亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        巨噬細(xì)胞極化在炎癥性腸病中的研究進(jìn)展

        2024-09-20 00:00:00張夢(mèng)婷項(xiàng)鏡蓉朱濛昕曹凱磊石通國(guó)奚沁華
        胃腸病學(xué) 2024年1期
        關(guān)鍵詞:巨噬細(xì)胞炎癥性腸病極化

        摘要 炎癥性腸?。↖BD)是一種慢性炎癥性胃腸道疾病,包括克羅恩病和潰瘍性結(jié)腸炎。IBD可能是由遺傳易感因素、環(huán)境因素和腸道微生物群改變之間復(fù)雜的相互作用所引起,導(dǎo)致先天性和適應(yīng)性免疫反應(yīng)失調(diào)。最近研究發(fā)現(xiàn)巨噬細(xì)胞在腸道炎癥反應(yīng)中具有可塑性,不僅可以調(diào)節(jié)炎癥的發(fā)生,而且可以促進(jìn)組織修復(fù)和愈合。IBD的發(fā)展過(guò)程中存在巨噬細(xì)胞極化異常,促炎M1巨噬細(xì)胞與抗炎M2巨噬細(xì)胞表型和功能之間的平衡受到細(xì)胞內(nèi)外刺激的調(diào)節(jié),因此這一過(guò)程有望成為新的潛在的治療靶點(diǎn)。本文就巨噬細(xì)胞極化在IBD中的研究進(jìn)展作一綜述。

        關(guān)鍵詞 炎癥性腸??; 巨噬細(xì)胞; 極化; 治療

        Progress of Research on Macrophage Polarization in Inflammatory Bowel Disease ZHANG Mengting, XIANG Jingrong, ZHU Mengxin, CAO Kailei, SHI Tongguo, XI Qinhua." Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province (215006)

        Correspondence to: XI Qinhua, Email: xqhxqhxqh@126.com

        Abstract Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract that includes Crohn's disease and ulcerative colitis. IBD may be caused by complex interactions between genetic susceptibility, environmental factors, and alterations in the gut microbiota, resulting in dysregulated innate and adaptive immune responses. Recent studies have identified macrophages in the intestinal inflammatory response as having the plasticity to not only regulate inflammation, but also to promote tissue repair and healing. As aberrant macrophage polarization occurs during the development of IBD, the balance between the phenotype and function of pro?inflammatory M1 and anti?inflammatory M2 macrophages is regulated by extracellular and intracellular stimuli, and this process is therefore expected to be a potential target for new therapeutic approaches. This article reviewed the progress of research on macrophage polarization in IBD.

        Key words Inflammatory Bowel Disease; Macrophages; Polarization; Therapy

        炎癥性腸?。╥nflammatory bowel disease, IBD)是免疫介導(dǎo)的復(fù)雜的消化道慢性炎癥性疾病,包括克羅恩?。–rohn's disease, CD)和潰瘍性結(jié)腸炎(ulcerative colitis, UC),以臨床緩解期與復(fù)發(fā)期交替出現(xiàn)為特點(diǎn),通常伴有狹窄、膿腫和瘺管等并發(fā)癥,使患者的生命質(zhì)量嚴(yán)重下降[1]。最新研究發(fā)現(xiàn)IBD作為復(fù)雜、嚴(yán)重的慢性公共衛(wèi)生問(wèn)題,其發(fā)病率和流行率在世界范圍內(nèi)不斷上升,已成為顯著的全球醫(yī)療負(fù)擔(dān)[2]。越來(lái)越多的研究提示IBD是由于基因、免疫系統(tǒng)、腸道菌群和其他環(huán)境因素之間的相互作用而引起的,但目前對(duì)IBD的確切發(fā)病機(jī)制仍知之甚少,這阻礙了IBD的臨床診治[3]。因此,研究IBD的發(fā)病機(jī)制并評(píng)估新的抗炎策略非常重要。

        目前,針對(duì)IBD的治療以抗炎藥物(糖皮質(zhì)激素、氨基水楊酸鹽)、免疫抑制劑(硫唑嘌呤、巰嘌呤、甲氨蝶呤)和生物制劑[抗腫瘤壞死因子(TNF)類(lèi)藥物、其他抗白細(xì)胞介素(IL)類(lèi)藥物]為主,但臨床療效不甚理想,仍有許多患者因治療失敗、復(fù)發(fā)或不良反應(yīng)而需要替代療法[4]。巨噬細(xì)胞作為先天性免疫系統(tǒng)的核心組成,可以清除入侵的病原體,觸發(fā)適應(yīng)性免疫應(yīng)答,并在腸道慢性炎癥微環(huán)境中受腸道微生物或炎癥因子等的刺激而極化為相反的表型狀態(tài)[5]。隨著免疫治療領(lǐng)域的不斷發(fā)展,巨噬細(xì)胞在健康和疾病中的作用引起了越來(lái)越多的關(guān)注,其可塑性和傷口愈合能力有望成為治療IBD的潛在新療法的有吸引力的靶點(diǎn)[6]。本文從巨噬細(xì)胞極化、巨噬細(xì)胞在IBD中的作用和影響以及與巨噬細(xì)胞極化的相關(guān)靶點(diǎn)等方面作一綜述,以期為靶向巨噬細(xì)胞在IBD中治療提供新的方向和策略。

        一、巨噬細(xì)胞分型及其極化

        巨噬細(xì)胞極化是巨噬細(xì)胞對(duì)特定組織中的微環(huán)境刺激和信號(hào)產(chǎn)生特異性表型和功能性反應(yīng)的過(guò)程,腸道中的巨噬細(xì)胞可分為經(jīng)典活化型M1和替代活化型M2[7]。當(dāng)感染或炎癥嚴(yán)重時(shí),巨噬細(xì)胞首先表現(xiàn)為M1表型,釋放TNF?α、IL?1β、IL?12和IL?23來(lái)對(duì)抗刺激。M1巨噬細(xì)胞的持續(xù)作用會(huì)導(dǎo)致組織損傷,而M2巨噬細(xì)胞分泌大量IL?10和轉(zhuǎn)化生長(zhǎng)因子(TGF)?β來(lái)抑制炎癥,參與組織修復(fù)、重塑、血管生成和維持體內(nèi)平衡。此外,在腸道炎癥消退、組織修復(fù)和恢復(fù)正常腸道穩(wěn)態(tài)過(guò)程中,凋亡的中性粒細(xì)胞和上皮細(xì)胞會(huì)誘導(dǎo)巨噬細(xì)胞從M1向M2轉(zhuǎn)換[7?8]。

        1. 巨噬細(xì)胞的起源:隨著小鼠模型技術(shù)的發(fā)展,研究證實(shí)大多數(shù)組織駐留巨噬細(xì)胞來(lái)自胚胎發(fā)育期間卵黃囊中的紅細(xì)胞?髓系祖細(xì)胞,可根據(jù)生態(tài)位信號(hào)調(diào)節(jié)功能和分化,并具有自我更新能力[9?10]。如在腸道穩(wěn)態(tài)中,外肌層組織內(nèi)的巨噬細(xì)胞可與控制腸道分泌和蠕動(dòng)的腸神經(jīng)元和肌間神經(jīng)元相互作用,而在固有層中,巨噬細(xì)胞向腸道干細(xì)胞提供信號(hào),產(chǎn)生杯狀細(xì)胞、Paneth細(xì)胞和腸上皮細(xì)胞[8]。值得一提的是,腸道巨噬細(xì)胞群是胎源性巨噬細(xì)胞,在出生后的三個(gè)月內(nèi),血液中的循環(huán)單核細(xì)胞被招募進(jìn)來(lái),通過(guò)一系列中間產(chǎn)物進(jìn)行局部分化,逐漸取代胎源性巨噬細(xì)胞群,驅(qū)動(dòng)這一過(guò)程的關(guān)鍵是微生物群,并持續(xù)了整個(gè)成年期,以維持正常的腸道巨噬細(xì)胞庫(kù)[11]。

        2. 巨噬細(xì)胞的表型:M1/M2命名法最初是在20年前由Mills等提出,雖然已建立了大量巨噬細(xì)胞極化相關(guān)的體外模型,但在體內(nèi)由于多種刺激導(dǎo)致激活的M1/M2巨噬細(xì)胞混合在一起,很難區(qū)分M1與M2[5,12]。近來(lái)有研究通過(guò)系統(tǒng)生物學(xué)方法對(duì)巨噬細(xì)胞亞型進(jìn)行功能表型分析,證實(shí)靜息M0可極化為M1、M2a、M2b、M2c和M2d,根據(jù)信號(hào)蛋白和表達(dá)基因圖譜將巨噬細(xì)胞劃分為炎癥型(M1和M2b)和傷口愈合型(M2a、M2c和M2d)[13]。

        3. 巨噬細(xì)胞的功能:M1巨噬細(xì)胞通常由Th1細(xì)胞因子[如干擾素(IFN)?γ和TNF?α]、細(xì)菌脂多糖或Toll樣受體(TLR)激動(dòng)劑識(shí)別誘導(dǎo),并能產(chǎn)生促炎因子(如IL?12、IL?23和IL?1β),促進(jìn)Th1和Th17免疫應(yīng)答,加重上皮細(xì)胞損傷[14?16]。M2a巨噬細(xì)胞可被IL?4和IL?13誘導(dǎo),具有促進(jìn)Th細(xì)胞活化、抑制炎癥、促進(jìn)組織修復(fù)和促進(jìn)血管生成等功能[17?18]。M2b巨噬細(xì)胞可由脂多糖、免疫復(fù)合物、TLR激動(dòng)劑或IL?1受體配體刺激誘導(dǎo),可通過(guò)免疫復(fù)合物交聯(lián)Fcγ受體,促進(jìn)Th2免疫,并分泌高水平IL?10[19]。M2c巨噬細(xì)胞可被免疫復(fù)合物、糖皮質(zhì)激素、前列腺素和IL?10激活,通過(guò)滲出、細(xì)胞外基質(zhì)(ECM)重塑和血管生成來(lái)促進(jìn)組織修復(fù)[20]。M2d巨噬細(xì)胞可通過(guò)多種機(jī)制極化,包括與癌細(xì)胞腹水共培養(yǎng)或暴露于IL?6、白血病抑制因子或嘌呤核苷腺苷,具有刺激血管生成、癌癥轉(zhuǎn)移的作用[21?22]。目前巨噬細(xì)胞活化狀態(tài)改變的原因尚不清楚,可能是由于單核細(xì)胞的招募及其對(duì)局部變化的反應(yīng)或M1與M2巨噬細(xì)胞之間的復(fù)極化,或兩者的結(jié)合。由于腸道巨噬細(xì)胞的異質(zhì)性增加,巨噬細(xì)胞亞群在IBD中的作用有待進(jìn)一步研究。

        4. 影響巨噬細(xì)胞極化的因素

        ①集落刺激因子1(CSF1):CSF1是典型的巨噬細(xì)胞生長(zhǎng)因子,被認(rèn)為是髓系前體細(xì)胞向單核系分化,并分化為巨噬細(xì)胞的主要驅(qū)動(dòng)因素,黏膜和肌層巨噬細(xì)胞的發(fā)育和生存均依賴(lài)于CSF1受體信號(hào)。有研究證實(shí)抗CSF1受體抗體治療可大量消耗巨噬細(xì)胞,影響Paneth細(xì)胞分化,導(dǎo)致LGR5+腸干細(xì)胞減少,從而影響腸上皮細(xì)胞分化[22?23]。IL?34被稱(chēng)為是CSF1的“孿生”細(xì)胞因子,兩者有共同的受體,即CSF1受體,且激活方式相似,啟動(dòng)相同的信號(hào)通路。在IBD中,IL?34與CSF1受體在相同區(qū)域共表達(dá),IL?34缺乏會(huì)加重急性結(jié)腸炎和傷口愈合階段小鼠的結(jié)腸炎[24?25]。更有體外數(shù)據(jù)顯示,IL?34可促進(jìn)循環(huán)單核細(xì)胞向M2巨噬細(xì)胞分化,而CSF1主要促進(jìn)M1巨噬細(xì)胞分化[26?27]。此外,CSF1和IL?34激活的巨噬細(xì)胞在免疫反應(yīng)中表現(xiàn)出不同的巨噬細(xì)胞極化潛能。CSF1分化的M1巨噬細(xì)胞較IL?34分化的M1巨噬細(xì)胞更能促進(jìn)初始T細(xì)胞向Th1分化[26]。

        ②IL?10受體:IL?10受體信號(hào)轉(zhuǎn)導(dǎo)對(duì)小鼠和人類(lèi)腸道巨噬細(xì)胞的調(diào)節(jié)表型具有重要作用,IL?10受體會(huì)激活非受體酪氨酸激酶JAK1和TYK2,誘導(dǎo)下游信號(hào)通路,包括STAT3磷酸化和核轉(zhuǎn)位[28]。IL?10受體缺陷的巨噬細(xì)胞表現(xiàn)出明顯的促炎特征,包括NOS2、IL?23a、CCL5、CCR7等的升高,可導(dǎo)致嚴(yán)重的結(jié)腸炎[29]。巨噬細(xì)胞特異性敲低IL?10下游轉(zhuǎn)錄因子STAT3的小鼠也會(huì)發(fā)生自發(fā)性結(jié)腸炎[30]。Ackermann等[31]通過(guò)給予極早發(fā)性IBD小鼠腹腔注射野生型巨噬細(xì)胞,再消耗內(nèi)源性高炎癥巨噬細(xì)胞,進(jìn)行為期6周的造血干細(xì)胞基因療法,結(jié)果顯示這種療法能顯著減輕結(jié)腸炎癥狀,且與腸巨噬細(xì)胞中IL?10信號(hào)通路的基因校正密切相關(guān)。IL?10還能通過(guò)誘導(dǎo)哺乳動(dòng)物雷帕霉素靶蛋白(mTOR)抑制劑DDIT4來(lái)抑制mTOR活性,阻斷脂多糖誘導(dǎo)的巨噬細(xì)胞代謝重組,從而抑制葡萄糖攝取和糖酵解,促進(jìn)氧化磷酸化。在小鼠結(jié)腸炎模型和IBD患者中,IL?10信號(hào)通路的缺失導(dǎo)致巨噬細(xì)胞中受損線(xiàn)粒體的積累,NLRP3炎癥小體的激活失調(diào)和IL?1β的產(chǎn)生[32]??梢?jiàn)巨噬細(xì)胞中的IL?10受體信號(hào)轉(zhuǎn)導(dǎo)對(duì)于預(yù)防炎癥具有重要作用。

        ③TGF?β:TGF?β也是影響腸巨噬細(xì)胞分化的關(guān)鍵因素,包括產(chǎn)生IL?10、整合素、基質(zhì)金屬蛋白酶(MMP)?2等[33]。TGF?β和IL?10可誘導(dǎo)腸巨噬細(xì)胞表達(dá)髓樣細(xì)胞觸發(fā)受體(TREM?1)下調(diào),而TREM?1是一種強(qiáng)有力的放大炎癥的受體[34]。有研究表明TGFβ?TGFβ受體軸通過(guò)抑制結(jié)腸巨噬細(xì)胞表達(dá)單核細(xì)胞CCL8來(lái)調(diào)節(jié)巨噬細(xì)胞的轉(zhuǎn)換[33]。

        ④趨化因子CX3CL1:CX3CL1?CX3CR1軸在巨噬細(xì)胞的分化和功能中發(fā)揮重要作用。CX3CR1high腸道巨噬細(xì)胞可通過(guò)分泌IL?10和IL?1β來(lái)調(diào)節(jié)T細(xì)胞的活性和功能,并能通過(guò)其上皮樹(shù)突感知并攝取來(lái)自腸腔的細(xì)菌抗原[35]。在腸道穩(wěn)態(tài)平衡中,腸道微生物群可抑制負(fù)載抗原的CX3CR1high腸道巨噬細(xì)胞向腸系膜淋巴結(jié)遷移,從而抑制T細(xì)胞的抗原呈遞,有效維持對(duì)共生細(xì)菌的耐受性。而當(dāng)腸道微生物群受到干擾或處于慢性結(jié)腸炎狀態(tài)時(shí),CX3CR1high的巨噬細(xì)胞會(huì)分化為促炎效應(yīng)細(xì)胞,并獲得向淋巴結(jié)遷移和向淋巴細(xì)胞呈遞抗原的能力[8]。有研究[36]利用惡唑酮誘導(dǎo)的小鼠結(jié)腸炎模型來(lái)探討CX3CL1?CX3CR1軸對(duì)炎癥結(jié)腸血管內(nèi)皮單核細(xì)胞的作用,發(fā)現(xiàn)炎癥結(jié)腸血管中CD115單核細(xì)胞表達(dá)了高水平的炎癥介質(zhì),并證明抗CX3CL1單克隆抗體破壞了CX3CL1的依賴(lài)性黏附,可有效抑制CD115單核細(xì)胞對(duì)靜脈內(nèi)皮的黏附,同時(shí)抗CX3CL1單克隆抗體也可減輕T細(xì)胞轉(zhuǎn)移性結(jié)腸炎。

        ⑤腸道微生物:腸道微生物是腸道巨噬細(xì)胞募集和分化的關(guān)鍵介質(zhì)。在缺乏微生物群的小鼠或用抗菌藥物急性耗竭微生物群的小鼠中,單核細(xì)胞來(lái)源的和組織駐留巨噬細(xì)胞數(shù)量均減少[37?38]。微生物群的調(diào)節(jié)作用主要取決于細(xì)菌細(xì)胞成分的直接刺激和細(xì)菌代謝物的作用[39]。近來(lái)有研究證實(shí)核受體Nr4a1和微生物群可以調(diào)節(jié)巨噬細(xì)胞在腸黏膜中的血管周?chē)ㄎ?,并使腸道巨噬細(xì)胞成熟以進(jìn)行修復(fù),腸道微生物會(huì)影響腸道CX3CR1巨噬細(xì)胞的分布和形態(tài),腸道微生物的消耗會(huì)損害腸道巨噬細(xì)胞的更新[40]。Kim等[41]通過(guò)小鼠遺傳和類(lèi)器官共培養(yǎng)實(shí)驗(yàn)表明腸道微生物群通過(guò)調(diào)節(jié)CD206+巨噬細(xì)胞和間充質(zhì)生態(tài)位促進(jìn)干細(xì)胞分化。微生物群可以通過(guò)與飲食之間的相互作用間接影響巨噬細(xì)胞極化,膳食纖維經(jīng)腸道微生物酵解形成短鏈脂肪酸,如丁酸鹽。丁酸鹽可抑制組蛋白脫乙酰酶活性,進(jìn)而抑制腸道巨噬細(xì)胞產(chǎn)生促炎細(xì)胞因子,如一氧化氮(NO)、IL?6和IL?12,最終發(fā)揮抗炎作用[42]。Liang等[43]通過(guò)體內(nèi)和體外研究證實(shí)丁酸鹽能促進(jìn)M2巨噬細(xì)胞極化,使CD206和精氨酸酶?1(Arg1)表達(dá)升高,且丁酸鹽誘導(dǎo)的M2巨噬細(xì)胞的轉(zhuǎn)移促進(jìn)了葡聚糖硫酸鈉(DSS)損傷后的杯狀細(xì)胞產(chǎn)生和黏液修復(fù)。

        二、IBD與巨噬細(xì)胞極化

        巨噬細(xì)胞對(duì)于維持腸道穩(wěn)態(tài)至關(guān)重要,循環(huán)的單核細(xì)胞不斷被招募至腸道并分化為成熟的巨噬細(xì)胞,以補(bǔ)充大多數(shù)常駐巨噬細(xì)胞。這些循環(huán)巨噬細(xì)胞高表達(dá)CD206和CD163,具有抗炎巨噬細(xì)胞的功能,如分泌抗炎細(xì)胞因子IL?10和TGF?β[44]。然而在腸道炎癥過(guò)程中,單核細(xì)胞向成熟腸巨噬細(xì)胞的終末分化過(guò)程被破壞,在被CCR2控制的趨化因子(如CCL2、CCL7和CCL8)作用下進(jìn)入炎癥組織,向促炎M1巨噬細(xì)胞分化[45?46]。與此同時(shí),細(xì)胞因子如IFN?γ和粒細(xì)胞?巨噬細(xì)胞集落刺激因子(GM?CSF)將進(jìn)一步增強(qiáng)巨噬細(xì)胞的促炎性質(zhì)[47?48]。此外,效應(yīng)T細(xì)胞的產(chǎn)物(如IL?22)可驅(qū)動(dòng)腸上皮細(xì)胞的促炎反應(yīng),包括中性粒細(xì)胞和單核細(xì)胞趨化劑的釋放,從而再次加強(qiáng)促炎細(xì)胞的招募[15]。值得注意的是,有研究證實(shí)結(jié)腸炎期間M1巨噬細(xì)胞占多數(shù),但M2巨噬細(xì)胞也存在,如持續(xù)存在于腸道組織基底膜下層,以對(duì)抗炎癥并促進(jìn)愈合[44,49]。有研究[31]發(fā)現(xiàn),通過(guò)轉(zhuǎn)移或腹腔注射骨髓來(lái)源的M2巨噬細(xì)胞,以增加其在結(jié)腸中的比例,可改善小鼠結(jié)腸炎。因此靶向巨噬細(xì)胞極化的平衡在IBD治療中具有重要意義。

        三、IBD中的巨噬細(xì)胞極化相關(guān)靶點(diǎn)

        D?甘露糖是葡萄糖的C2差向異構(gòu)體,通過(guò)葡萄糖轉(zhuǎn)運(yùn)蛋白(GLUT)的繼發(fā)性主動(dòng)轉(zhuǎn)運(yùn)進(jìn)入細(xì)胞內(nèi)部,進(jìn)而被己糖激酶磷酸化為6?磷酸甘露糖。有研究發(fā)現(xiàn)甘露糖通過(guò)下調(diào)IL?1β基因表達(dá)來(lái)抑制脂多糖誘導(dǎo)的巨噬細(xì)胞活化,從而改善小鼠結(jié)腸炎。這種作用可能是由抑制葡萄糖代謝和抑制琥珀酸鹽介導(dǎo)的低氧誘導(dǎo)因子(HIF)?1α活化而引起的[50]。

        琥珀酸受體1(SUCNR1)是代謝物琥珀酸酯的受體,可抑制M2巨噬細(xì)胞極化。有研究發(fā)現(xiàn)CD患者血清琥珀酸含量增多,腸組織中SUCNR1表達(dá)增強(qiáng),且SUCNR1與M0巨噬細(xì)胞的標(biāo)志物CD206、M1巨噬細(xì)胞的標(biāo)志物CD86共定位,SUCNR1缺陷小鼠的腹膜巨噬細(xì)胞中促炎細(xì)胞因子(IL?1β、IL?6和TNF?α)表達(dá)明顯降低,從而使SUCNR1缺陷小鼠免于發(fā)生結(jié)腸炎[51]。

        磷酸二酯酶4(PDE4)屬于細(xì)胞內(nèi)非受體酶,可特異性催化多種細(xì)胞(包括炎癥細(xì)胞)中的環(huán)磷酸腺苷(cAMP)分解為失活的腺苷一磷酸(AMP),PDE4抑制引起的細(xì)胞內(nèi)cAMP水平升高已被證明可下調(diào)促炎細(xì)胞因子(如TNF?α、IFN?γ、IL?12、IL?17和IL?23)的釋放,并上調(diào)抗炎細(xì)胞因子IL?10的產(chǎn)生[52]。近來(lái)有研究證明PDE4抑制劑阿普斯特對(duì)巨噬細(xì)胞極化有明顯影響,可通過(guò)抑制NF?κB轉(zhuǎn)錄活性和NF?κB依賴(lài)性基因來(lái)下調(diào)炎癥反應(yīng),從而誘導(dǎo)M1與M2表型的轉(zhuǎn)換[6,53]。

        單核細(xì)胞趨化蛋白?1誘導(dǎo)蛋白1(MCPIP1)主要表達(dá)于巨噬細(xì)胞相關(guān)器官,如胸腺、脾臟、肺臟、腸道和脂肪組織。在TLR配體、IL?1β和MCP?1的作用下,MCPIP1可作為內(nèi)切酶降解數(shù)種mRNA,如IL?1β、IL?6[54]。最近有研究[55]發(fā)現(xiàn)巨噬細(xì)胞特異性MCPIP1缺乏會(huì)使巨噬細(xì)胞極化為M1樣表型,阻止巨噬細(xì)胞成熟,并以活化轉(zhuǎn)錄因子3(ATF3)?AP1S2依賴(lài)性方式加劇腸道炎癥,MCPIP1、ATF3和AP1S2在活動(dòng)性IBD患者的炎癥黏膜中高表達(dá),阻斷ATF3或AP1S2能顯著抑制CD14+ M1型巨噬細(xì)胞極化和促炎細(xì)胞因子的產(chǎn)生,并增強(qiáng)M2巨噬細(xì)胞的極化。

        F?box蛋白38(FBXO38)在組織和細(xì)胞中廣泛表達(dá),最新研究[56]通過(guò)體外實(shí)驗(yàn)發(fā)現(xiàn)FBXO38通過(guò)MAPK和IRF4信號(hào)上調(diào)M2樣基因的表達(dá)促進(jìn)M2樣巨噬細(xì)胞極化,并增強(qiáng)巨噬細(xì)胞的免疫抑制功能,但不影響M1樣巨噬細(xì)胞極化,從而對(duì)DSS誘導(dǎo)的結(jié)腸炎具有保護(hù)作用。

        Yes相關(guān)蛋白(Yes?associated protein, YAP)是Hippo通路的關(guān)鍵組成部分,盡管YAP可促進(jìn)上皮再生和緩解IBD,巨噬細(xì)胞中YAP缺失可通過(guò)增強(qiáng)M2巨噬細(xì)胞極化,抑制M1巨噬細(xì)胞產(chǎn)生IL?6,改變腸道菌群穩(wěn)態(tài),從而緩解化學(xué)誘導(dǎo)的IBD[57?58]。

        甲基轉(zhuǎn)移酶樣3(METTL3)是結(jié)合共底物S?腺苷蛋氨酸(SAM)的催化亞基,METTL3和METTL4形成異二聚體復(fù)合物催化N6?甲基腺苷(m6A)修飾[59]。METTL3在各種病理生理過(guò)程中發(fā)揮重要作用,包括細(xì)胞周期、細(xì)胞凋亡、先天性免疫和炎癥等[60]。有研究[61]發(fā)現(xiàn)將小鼠巨噬細(xì)胞極化為M1后,METTL3特異性上調(diào),且通過(guò)siRNA轉(zhuǎn)染敲除METTL3可明顯抑制巨噬細(xì)胞向M1極化,但會(huì)促進(jìn)巨噬細(xì)胞向M2極化。

        因此,通過(guò)干預(yù)巨噬細(xì)胞極化的靶點(diǎn)來(lái)抑制M1巨噬細(xì)胞極化、促進(jìn)M2巨噬細(xì)胞極化或誘導(dǎo)M1巨噬細(xì)胞向M2巨噬細(xì)胞轉(zhuǎn)變,或許是未來(lái)IBD治療的新思路之一。

        四、總結(jié)與展望

        綜上所述,巨噬細(xì)胞極化狀態(tài)可能是決定腸道炎癥和疾病消退或進(jìn)展的關(guān)鍵因素,調(diào)節(jié)M1/M2巨噬細(xì)胞平衡可能是未來(lái)治療IBD的潛在方向。在一定條件下,M1向M2的轉(zhuǎn)換介導(dǎo)了巨噬細(xì)胞在協(xié)調(diào)炎癥發(fā)生以及促進(jìn)愈合和修復(fù)中的雙重作用。因此更好了解腸道巨噬細(xì)胞的發(fā)育和功能有助于提出新的治療策略,進(jìn)而改善IBD患者的預(yù)后。

        參考文獻(xiàn)

        [ 1 ] TORRES J, MEHANDRU S, COLOMBEL J F, et al. Crohn's disease[J]. Lancet, 2017, 389 (10080): 1741?1755.

        [ 2 ] NG S C, SHI H Y, HAMIDI N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population?based studies[J]. Lancet, 2017, 390 (10114): 2769?2778.

        [ 3 ] SARTOR R B. Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis[J]. Nat Clin Pract Gastroenterol Hepatol, 2006, 3 (7): 390?407.

        [ 4 ] ZAIATZ BITTENCOURT V, JONES F, DOHERTY G, et al. Targeting immune cell metabolism in the treatment of inflammatory bowel disease[J]. Inflamm Bowel Dis, 2021, 27 (10): 1684?1693.

        [ 5 ] MILLS C D, KINCAID K, ALT J M, et al. M?1/M?2 macrophages and the Th1/Th2 paradigm[J]. J Immunol, 2000, 164 (12): 6166?6173.

        [ 6 ] MOHR A, BESSER M, BROICHHAUSEN S, et al. The influence of apremilast?induced macrophage polarization on intestinal wound healing[J]. J Clin Med, 2023, 12 (10): 3359.

        [ 7 ] SICA A, MANTOVANI A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012, 122 (3): 787?795.

        [ 8 ] SAEZ A, HERRERO?FERNANDEZ B, GOMEZ?BRIS R, et al. Pathophysiology of inflammatory bowel disease: innate immune system[J]. Int J Mol Sci, 2023, 24 (2): 1526.

        [ 9 ] GOMEZ PERDIGUERO E, KLAPPROTH K, SCHULZ C, et al. Tissue?resident macrophages originate from yolk?sac?derived erythro?myeloid progenitors[J]. Nature, 2015, 518 (7540): 547?551.

        [10] GUILLIAMS M, SCOTT C L. Does niche competition determine the origin of tissue?resident macrophages? [J]. Nat Rev Immunol, 2017, 17 (7): 451?460.

        [11] BAIN C C, BRAVO?BLAS A, SCOTT C L, et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice[J]. Nat Immunol, 2014, 15 (10): 929?937.

        [12] MARTINEZ F O, GORDON S. The M1 and M2 para?digm of macrophage activation: time for reassessment[J]. F1000Prime Rep, 2014, 6: 13.

        [13] ANDERS C B, LAWTON T M W, SMITH H L, et al. Use of integrated metabolomics, transcriptomics, and signal protein profile to characterize the effector function and associated metabotype of polarized macrophage pheno?types[J]. J Leukoc Biol, 2022, 111 (3): 667?693.

        [14] GORDON S. Alternative activation of macrophages[J]. Nat Rev Immunol, 2003, 3 (1): 23?35.

        [15] BERNSHTEIN B, CURATO C, IOANNOU M, et al. IL?23?producing IL?10Rα?deficient gut macrophages elicit an IL?22?driven proinflammatory epithelial cell response[J]. Sci Immunol, 2019, 4 (36): eaau6571.

        [16] FRIEDRICH M, POHIN M, POWRIE F. Cytokine networks in the pathophysiology of inflammatory bowel disease[J]. Immunity, 2019, 50 (4): 992?1006.

        [17] EDWARDS J P, ZHANG X, FRAUWIRTH K A, et al. Biochemical and functional characterization of three activated macrophage populations[J]. J Leukoc Biol, 2006, 80 (6): 1298?1307.

        [18] JETTEN N, VERBRUGGEN S, GIJBELS M J, et al. Anti?inflammatory M2, but not pro?inflammatory M1 macrophages promote angiogenesis in vivo[J]. Angiogenesis, 2014, 17 (1): 109?118.

        [19] AMBARUS C A, SANTEGOETS K C, VAN BON L, et al. Soluble immune complexes shift the TLR?induced cytokine production of distinct polarized human macrophage subsets towards IL?10[J]. PLoS One, 2012, 7 (4): e35994.

        [20] LURIER E B, DALTON D, DAMPIER W, et al. Trans?criptome analysis of IL?10?stimulated (M2c) macrophages by next?generation sequencing[J]. Immunobiology, 2017, 222 (7): 847?856.

        [21] SHAPOURI?MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233 (9): 6425?6440.

        [22] DULUC D, DELNESTE Y, TAN F, et al. Tumor?associated leukemia inhibitory factor and IL?6 skew monocyte differentiation into tumor?associated macrophage?like cells[J]. Blood, 2007, 110 (13): 4319?4330.

        [23] SEHGAL A, DONALDSON D S, PRIDANS C, et al. The role of CSF1R?dependent macrophages in control of the intestinal stem?cell niche[J]. Nat Commun, 2018, 9 (1): 1272.

        [24] LIU Z X, CHEN W J, WANG Y, et al. Interleukin?34 deficiency aggravates development of colitis and colitis?associated cancer in mice[J]. World J Gastroenterol, 2022, 28 (47): 6752?6768.

        [25] ZWICKER S, BUREIK D, BOSMA M, et al. Receptor?type protein?tyrosine phosphatase ζ and colony stimulat?ing factor?1 receptor in the intestine: cellular expression and cytokine? and chemokine responses by interleukin?34 and colony stimulating factor?1[J]. PLoS One, 2016, 11 (11): e0167324.

        [26] BOULAKIRBA S, PFEIFER A, MHAIDLY R, et al. IL?34 and CSF?1 display an equivalent macrophage differentiation ability but a different polarization potential[J]. Sci Rep, 2018, 8 (1): 256.

        [27] MU?OZ?GARCIA J, COCHONNEAU D, TéLéTCHéA S, et al. The twin cytokines interleukin?34 and CSF?1: masterful conductors of macrophage homeostasis[J]. Thera?nostics, 2021, 11 (4): 1568?1593.

        [28] SHOUVAL D S, OUAHED J, BISWAS A, et al. Inter?leukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans[J]. Adv Immunol, 2014, 122: 177?210.

        [29] ZIGMOND E, BERNSHTEIN B, FRIEDLANDER G, et al. Macrophage?restricted interleukin?10 receptor defi?ciency, but not IL?10 deficiency, causes severe sponta?neous colitis[J]. Immunity, 2014, 40 (5): 720?733.

        [30] TAKEDA K, CLAUSEN B E, KAISHO T, et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils[J]. Immunity, 1999, 10 (1): 39?49.

        [31] ACKERMANN M, MUCCI A, MCCABE A, et al. Restored macrophage function ameliorates disease pathophysiology in a mouse model for IL10 receptor?deficient very early onset inflammatory bowel disease[J]. J Crohns Colitis, 2021, 15 (9): 1588?1595.

        [32] IP W K E, HOSHI N, SHOUVAL D S, et al. Anti?inflammatory effect of IL?10 mediated by metabolic reprogramming of macrophages[J]. Science, 2017, 356 (6337): 513?519.

        [33] SCHRIDDE A, BAIN C C, MAYER J U, et al. Tissue?specific differentiation of colonic macrophages requires TGFβ receptor?mediated signaling[J]. Mucosal Immunol, 2017, 10 (6): 1387?1399.

        [34] SCHENK M, BOUCHON A, BIRRER S, et al. Macrophages expressing triggering receptor expressed on myeloid cells?1 are underrepresented in the human intes?tine[J]. J Immunol, 2005, 174 (1): 517?524.

        [35] MEDINA?CONTRERAS O, GEEM D, LAUR O, et al. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice[J]. J Clin Invest, 2011, 121 (12): 4787?4795.

        [36] KUBOI Y, NISHIMURA M, IKEDA W, et al. Blockade of the fractalkine?CX3CR1 axis ameliorates experimental colitis by dislodging venous crawling monocytes[J]. Int Immunol, 2019, 31 (5): 287?302.

        [37] SHAW T N, HOUSTON S A, WEMYSS K, et al. Tissue?resident macrophages in the intestine are long lived and defined by Tim?4 and CD4 expression[J]. J Exp Med, 2018, 215 (6): 1507?1518.

        [38] CHEN Q, NAIR S, RUEDL C. Microbiota regulates the turnover kinetics of gut macrophages in health and inflam?mation[J]. Life Sci Alliance, 2021, 5 (1): e202101178.

        [39] LAVELLE A, SOKOL H. Gut microbiota?derived metabolites as key actors in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17 (4): 223?237.

        [40] HONDA M, SUREWAARD B G J, WATANABE M, et al. Perivascular localization of macrophages in the intestinal mucosa is regulated by Nr4a1 and the microbiome[J]. Nat Commun, 2020, 11 (1): 1329.

        [41] KIM J E, LI B, FEI L, et al. Gut microbiota promotes stem cell differentiation through macrophage and mesenchymal niches in early postnatal development[J]. Immunity, 2022, 55 (12): 2300?2317. e6.

        [42] CHANG P V, HAO L, OFFERMANNS S, et al. The microbial metabolite butyrate regulates intestinal macro?phage function via histone deacetylase inhibition[J]. Proc Natl Acad Sci U S A, 2014, 111 (6): 2247?2252.

        [43] LIANG L, LIU L, ZHOU W, et al. Gut microbiota?derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway[J]. Clin Sci (Lond), 2022, 136 (4): 291?307.

        [44] ISIDRO R A, APPLEYARD C B. Colonic macrophage polarization in homeostasis, inflammation, and cancer[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 311 (1): G59?G73.

        [45] YIP J L K, BALASURIYA G K, SPENCER S J, et al. The role of intestinal macrophages in gastrointestinal homeo?stasis: heterogeneity and implications in disease[J]. Cell Mol Gastroenterol Hepatol, 2021, 12 (5): 1701?1718.

        [46] BERNARDO D, MARIN A C, FERNáNDEZ?TOMé S, et al. Human intestinal pro?inflammatory CD11chighCCR2+

        CX3CR1+ macrophages, but not their tolerogenic CD11c?CCR2?CX3CR1? counterparts, are expanded in inflammatory bowel disease[J]. Mucosal Immunol, 2018, 11 (4): 1114?1126.

        [47] NAKANISHI Y, SATO T, TAKAHASHI K, et al. IFN?γ?dependent epigenetic regulation instructs colitogenic monocyte/macrophage lineage differentiation in vivo[J]. Mucosal Immunol, 2018, 11 (3): 871?880.

        [48] CASTRO?DOPICO T, FLEMING A, DENNISON T W, et al. GM?CSF calibrates macrophage defense and wound healing programs during intestinal infection and inflamma?tion[J]. Cell Rep, 2020, 32 (1): 107857.

        [49] BAIN C C, MOWAT A M. Macrophages in intestinal homeostasis and inflammation[J]. Immunol Rev, 2014, 260 (1): 102?117.

        [50] TORRETTA S, SCAGLIOLA A, RICCI L, et al. D?mannose suppresses macrophage IL?1β production[J]. Nat Commun, 2020, 11 (1): 6343.

        [51] MACIAS?CEJA D C, ORTIZ?MASIá D, SALVADOR P, et al. Succinate receptor mediates intestinal inflammation and fibrosis[J]. Mucosal Immunol, 2019, 12 (1): 178?187.

        [52] SAKKAS L I, MAVROPOULOS A, BOGDANOS D P. Phosphodiesterase 4 inhibitors in immune?mediated diseases: mode of action, clinical applications, current and future perspectives[J]. Curr Med Chem, 2017, 24 (28): 3054?3067.

        [53] LI H, FAN C, FENG C, et al. Inhibition of phospho?diesterase?4 attenuates murine ulcerative colitis through interference with mucosal immunity[J]. Br J Pharmacol, 2019, 176 (13): 2209?2226.

        [54] UEHATA T, AKIRA S. mRNA degradation by the endoribonuclease Regnase?1/ZC3H12a/MCPIP?1[J]. Biochim Biophys Acta, 2013, 1829 (6?7): 708?713.

        [55] LU H, ZHANG C, WU W, et al. MCPIP1 restrains mucosal inflammation by orchestrating the intestinal monocyte to macrophage maturation via an ATF3?AP1S2 axis[J]. Gut, 2023, 72 (5): 882?895.

        [56] ZHENG X, JIANG Q, HAN M, et al. FBXO38 regulates macrophage polarization to control the development of cancer and colitis[J]. Cell Mol Immunol, 2023, 20 (11): 1367?1378.

        [57] TANIGUCHI K, WU L W, GRIVENNIKOV S I, et al. A gp130?Src?YAP module links inflammation to epithelial regeneration[J]. Nature, 2015, 519 (7541): 57?62.

        [58] ZHOU X, LI W, WANG S, et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macro?phage polarization and gut microbial homeostasis[J]. Cell Rep, 2019, 27 (4): 1176?1189. e5.

        [59] WANG X, FENG J, XUE Y, et al. Structural basis of N6?adenosine methylation by the METTL3?METTL14 complex[J]. Nature, 2016, 534 (7608): 575?578.

        [60] LIU S, ZHUO L, WANG J, et al. METTL3 plays multiple functions in biological processes[J]. Am J Cancer Res, 2020, 10 (6): 1631?1646.

        [61] LIU Y, LIU Z, TANG H, et al. The N6?methyladenosine (m6A)?forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA[J]. Am J Physiol Cell Physiol, 2019, 317 (4): C762?C775.

        (本文編輯:袁春英)

        猜你喜歡
        巨噬細(xì)胞炎癥性腸病極化
        認(rèn)知能力、技術(shù)進(jìn)步與就業(yè)極化
        CD47與胃癌相關(guān)性的研究進(jìn)展
        抑瘤素M在心肌再生中的功能機(jī)理
        雙頻帶隔板極化器
        腎纖維化的細(xì)胞和分子基礎(chǔ)
        血清抗體檢測(cè)在炎癥性腸病中的臨床應(yīng)用研究
        益生菌治療炎癥性腸病的臨床療效分析
        360例炎癥性腸病及缺血性腸炎臨床與病理診斷分析
        免疫抑制劑在炎癥性腸病治療中的應(yīng)用
        基于PWM控制的新型極化電源設(shè)計(jì)與實(shí)現(xiàn)
        亚洲视频免费一区二区 | 亚洲av日韩av激情亚洲| 国产操逼视频| 欧美视频第一页| 日本精品久久中文字幕| 蜜桃一区二区三区视频网址| 边喂奶边中出的人妻| 亚洲中文字幕每日更新| av网址大全在线播放| 男女交射视频免费观看网站| 欧美 国产 综合 欧美 视频| 91老司机精品视频| 丰满人妻无套内射视频| 国产精品女老熟女一区二区久久夜 | 五月丁香六月综合缴清无码| 国产山东熟女48嗷嗷叫| 亚洲熟妇中文字幕日产无码 | 在线一区二区三区国产精品| 国产黄在线观看免费观看不卡| 中文字幕久久久久久精| 精品人妻av区二区三区| 亚洲va久久久噜噜噜久久天堂| 久久免费的精品国产v∧| 久久精品成人亚洲另类欧美| 激情五月开心五月啪啪| 国产免费艾彩sm调教视频| 欧美日韩国产成人高清视| 一区二区三区岛国av毛片| 男女无遮挡高清性视频| 久久国产热这里只有精品| 91精品啪在线看国产网站| 亚洲天堂av黄色在线观看| 好吊妞无缓冲视频观看| 欧美成aⅴ人高清免费| 中文字幕日韩一区二区不卡 | 亚洲av日韩综合一区尤物| 中文无码成人免费视频在线观看 | 久久久久国产精品| 国产精品美女久久久久久2018| 亚洲视频中文字幕更新| 国产高清乱码又大又圆|