìn)一步生長(zhǎng)67 d后,在1.0~2.0 μg·μL-1 IAA+1.0~2.0 μg·μL-1 6-KT處理下,組培苗底部葉片出現(xiàn)焦灼干枯現(xiàn)象(圖2k、l和q、r),尤其在1.0~2.0 μg·μL-1 IAA+2.0 μg·μL-1 6-KT處理下組培苗葉片仍較大較長(zhǎng),出現(xiàn)卷曲或葉邊緣的波浪紋,靠近培養(yǎng)基的底部葉片變枯(圖2l和r)。相比之下,較低濃度的0.5 μg·μL-1IAA+6-KT組合或IAA +0.5 μg·μL-1 6-KT組合反而長(zhǎng)勢(shì)略勝一籌和(圖2e、f和j、p),表明植物激素對(duì)幼苗的早期生長(zhǎng)影響較顯著,促進(jìn)苗子生長(zhǎng)后要盡快繼代移瓶。并且較高濃度的激素是影響組培苗的長(zhǎng)期生長(zhǎng)的,尤其是高濃度的6-KT(>1.0 μg·μL-1 )不利于組培苗的生長(zhǎng)。
2.2.2葉片生長(zhǎng)指標(biāo)
67 d后,大部分大多數(shù)處理過的組培苗變得又高又壯。0.5 μg·μL-1 IAA+ 6-KT組合的組培苗長(zhǎng)出了新芽和豐富的根,隨著6-KT濃度升高,葉長(zhǎng)和葉寬變得更長(zhǎng)和更寬 (表1),當(dāng)6-KT由0.5 μg·μL-1 升高至1.0 μg·μL-1 時(shí),葉長(zhǎng)由1.24 cm增加至1.92 cm,達(dá)到2.0 μg·μL-1 時(shí),葉長(zhǎng)又降為1.67 cm;而葉寬則由0.41 cm增加至0.53 cm,后降為0.44 cm,表明過高的6-KT會(huì)對(duì)組培苗的生長(zhǎng)產(chǎn)生不利影響。在0.5 μg·μL-1 IAA+ 0.5 μg·μL-1 6-KT組合處理下,該組的葉片發(fā)生卷曲和黃化現(xiàn)象(圖2 d)。隨著IAA濃度的升高,1.0 μg·μL-1 IAA和1.0~2.0 μg·μL-1 6-KT組合反而影響組培苗的根和葉的生長(zhǎng)(表1)。1.0~2.0 μg·μL-1 IAA和1.0~2.0 μg·μL-1 6-KT組均出現(xiàn)向下卷曲的葉片(圖2k、l、q、r)。然而,1.0 μg·μL-1 IAA 和0.5 μg·μL-1 6-KT 組的植株表現(xiàn)出強(qiáng)壯的莖、闊葉和氣生根(圖2j和表1)。此外,2.0 μg·μL-1 IAA 和2.0 μg·μL-1 6-KT組的植株根數(shù)最多(表1)。
2.2.3葉片生理指標(biāo)
培養(yǎng)67 d后,在0.5 μg·μL-1 IAA和0.5 μg·μL-1 6-KT組合處理下,該組的葉片丙二醛含量(MDA)最高 (289 nmol·g-1)(圖3A),且葉綠素、可溶性蛋白和脯氨酸含量低(圖3),表明該組葉細(xì)胞的膜脂過氧化程度高,且光合能力和滲透調(diào)節(jié)能力弱,組培苗生長(zhǎng)狀態(tài)欠佳;但當(dāng)6-KT分別增加至1.0和2.0 μg·μL-1 ,MDA含量降低(圖3A),葉綠素含量升高(圖3B),生長(zhǎng)狀態(tài)較好。1.0 μg·μL-1 IAA 和0.5 μg·μL-1 6-KT 組MDA含量最低(47 nmol·g-1 ),葉綠素含量(0.23 mg·g-1 )、可溶性蛋白含量(3.56 mg·g-1)和脯氨酸含量(24.9 mg·g-1)最高(圖3),表明該組葉片細(xì)胞的膜脂過氧化程度最低,且光合和滲透調(diào)節(jié)能力最強(qiáng),組培苗生長(zhǎng)狀態(tài)最佳;隨著6-KT增加,MDA含量升高,脯氨酸含量降低(圖3A和D)。此外,2.0 μg·μL-1IAA 和各濃度的6-KT組合,尤其是2.0 μg·μL-1 IAA和2.0 μg·μL-1 6-KT的組合,脯氨酸含量較低(5.9 mg·g-1 ,圖3D)。
3討論
本研究主要討論生長(zhǎng)素和細(xì)胞分裂素對(duì)典型水草紅絲青葉生長(zhǎng)的影響。首先,在MS培養(yǎng)基中分別添加IAA、IBA、2,4-D、6-KT等單一生長(zhǎng)素。結(jié)果表明,與對(duì)照組相比,經(jīng)激素處理的紅絲青葉生長(zhǎng)更迅速,新芽更多,葉片更伸展。其中1.0 μg·μL-1 IAA的效果突出。就生長(zhǎng)素或6-KT的單一作用而言,低濃度的IAA或6-KT有利于紅絲青葉的生長(zhǎng),而濃度過高則會(huì)阻礙紅絲青葉的生長(zhǎng)。IAA和6-KT的最佳濃度均小于2.0 μg·μL-1 。一旦這兩種激素超過閾值,紅絲青葉的生長(zhǎng)就會(huì)受到阻礙。同樣,有報(bào)道表明,在植物組織培養(yǎng)中,低濃度范圍的IAA和6-KT誘導(dǎo)了芽或根的形成[9,22,35-36]。當(dāng)然,某些植物如在沙漠苗木的組培中,需要高達(dá)到3.0 μg·μL-1 濃度的IAA或IBA[36]。當(dāng)6-KT濃度在0~1.0 μg·μL-1時(shí),紅絲青葉的生長(zhǎng)得到促進(jìn),并誘導(dǎo)出更多的新芽。但當(dāng)6-KT濃度達(dá)到2.0 μg·μL-1 以上時(shí),紅絲青葉的生長(zhǎng)受到嚴(yán)重抑制,說明過量的6-KT對(duì)紅絲青葉的生長(zhǎng)不利。重要的是,之前曾報(bào)道過細(xì)胞分裂素與生長(zhǎng)素的拮抗相互作用[13,23,25]。由此可知,過高的6-KT通過調(diào)節(jié)生長(zhǎng)素生物合成或分布的關(guān)鍵基因的表達(dá),抑制了生長(zhǎng)素的信號(hào)傳導(dǎo)或運(yùn)輸。在植物組織培養(yǎng)中,一些植物中,激動(dòng)素不能完全被其他類似細(xì)胞分裂素的化合物BAP或TDZ所取代[9,18,26,35-36]。由此可見,6-KT對(duì)水生植物的影響較為復(fù)雜。在組培條件下,6-KT濃度在2.0 μg·μL-1 以下才能夠促進(jìn)水生植物的生長(zhǎng),否則,高于2.0 μg·μL-1 的6-KT,會(huì)抑制生長(zhǎng),即6-KT的最大使用濃度閾值為2.0 μg·μL-1 。
在紅絲青葉組培中,單獨(dú)施用生長(zhǎng)素IAA、IBA或2,4-D均能促進(jìn)組培苗的生長(zhǎng),其中IAA單獨(dú)效果較佳,且當(dāng)IAA與6-KT組合使用時(shí),其效果優(yōu)于單獨(dú)的IAA。進(jìn)一步研究發(fā)現(xiàn),1.0 μg·μL-1 IAA與1.0 μg·μL-1 6-KT的組合對(duì)紅絲青葉的短期促進(jìn)效果最好。而在長(zhǎng)期處理,0.5 μg·μL-1 IAA 和1.0 μg·μL-1 6-KT處理以及1.0 μg·μL-1 IAA和0.5 μg·μL-1 6-KT處理的組培苗均具有生長(zhǎng)優(yōu)勢(shì)。在報(bào)道多種水生植物的組織培養(yǎng)中,IAA也常被選擇添加在組培培養(yǎng)基中[9,20,22]。值得注意的是,0.5 μg·μL-1 IAA和1.0 μg·μL-1 6-KT組合,及1.0 μg·μL-1 IAA和0.5 μg·μL-1 6-KT組合均能促進(jìn)組培苗的生長(zhǎng),誘導(dǎo)豐富的根,且與其生理指標(biāo)相一致。經(jīng)檢測(cè),該組組培苗葉片的丙二醛含量低,而葉綠素、可溶性蛋白和脯氨酸含量高,表明該組培苗葉細(xì)胞的膜脂過氧化程度低,光合能力和滲透調(diào)節(jié)能力強(qiáng),生長(zhǎng)良好。另外,有報(bào)道表明,生長(zhǎng)素調(diào)節(jié)初始根的形成和再生[15,24],因此經(jīng)IAA處理的組培苗呈現(xiàn)出許多根,以及積累可溶性物質(zhì)以適應(yīng)其快速生長(zhǎng)的狀態(tài)[31]。在長(zhǎng)期處理中,高濃度IAA的(1.0~2.0 μg·μL-1)和2.0 μg·μL-1 6-KT處理的組培苗生長(zhǎng)受到嚴(yán)重抑制,甚至莖尖出現(xiàn)干旱和壞死,可能與Ca2+信號(hào)或乙烯的產(chǎn)生相關(guān)[24-25,36]。所以,高濃度IAA和6-KT,尤其是6-KT,可能會(huì)抑制水生植物組培苗的生長(zhǎng),嚴(yán)重引起莖尖壞死。下一步,需要通過同位素標(biāo)記或免疫標(biāo)記外源激素并追蹤其動(dòng)態(tài)變化,或通過液相色譜-質(zhì)譜聯(lián)用LC-MS/MS檢測(cè)組培苗體內(nèi)生長(zhǎng)素或細(xì)胞分裂素的含量分布,以明確植物激素的內(nèi)在調(diào)節(jié)作用。此外,可運(yùn)用基因組學(xué)、轉(zhuǎn)錄組學(xué)、蛋白質(zhì)組學(xué)和代謝組學(xué)或CRISPR(聚集規(guī)律間隔短回文重復(fù)序列)技術(shù)研究激素處理前后組培苗相關(guān)差異基因變化[31-32,34],進(jìn)一步揭示IAA和6-KT在水草組培中調(diào)控幼苗生長(zhǎng)的分子機(jī)制。
本研究結(jié)果揭示了水草組培中生長(zhǎng)素IAA和細(xì)胞分裂素6-KT的單獨(dú)或組合使用效果及其適宜濃度范圍,可以為更多水生植物組織培養(yǎng)中的成功應(yīng)用提供重要參考。
4結(jié)論
本研究首次報(bào)道了生長(zhǎng)素(IAA、IBA和2,4-D)和細(xì)胞分裂素(6-KT)單獨(dú)或組合應(yīng)用對(duì)水生觀賞植物紅絲青葉生長(zhǎng)的影響,并篩選適宜的使用濃度。在0.5~3.0 μg·μL-1 濃度處理范圍內(nèi),單獨(dú)添加生長(zhǎng)素和細(xì)胞分裂素對(duì)組培苗呈現(xiàn)先促進(jìn)后抑制的影響;組合處理后,在1.0 μg·μL-1 處理閾值下,IAA和6-KT對(duì)組培苗生長(zhǎng)有促進(jìn)作用,其中1.0 μg·μL-1 IAA和1.0 μg·μL-1 6-KT短期處理18 d后的效果最佳。長(zhǎng)期處理67 d后,0.5 μg·μL-1 IAA 和1.0 μg·μL-1 6-KT處理組以及1.0 μg·μL-1 IAA和0.5 μg·μL-1 6-KT處理的組培苗均表現(xiàn)出生長(zhǎng)優(yōu)勢(shì);而高濃度 2.0 μg·μL-1 IAA和2.0 μg·μL-1 6-KT組紅絲青葉的葉片卷曲,底部葉片出現(xiàn)枯黃變干,且與其較高的丙二醛含量和極低的脯氨酸含量相一致,表明水草紅絲青葉組培中,生長(zhǎng)素和細(xì)胞分裂素的使用濃度均不宜超過2.0 μg·μL-1 。
參考文獻(xiàn):
[1]POLUNIN N. “Aquatic ecosystems: trends and global prospects,” in aquatic ecosystems: trends and global prospects[J]. Cambridge University Press, 2008,1:482.
[2]ZHENG H, QIAO M, XU J P, et al. Culture-based and culture-independent assessments of endophytic fungal diversity in aquatic plants in southwest China[J]. Frontiers in Fungal Biology, 2021, 692549.
[3]LEWIS M, THURSBY G. Aquatic plants: test species sensitivity and minimum data requirement evaluations for chemical risk assessments and aquatic life criteria development for the USA[J]. Environmental Pollution, 2018, 238: 270-280.
[4]LI W J, CAO G L, ZHU M Q, et al. Isolation, identification and pollution prevention of bacteria and fungi during the tissue culture of dwarf hygro (Hygrophila polysperma) explants[J]. Microorganisms, 2022, 10(12): 2476.
[5]SRIVASTAVA J, GUPTA A, CHANDRA H. Managing water quality with aquatic macrophytes[J]. Reviews in Environmental Science and Bio/Technology, 2008, 7(3): 255-266.
[6]REZANIA S, TAIB S M, MD DIN M F, et al. Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater[J]. Journal of Hazardous Materials, 2016, 318: 587-599.
[7]EBRAHIMBABAIE P, MEEINKUIRT W, PICHTEL J. Phytoremediation of engineered nanoparticles using aquatic plants: mechanisms and practical feasibility[J]. Journal of Environmental Sciences, 2020, 93: 151-163.
[8]MAKI K, GALATOWITSCH S. Movement of invasive aquatic plants into Minnesota (USA) through horticultural trade[J]. Biological Conservation, 2004, 118(3): 389-396.
[9]KARATA瘙 塁
M, AASIM M, NAR A, et al. Adventitious shoot regeneration from leaf explant of dwarf hygro (Hygrophila polysperma (Roxb.) T. Anderson)[J]. The Scientific World Journal, 2013(3): 680425.
[10]SULAIMAN E S. Development of sterilization procedures and in vitro studies of Nymphaea lotus[D]. Serdang, Malaysia:Universiti Putra Malaysia, 2004.
[11]KIM D H, GOPAL J, SIVANESAN I. Nanomaterials in plant tissue culture: the disclosed and undisclosed[J]. RSC Advances, 2017, 7(58): 36492-36505.
[12]MELNYK C W. Quantitative regeneration: Skoog and Miller revisited[J]. Quantitative Plant Biology, 2023, 4: e10.
[13]PERNISOV M, KLMA P, HORK J, et al. Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3609-3614.
[14]HOWELL S H, LALL S, CHE P. Cytokinins and shoot development[J]. Trends in Plant Science, 2003, 8(9): 453-459.
[15]YOSHIDA S, SAIGA S, WEIJERS D. Auxin regulation of embryonic root formation[J]. Plant amp; Cell Physiology, 2013, 54(3): 325-332.
[16]PERICA M C. Auxin-treatment induces recovery of phytoplasma-infected periwinkle[J]. Journal of Applied Microbiology, 2008, 105(6): 1826-1834.
[17]KARAMI O, PHILIPSEN C, RAHIMI A, et al. Endogenous auxin maintains embryonic cell identity and promotes somatic embryo development in Arabidopsis[J]. The Plant Journal: for Cell and Molecular Biology, 2023, 113(1): 7-22.
[18]SRIVASTAVA D R, ANDRIANOV V M, PIRUZIAN E S. Tissue culture and plant regeneration of watermelon (Citrullus vulgaris Schrad. cv. Melitopolski)[J]. Plant Cell Reports, 1989, 8(5): 300-302.
[19]CARDOSO J C, TEIXEIRA da SILVA J A. Gerbera micropropagation[J]. Biotechnology Advances, 2013, 31(8): 1344-1357.
[20]STANLY C, BHATT A, KENG C L. An efficient in vitro plantlet regeneration of Cryptocoryne wendtii and Cryptocoryne becketti through shoot tip culture[J]. Acta Physiologiae Plantarum, 2011, 33(2): 619-624.
[21]SHARMA S, KAMAL B, RATHI N, et al. In vitro rapid and mass multiplication of highly valuable medicinal plant Bacopa monnieri L. Wettst[J]. African Journal of Biotechnology, 2010, 9: 8318-8322.
[22]DOGAN M. Multiple shoot regeneration from shoot tip and nodal explants of Rotala rotundifolia (Buch-Ham. ex roxb) koehne[J]. Anatolian Journal of Botany, 2017, 1(1): 4-8.
[23]PASTERNAK T P, STEINMACHER D. Plant growth regulation in cell and tissue culture in vitro[J]. Plants, 2024, 13(2): 327.
[24]MOTTE H, VEREECKE D, GEELEN D, et al. The molecular path to in vitro shoot regeneration[J]. Biotechnology Advances, 2014, 32(1): 107-121.
[25]PERILLI S, MOUBAYIDIN L, SABATINI S. The molecular basis of cytokinin function[J]. Current Opinion in Plant Biology, 2010, 13(1): 21-26.
[26]BARCISZEWSKI J, MASSINO F, CLARK B F C. Kinetin:a multiactive molecule[J]. International Journal of Biological Macromolecules, 2007, 40(3): 182-192.
[27]MANDAL S, GHORAI M, ANAND U, et al. Cytokinin and abiotic stress tolerance-What has been accomplished and the way forward[J]. Frontiers in Genetics, 2022,3:943025
[28]POLIVANOVA O B, BEDAREV V A. Hyperhydricity in plant tissue culture[J]. Plants, 2022, 11(23): 3313.
[29]YAROSHKO O, PASTERNAK T, LARRIBA E, et al. Optimization of callus induction and shoot regeneration from tomato Cotyledon explants[J]. Plants, 2023, 12(16): 2942.
[30]MOUBAYIDIN L, Di MAMBRO R, SABATINI S. Cytokini nauxin crosstalk[J]. Trends in Plant Science, 2009, 14(10): 557-562.
[31]SUN Y L, KONG X P, LI C L, et al. Potassium retention under salt stress is associated with natural variation in salinity tolerance among Arabidopsis accessions[J]. PLoS One, 2015, 10(5): e0124032.
[32]SUN Y L, MU C H, ZHENG H X, et al. Exogenous Pi supplementation improved the salt tolerance of maize (Zea mays L.) by promoting Na+ exclusion[J]. Scientific Reports, 2018, 8: 16203.
[33]SUN Y L, ZHENG H X. Divergent molecular and physiological response of two maize breeding lines under phosphate deficiency[J]. Plant Molecular Biology Reporter, 2022, 40(1): 197-207.
[34]ZHAO Z Y, ZHENG H X, WANG M H, et al. Reshifting Na+ from shoots into long roots is associated with salt tolerance in two contrasting inbred maize (Zea mays L.) lines[J]. Plants, 2023, 12(10): 1952.
[35]GAO S L, HUANG H P, WEI K H. Tissue culture and generation of autotetraploid plants of Sophora flavescens Aiton[J]. Pharmacognosy Magazine, 2010, 6(24): 286.
[36]REN H M, XU Y, ZHAO X H, et al. Optimization of tissue culturing and genetic transformation protocol for Casuarina equisetifolia[J]. Frontiers in Plant Science, 2022, 12: 784566.
Effects of Auxin IAA Alone or in Combination with Cytokinin 6-KT on Growth of Hygrophila polysperma in vitro Tissue Culture
GUO Yaning, ZHAO Zhenyang, LIANG Mengting, WANG Mei, GUO Zhiyong, GUAN Lianqing, MA Wenwen, SUN Yanling
(School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237,China)
Abstract:In order to uncover the influences of auxin and cytokinin on tissue culture seedlings of aquatic plants, in this study, the single and combined effects of auxin IAA and cytokinin 6-KT were investigated on the typical ornamental plants Hygrophila polysperma.The results showed that, firstly, IAA, IBA, 2,4-D or 6-KT had an enhanced effects for each on the growth of the plantlets in vitro, and then inhibited them along with the increase of the concentration of IAA, IBA, 2,4-D or 6-KT. Among them, 1.0 μg·μL-1 IAA showed a significant change, and the combination of IAA and 6-KT was further investigated. As a result, with the increase of the concentration of IAA combined with 6-KT, the growth of the plantlets was promoted as a whole, and the treatment of 1.0 μg·μL-1 IAA + 1.0 μg·μL-1 6-KT had the best effect, however, with the increase of 6-KT concentration, the leaf area of the plantlets obviously expanded. After 67 days treatment of high concentration of IAA + 6-KT, the leaves of H. polysperma appeared to be coiled and the bottom of the leaves became scorched.The combination of 1.0-2.0 μg·μL-1 IAA + 2.0 μg·mL-1 6-KT made the leaves branched and large, especially, under the combination of 2.0 μg·μL-1 IAA + 2.0 μg·mL-1 6-KT, the leaves of plantlets had higher malondialdehyde and lower proline content relative to other groups. In conclusion, the application concentration of plant hormones in tissue culture of aquatic plants is not feasible to be too high, and the combination of 1.0 μg·μL-1 IAA+1.0 μg·μL-1 6-KT is appropriate for short-term treatment.
Keywords:tissue culture; Hygrophila polysperma; IAA; 6-KT