摘要:腦卒中后幸存者通常面臨肢體運(yùn)動(dòng)障礙、平衡障礙和認(rèn)知障礙,傳統(tǒng)的康復(fù)訓(xùn)練不能支持其更好地回歸家庭和社會(huì)生活。認(rèn)知和運(yùn)動(dòng)訓(xùn)練的有效結(jié)合在腦卒中患者中的優(yōu)勢(shì)已在大量研究中證實(shí),但其對(duì)認(rèn)知功能和運(yùn)動(dòng)功能的恢復(fù)不全是積極作用,總結(jié)認(rèn)知-運(yùn)動(dòng)雙任務(wù)訓(xùn)練模式對(duì)腦卒中患者認(rèn)知功能與運(yùn)動(dòng)功能的影響,探討其在腦卒中患者康復(fù)進(jìn)程中的應(yīng)用進(jìn)展。
關(guān)鍵詞:認(rèn)知;運(yùn)動(dòng);腦卒中;雙任務(wù)
DOI:10.3969/j.issn.1674490X.2024.03.002
中圖分類號(hào):R49"""" 文獻(xiàn)標(biāo)志碼:A"""" 文章編號(hào):1674490X(2024)03000810
Advance on cognitive-motor dual task training on the rehabilitation of stroke patients
XIANG Lisha1,2,ZHANG Yi2
(1.College of Clinical Medicine, Soochow University, Suzhou 215000, China; 2.Department of Rehabilitation Medicine, The Third Affiliated Hospital of Soochow University/The First Peoples Hospital of Changzhou, Changzhou 213000, China)
Abstract: Post-stroke survivors usually face limb movement disorders, balance disorders and cognitive impairment, and traditional rehabilitation training cannot support their better return to family and social life. The advantages of the effective combination of cognitive and motor training in stroke patients have been confirmed in a large number of studies, but its recovery of cognitive function and motor function is not always a positive effect. Therefore, this article summarizes the effects of cognitive motor dual task training mode on cognitive function and motor function in stroke patients, and discusses its application progress in the rehabilitation process of stroke patients.
Key words: cognition; motor; stroke; dual task
腦卒中是全球第二大死亡原因,也是導(dǎo)致殘疾的主要原因,隨著人口老齡化問(wèn)題日益突出,腦卒中在發(fā)展中國(guó)家的發(fā)病率越來(lái)越高[1]。腦卒中的潛在危險(xiǎn)因素與全球90%的腦卒中歸因風(fēng)險(xiǎn)相關(guān),包括高血壓、吸煙、肥胖、飲食、缺乏運(yùn)動(dòng)、糖尿病、酒精攝入、心理社會(huì)因素、心臟病和載脂蛋白比率[2]。隨著中國(guó)居民不健康生活方式流行,腦血管危險(xiǎn)因素普遍暴露。最新全球疾病負(fù)擔(dān)研究顯示,中國(guó)
總體腦卒中終生發(fā)病風(fēng)險(xiǎn)為39.3%,位居全球首位,每年190余萬(wàn)人因腦卒中死亡[3],給社會(huì)和家庭帶來(lái)沉重的負(fù)擔(dān)。由于只有極少數(shù)人能夠在腦卒中急性期得到溶栓或更進(jìn)一步的介入治療,有很多人會(huì)遺留各種功能障礙[4]。其中認(rèn)知障礙和運(yùn)動(dòng)障礙可以嚴(yán)重阻礙日?;顒?dòng)和社區(qū)參與,并具有協(xié)同效應(yīng)[5]。在街道上安全地行走需要足夠的認(rèn)知能力處理分心的事情,如廣告、噪音和不平整的道路等[6]。傳統(tǒng)的康復(fù)訓(xùn)練模式僅針對(duì)單一肢體運(yùn)動(dòng)功能的恢復(fù)甚至部分恢復(fù),不能滿足患者出院后在社區(qū)步行的同時(shí)執(zhí)行多項(xiàng)并行任務(wù)的需要。最新的綜述著眼于認(rèn)知-運(yùn)動(dòng)雙任務(wù)訓(xùn)練(cognitive-motor dual task training, CMDT)對(duì)腦卒中患者的平衡能力、步態(tài)和上肢功能的改善[7],及針對(duì)老年人群體CMDT對(duì)認(rèn)知功能、執(zhí)行功能及腦血流動(dòng)力學(xué)的影響[8-9]。CMDT可作為腦卒中患者回歸社區(qū)的有效康復(fù)手段。有研究[10-11]表示,CMDT干預(yù)能夠使患者身體運(yùn)動(dòng)功能康復(fù)及認(rèn)知康復(fù)的有效性最大化。因此,本文旨在通過(guò)對(duì)CMDT干預(yù)的相關(guān)文獻(xiàn)進(jìn)行梳理,探討這種訓(xùn)練干預(yù)模式轉(zhuǎn)化為臨床康復(fù)實(shí)踐的研究進(jìn)展。
1 雙任務(wù)相關(guān)理論
雙任務(wù)指一個(gè)人同時(shí)執(zhí)行兩項(xiàng)不同的任務(wù),可分為兩大類:運(yùn)動(dòng)雙任務(wù)和認(rèn)知雙任務(wù)[12]。前者指需要同時(shí)執(zhí)行運(yùn)動(dòng)任務(wù)和姿勢(shì)控制任務(wù),后者指同時(shí)執(zhí)行認(rèn)知任務(wù)和運(yùn)動(dòng)任務(wù)或認(rèn)知任務(wù)和姿勢(shì)控制任務(wù)[13]。
與單任務(wù)訓(xùn)練相比,兩項(xiàng)任務(wù)的同時(shí)執(zhí)行可引發(fā)感覺運(yùn)動(dòng)和認(rèn)知系統(tǒng)的相互作用,可能導(dǎo)致其中一項(xiàng)或兩項(xiàng)任務(wù)表現(xiàn)的惡化,這通常被稱為認(rèn)知-運(yùn)動(dòng)干擾[14],反映兩項(xiàng)任務(wù)對(duì)訪問(wèn)中樞神經(jīng)系統(tǒng)內(nèi)有限注意力資源的競(jìng)爭(zhēng)需求。以往的研究提出的一些認(rèn)知-運(yùn)動(dòng)干擾機(jī)制:(1)有限容量理論[15-16],該理論假設(shè)大腦是一個(gè)注意力容量有限的處理器,該處理器會(huì)將注意力資源分配到需執(zhí)行的任務(wù),當(dāng)由于任務(wù)難度增加或大腦病理性改變,共享相似資源的兩項(xiàng)任務(wù)的注意力需求超過(guò)可用資源時(shí),一項(xiàng)或兩項(xiàng)任務(wù)的性能都會(huì)受到損害;(2)瓶頸理論[17-18],該理論認(rèn)為當(dāng)使用相同信息途徑的兩個(gè)任務(wù)同時(shí)競(jìng)爭(zhēng)處理資源時(shí),資源限制導(dǎo)致他們被一個(gè)接一個(gè)地串行處理,而不是并行處理,此時(shí)將會(huì)出現(xiàn)“瓶頸”現(xiàn)象,即一個(gè)任務(wù)將被延遲或以其他方式受損。Plummer等[14]曾在研究中將認(rèn)知-運(yùn)動(dòng)雙重任務(wù)模式可能存在的潛在干擾表現(xiàn)分為沒有干擾、認(rèn)知相關(guān)的運(yùn)動(dòng)干擾、與運(yùn)動(dòng)有關(guān)的認(rèn)知干擾、認(rèn)知促進(jìn)、認(rèn)知優(yōu)先原則、運(yùn)動(dòng)促進(jìn)、運(yùn)動(dòng)優(yōu)先原則、相互干擾、相互促進(jìn)九類。
以往研究為將這種雙任務(wù)運(yùn)動(dòng)干擾模式以可計(jì)量的方式呈現(xiàn),提出了雙任務(wù)效應(yīng)(dual-task effect, DTE)的概念,其表示與對(duì)應(yīng)單任務(wù)比較,雙任務(wù)性能所發(fā)生的相對(duì)變化。負(fù)DTE表示雙任務(wù)性能相對(duì)于單任務(wù)性能下降(雙任務(wù)成本),正DTE表示雙任務(wù)性能相對(duì)于單任務(wù)性能提高(雙任務(wù)收益)。
在兩項(xiàng)任務(wù)均具有一定難度且注意力資源有限時(shí),雙任務(wù)的執(zhí)行可出現(xiàn)一項(xiàng)任務(wù)的執(zhí)行優(yōu)先另一項(xiàng)任務(wù)的情況,這種情況被定義為任務(wù)優(yōu)先級(jí)。機(jī)體為更安全地行走避免跌倒,通常采取兩種任務(wù)優(yōu)先級(jí)策略:(1)姿勢(shì)優(yōu)先策略[19],機(jī)體為更安全地行走避免跌倒,保持穩(wěn)定的步態(tài)或平衡將優(yōu)先于次要任務(wù);(2)凍結(jié)策略[20-21],在注意力資源分配低于保持平衡所需注意力閾值時(shí),機(jī)體除犧牲次要任務(wù)以保持姿勢(shì)穩(wěn)定,還將凍結(jié)注意力分配的自由度,以防止更多的平衡惡化。
2 雙任務(wù)干預(yù)的策略
2.1 干預(yù)模式
雙任務(wù)訓(xùn)練干預(yù)即針對(duì)不同的治療目標(biāo)制定不同的雙任務(wù)訓(xùn)練方案,并在干預(yù)前后評(píng)估患者的雙任務(wù)表現(xiàn)[22-23]。這種雙任務(wù)訓(xùn)練模式基于卒中運(yùn)動(dòng)再學(xué)習(xí)程序理論[24],這種程序提倡四個(gè)步驟:基礎(chǔ)任務(wù)練習(xí)(在未受干擾的安靜區(qū)域進(jìn)行運(yùn)動(dòng)或認(rèn)知活動(dòng))、部分任務(wù)練習(xí)(動(dòng)態(tài)姿勢(shì)控制和單步訓(xùn)練等活動(dòng))、全任務(wù)練習(xí)(連續(xù)行走的活動(dòng))、日常生活訓(xùn)練(障礙協(xié)調(diào)和戶外步行)。在雙任務(wù)的設(shè)計(jì)中,Plummer等[25]提出,CMDT范式的良好訓(xùn)練效果在未經(jīng)訓(xùn)練的雙任務(wù)組合中可能呈現(xiàn)較差表現(xiàn),他們認(rèn)為雙任務(wù)訓(xùn)練期間應(yīng)包括更廣泛的認(rèn)知任務(wù)訓(xùn)練,將良好的訓(xùn)練效果最大限度地轉(zhuǎn)移到不同的CMDT組合中。而一部分研究觀察到未經(jīng)訓(xùn)練的認(rèn)知-運(yùn)動(dòng)雙重任務(wù)的積極轉(zhuǎn)移效應(yīng),這種效應(yīng)表現(xiàn)為在應(yīng)用與訓(xùn)練干預(yù)相同類型(即基于同一大腦認(rèn)知或運(yùn)動(dòng)領(lǐng)域)的任務(wù)時(shí)可出現(xiàn)的正遷移效應(yīng)。而對(duì)于應(yīng)用與訓(xùn)練干預(yù)不同類型的任務(wù),可能無(wú)法觀察到明顯的干預(yù)效果[26-28]。同時(shí),有研究[29-30]表明,CMDT干預(yù)可以減少步態(tài)中的雙任務(wù)干擾,這種雙任務(wù)干擾的減少可能通過(guò)兩種機(jī)制實(shí)現(xiàn):(1)重復(fù)練習(xí)提高運(yùn)動(dòng)的自動(dòng)化程度,運(yùn)動(dòng)自動(dòng)化降低步行對(duì)注意力的需求,從而提高同時(shí)執(zhí)行認(rèn)知任務(wù)的能力;(2)通過(guò)特定任務(wù)訓(xùn)練改變患者的注意力分配策略,或提高患者在雙任務(wù)間注意力轉(zhuǎn)移的效率,進(jìn)而提高雙任務(wù)協(xié)調(diào)性。一些研究[31-33]表明,其運(yùn)動(dòng)功能、認(rèn)知功能表現(xiàn)雖有所改善,但認(rèn)知DTE和運(yùn)動(dòng)DTE無(wú)明顯變化,即應(yīng)對(duì)雙任務(wù)的策略未發(fā)生改變。以上結(jié)果表明,雙任務(wù)訓(xùn)練方案應(yīng)針對(duì)不同患者的雙任務(wù)表現(xiàn)進(jìn)行個(gè)性化的定制,并且在雙任務(wù)期間增加注意力需求有積極影響。
2.2 干預(yù)劑量
一項(xiàng)薈萃分析顯示,CMDT干預(yù)的時(shí)程、頻率或持續(xù)時(shí)間對(duì)認(rèn)知功能和運(yùn)動(dòng)功能的改善沒有影響[34],即使是4周的短劑量也能對(duì)認(rèn)知功能和運(yùn)動(dòng)功能改善的有效性提供正向的提升作用[35]。本次納入的文獻(xiàn)中多采取在傳統(tǒng)康復(fù)計(jì)劃上進(jìn)行額外的單任務(wù)訓(xùn)練和雙任務(wù)訓(xùn)練,額外訓(xùn)練為期4~6周,每周3次,每次30 min,包括漸進(jìn)難度的認(rèn)知訓(xùn)練、上肢訓(xùn)練、步行訓(xùn)練和平衡訓(xùn)練干預(yù)。這樣的干預(yù)劑量呈現(xiàn)較為均一的結(jié)論,即在提升雙任務(wù)性能方面,CMDT比單一的認(rèn)知訓(xùn)練或運(yùn)動(dòng)訓(xùn)練更有效。但有研究[31]提出,這種訓(xùn)練前后雙任務(wù)效應(yīng)的相對(duì)變化是由于雙任務(wù)模式的短期固有可變性。此外,部分研究通過(guò)對(duì)干預(yù)前、干預(yù)中、干預(yù)完成時(shí)以及干預(yù)后2周~12個(gè)月的隨訪進(jìn)行認(rèn)知與運(yùn)動(dòng)表現(xiàn)評(píng)估,證實(shí)雙任務(wù)干預(yù)訓(xùn)練的積極影響是可持續(xù)性的,具有較為突出的臨床治療作用[25,28,36]。也有研究[37]提出,在輕度認(rèn)知障礙患者中,干預(yù)時(shí)間與對(duì)認(rèn)知能力的影響呈負(fù)相關(guān)。但在兩項(xiàng)研究中,為期8周的雙任務(wù)訓(xùn)練干預(yù)對(duì)腦卒中患者認(rèn)知與運(yùn)動(dòng)功能改善仍是有效的[12,27]。那么在腦卒中患者中過(guò)長(zhǎng)的訓(xùn)練干預(yù)時(shí)程是否會(huì)使患者產(chǎn)生認(rèn)知疲勞以及體力過(guò)度消耗,并且導(dǎo)致雙任務(wù)表現(xiàn)的負(fù)面影響在未來(lái)的研究中值得進(jìn)一步探索。
2.3 干預(yù)順序
由于注意力資源有限,腦卒中患者在具有挑戰(zhàn)性的環(huán)境中處理多個(gè)任務(wù)時(shí),對(duì)任務(wù)進(jìn)行優(yōu)先級(jí)排序是不可避免的[38]。患者對(duì)任務(wù)優(yōu)先級(jí)的策略制定基于兩方面,包括最小化周圍環(huán)境和任務(wù)執(zhí)行中的潛在危險(xiǎn)因素帶來(lái)的影響和最大化自我選擇的偏好和多任務(wù)表現(xiàn)[39]。本次納入的文獻(xiàn)中較多未對(duì)患者雙任務(wù)的執(zhí)行進(jìn)行額外的干預(yù),即未設(shè)置雙任務(wù)優(yōu)先級(jí),而是實(shí)行可變優(yōu)先級(jí)訓(xùn)練策略,根據(jù)患者的自我選擇在認(rèn)知和運(yùn)動(dòng)任務(wù)之間交替集中注意力。雙任務(wù)的可變優(yōu)先級(jí)指雙任務(wù)執(zhí)行時(shí)在任務(wù)間轉(zhuǎn)移注意力,雙任務(wù)的固定優(yōu)先級(jí)指對(duì)不同的任務(wù)給予相等量的注意力。多項(xiàng)研究[40-41]表明,可變優(yōu)先級(jí)的雙任務(wù)訓(xùn)練策略相比固定優(yōu)先級(jí)策略在改善患者的認(rèn)知與運(yùn)動(dòng)能力方面更有效,前者更能促進(jìn)患者注意力的靈活分配和自我引導(dǎo),提高患者在專注多任務(wù)時(shí)協(xié)調(diào)并發(fā)任務(wù)的能力。這些都再次說(shuō)明注意力資源和注意力分配的重要性,雙任務(wù)條件下有效的任務(wù)整合將提高任務(wù)間執(zhí)行的協(xié)調(diào)能力。
3 雙任務(wù)干預(yù)的影響
3.1 上肢運(yùn)動(dòng)、步行與認(rèn)知
由于腦卒中后可用的注意力資源有限,與單任務(wù)步行相比,同時(shí)執(zhí)行認(rèn)知任務(wù)時(shí)步行性能受損,包括步速、步幅、步長(zhǎng)、步幅持續(xù)時(shí)間和步頻等步態(tài)參數(shù)的惡化[42-43]。隨著認(rèn)知負(fù)荷的增加,導(dǎo)致注意力需求的增加可在不同程度上干擾步行[44],但這種認(rèn)知-運(yùn)動(dòng)干擾的差異是由于所屬認(rèn)知領(lǐng)域的不同或是認(rèn)知任務(wù)難度水平的差異,也是當(dāng)下探討的熱點(diǎn)[45-46]。執(zhí)行功能被認(rèn)為在腦卒中后存在顯著損害并與步態(tài)損傷高度相關(guān),專注執(zhí)行功能(如工作記憶)的認(rèn)知任務(wù)表現(xiàn)出更高的運(yùn)動(dòng)成本和認(rèn)知成本[42,47],Baek等[48]也提到認(rèn)知-運(yùn)動(dòng)的相互干擾可能表明執(zhí)行功能受損程度更大。同時(shí),步態(tài)本身的缺陷也會(huì)導(dǎo)致注意力增加[49-50],運(yùn)動(dòng)恢復(fù)能力的差異對(duì)步速可有影響[51],下肢運(yùn)動(dòng)損傷較大和步速較慢的個(gè)體更易受到與步態(tài)相關(guān)的認(rèn)知-運(yùn)動(dòng)干擾[52-53]。在次要認(rèn)知任務(wù)難度較低時(shí),腦卒中個(gè)體可采取在任務(wù)間來(lái)回轉(zhuǎn)移注意力資源的方式保持良好的任務(wù)性能[54]。為更接近社區(qū)生活行走的真實(shí)狀態(tài),更多的研究著眼于加入避障等步行任務(wù)或更復(fù)雜的步行環(huán)境[55]。以往研究[45-56]表明,康復(fù)良好的腦卒中患者在克服障礙時(shí)需要額外的注意力成本,增加高認(rèn)知成本的認(rèn)知任務(wù)后步態(tài)表現(xiàn)可受到雙任務(wù)干擾。但腦卒中個(gè)體在避障任務(wù)中常采取“姿勢(shì)優(yōu)先”策略,優(yōu)先考慮避障任務(wù)從而使認(rèn)知任務(wù)表現(xiàn)出更大的損失[56-57]。最后,相比步行等粗大運(yùn)動(dòng)活動(dòng),上肢運(yùn)動(dòng)需要更精細(xì)的運(yùn)動(dòng)控制[33],即使是臨床功能恢復(fù)良好的腦卒中患者在完成更復(fù)雜的運(yùn)動(dòng)任務(wù)或執(zhí)行雙任務(wù)時(shí)也可出現(xiàn)持續(xù)性的缺陷[58]。上肢運(yùn)動(dòng)作為更依賴于認(rèn)知驅(qū)動(dòng)的自動(dòng)執(zhí)行動(dòng)作,雙任務(wù)范式能夠有效檢出其運(yùn)動(dòng)控制的自動(dòng)化程度[59-60]。Denneman等[61]提到,意識(shí)控制傾向較強(qiáng)的腦卒中患者克服雙任務(wù)干擾的穩(wěn)定性更低。所以在臨床康復(fù)訓(xùn)練中減少對(duì)肢體學(xué)習(xí)技能的過(guò)度關(guān)注,結(jié)合雙任務(wù)訓(xùn)練對(duì)運(yùn)動(dòng)控制自動(dòng)化程度的量化,對(duì)促進(jìn)其運(yùn)動(dòng)自動(dòng)性的恢復(fù)值得在未來(lái)進(jìn)一步研究。
3.2 認(rèn)知、步行與平衡
平衡指在不同情況和環(huán)境下保持身體直立的能力,平衡功能可分為靜態(tài)姿勢(shì)控制、動(dòng)態(tài)意向平衡和反應(yīng)性平衡。研究[62-63]顯示,由于腦卒中患者注意力資源有限,在平衡控制中,患者同樣采用“姿勢(shì)優(yōu)先策略”,即犧牲認(rèn)知反應(yīng)將更多的注意力資源分配給平衡任務(wù),減少跌倒風(fēng)險(xiǎn)[64]。而對(duì)意向性平衡控制則表現(xiàn)出相互認(rèn)知-運(yùn)動(dòng)干擾的模式,在進(jìn)一步對(duì)動(dòng)態(tài)意向平衡控制中不同認(rèn)知領(lǐng)域及不同人群(健康老年人、腦卒中老年人、年輕人)對(duì)其影響的研究中表示,腦卒中個(gè)體優(yōu)先考慮平衡而非認(rèn)知,其認(rèn)知-運(yùn)動(dòng)干擾模式為與認(rèn)知相關(guān)的運(yùn)動(dòng)干擾模式[65]。腦卒中患者在直立時(shí)常表現(xiàn)出不對(duì)稱的姿勢(shì)和體質(zhì)量負(fù)荷不平衡,其在維持直立姿勢(shì)期間出現(xiàn)的異常姿勢(shì)搖擺也是腦卒中常出現(xiàn)的后果之一[66]。傳統(tǒng)的康復(fù)訓(xùn)練也著重于改善肢體間的姿勢(shì)穩(wěn)定性和減少體質(zhì)量分布的不對(duì)稱,但Bourlon等[67]認(rèn)為,這種增加健側(cè)肢體的負(fù)重可被看作是維持姿勢(shì)穩(wěn)定性的一種補(bǔ)償策略,在雙任務(wù)中的認(rèn)知負(fù)荷很高時(shí),這種逆向過(guò)程更為明顯。姿勢(shì)控制是由無(wú)意識(shí)或反射過(guò)程引起的機(jī)體自動(dòng)反應(yīng),有研究提出保持直立姿勢(shì)的同時(shí)執(zhí)行認(rèn)知任務(wù)有助于轉(zhuǎn)移注意力焦點(diǎn)到外部刺激,從而改善姿勢(shì)控制的自動(dòng)過(guò)程[68-69]。
3.3 雙任務(wù)神經(jīng)機(jī)制研究
關(guān)于雙任務(wù)訓(xùn)練的研究認(rèn)為,其相比單一任務(wù)對(duì)認(rèn)知功能的改善具有更大優(yōu)勢(shì),這種優(yōu)勢(shì)源于運(yùn)動(dòng)訓(xùn)練可增強(qiáng)神經(jīng)可塑性[70-71],神經(jīng)可塑性是中樞神經(jīng)損傷后大腦通過(guò)未受損的神經(jīng)細(xì)胞間有效的側(cè)支循環(huán)形成,補(bǔ)償重建受損區(qū)域的神經(jīng)元功能及神經(jīng)通路傳導(dǎo),從而改善大腦損傷程度[72-73]。如海馬神經(jīng)元的可塑性增強(qiáng)與運(yùn)動(dòng)過(guò)程中腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor, BDNF)的高表達(dá)相關(guān)[74-75],且大量重復(fù)的運(yùn)動(dòng)訓(xùn)練可促進(jìn)神經(jīng)細(xì)胞間通過(guò)形成新突觸建立新的神經(jīng)環(huán)路突觸鏈[76-77],這些都能有效促進(jìn)神經(jīng)功能的恢復(fù)。
步行過(guò)程中下肢肌肉活動(dòng)與額葉區(qū)及運(yùn)動(dòng)區(qū)皮質(zhì)激活可存在顯著相關(guān)性,在受到運(yùn)動(dòng)能力受損和/或認(rèn)知能力下降因素影響時(shí),可出現(xiàn)皮質(zhì)過(guò)度激活甚至其他皮質(zhì)區(qū)域的補(bǔ)償性激活,這種神經(jīng)補(bǔ)償機(jī)制有利于步態(tài)模式調(diào)控以及平衡維持[78-81]。Al-Yahya等[82]通過(guò)近紅外光譜儀和核磁共振成像的監(jiān)測(cè),表明腦卒中患者在步行期間前額葉活動(dòng)的需求增加,在執(zhí)行認(rèn)知任務(wù)時(shí)進(jìn)一步增加,這種自上而下的運(yùn)動(dòng)控制與傳統(tǒng)康復(fù)使患者將注意力資源集中在安全移動(dòng)上的觀點(diǎn)不同。腦卒中患者的運(yùn)動(dòng)自動(dòng)性受到損害,就會(huì)將更多的注意力資源分配到熟悉但功能受損的任務(wù)驅(qū)動(dòng)中。因此,腦卒中幸存者成功的認(rèn)知-運(yùn)動(dòng)康復(fù)的核心理念應(yīng)該通過(guò)激活儲(chǔ)備注意力資源來(lái)補(bǔ)償受損的皮質(zhì)區(qū)域。Liu等[83]進(jìn)一步證實(shí)這樣的觀點(diǎn),他們的結(jié)果表明,腦卒中患者在雙任務(wù)行走時(shí)進(jìn)一步招募雙側(cè)前額葉皮質(zhì)和未受損傷的輔助運(yùn)動(dòng)區(qū)執(zhí)行認(rèn)知或運(yùn)動(dòng)雙任務(wù)。但有研究提出,在復(fù)雜的步行任務(wù)中,前額葉資源利用水平可接近步行障礙患者可用資源水平的上限,這種有效的前額葉資源與過(guò)度激活前額葉相結(jié)合反而會(huì)導(dǎo)致雙任務(wù)性能下降[84-86]。
目前對(duì)腦卒中患者經(jīng)雙任務(wù)訓(xùn)練后功能改善的神經(jīng)康復(fù)機(jī)制尚無(wú)明確定論,雙任務(wù)神經(jīng)機(jī)制的研究仍受到國(guó)內(nèi)外科研工作者的廣泛關(guān)注。眾多假說(shuō)和理論主要集中在兩方面,一方面是神經(jīng)功能的再生和功能障礙的恢復(fù)可歸因于大腦強(qiáng)大的重組重建能力,即神經(jīng)可塑性;另一方面是受損大腦區(qū)域的特異性激活或與其他補(bǔ)償激活腦區(qū)聯(lián)合形成新的腦功能神經(jīng)網(wǎng)絡(luò)。
4 結(jié)論
總體而言,CMDT能有效地提高患者的上肢運(yùn)動(dòng)功能、步行能力、執(zhí)行功能、平衡能力等,最大限度地幫助患者回歸家庭,但認(rèn)知-運(yùn)動(dòng)干擾也可導(dǎo)致認(rèn)知表現(xiàn)和/或運(yùn)動(dòng)表現(xiàn)惡化,未來(lái)的研究應(yīng)更多關(guān)注CMDT減少認(rèn)知-運(yùn)動(dòng)干擾方面的臨床實(shí)踐,并從腦卒中患者之間的差異性作為基本出發(fā)點(diǎn),從可行性、最適訓(xùn)練強(qiáng)度、最佳任務(wù)組合等方面制定個(gè)性化的康復(fù)訓(xùn)練計(jì)劃。
參考文獻(xiàn):
[1]
CAMPBELL B C V, DE SILVA D A, MACLEOD M R, et al. Ischaemic stroke[J]. Nat Rev Dis Primers, 2019, 5(1): 70. DOI: 10.1038/s41572-019-0118-8.
[2]ODONNELL M J, CHIN S L, RANGARAJAN S, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study[J]. Lancet, 2016, 388(10046): 761-775. DOI: 10.1016/S0140-6736(16)30506-2.
[3]《中國(guó)腦卒中防治報(bào)告》編寫組. 《中國(guó)腦卒中防治報(bào)告2019》概要[J]. 中國(guó)腦血管病雜志, 2020, 17(5): 272-281. DOI: 10.3969/j.issn.1672-5921.2020.05.008.
[4]惠艷娉, 席悅, 張巧俊. 腦卒中康復(fù)治療進(jìn)展[J]. 華西醫(yī)學(xué), 2018, 33(10): 1295-1302. DOI: 10.7507/1002-0179.201805118.
[5]VERMEIJ A, VAN BEEK A H E A, REIJS B L R, et al. An exploratory study of the effects of spatial working-memory load on prefrontal activation in low- and high-performing elderly[J]. Front Aging Neurosci, 2014, 6: 303. DOI: 10.3389/fnagi.2014.00303.
[6]DONOVAN K, LORD S E, MCNAUGHTON H K, et al. Mobility beyond the clinic: the effect of environment on gait and its measurement in community-ambulant stroke survivors[J]. Clin Rehabil, 2008, 22(6): 556-563. DOI: 10.1177/0269215507085378.
[7]ZHOU Q, YANG H C, ZHOU Q F, et al. Effects of cognitive motor dual-task training on stroke patients: a RCT-based meta-analysis[J]. J Clin Neurosci, 2021, 92: 175-182. DOI: 10.1016/j.jocn.2021.08.009.
[8]WOLLESEN B, WILDBREDT A, VAN SCHOOTEN K S, et al. The effects of cognitive-motor training interventions on executive functions in older people: a systematic review and meta-analysis[J]. Eur Rev Aging Phys Act, 2020, 17: 9. DOI: 10.1186/s11556-020-00240-y.
[9]UDINA C, AVTZI S, DURDURAN T, et al. Functional near-infrared spectroscopy to study cerebral hemodynamics in older adults during cognitive and motor tasks: a review[J]. Front Aging Neurosci, 2020, 11: 367. DOI: 10.3389/fnagi.2019.00367.
[10]PICHIERRI G, WOLF P, MURER K, et al. Cognitive and cognitive-motor interventions affecting physical functioning: a systematic review[J]. BMC Geriatr, 2011, 11: 29. DOI: 10.1186/1471-2318-11-29.
[11]HUBER S K, KNOLS R H, ARNET P, et al. Motor-cognitive intervention concepts can improve gait in chronic stroke, but their effect on cognitive functions is unclear: a systematic review with meta-analyses[J]. Neurosci Biobehav Rev, 2022, 132: 818-837. DOI: 10.1016/j.neubiorev.2021.11.013.
[12]AN H J, KIM J I, KIM Y R, et al. The effect of various dual task training methods with gait on the balance and gait of patients with chronic stroke[J]. J Phys Ther Sci, 2014, 26(8): 1287-1291. DOI: 10.1589/jpts.26.1287.
[13]MCISAAC T L, LAMBERG E M, MURATORI L M. Building a framework for a dual task taxonomy[J]. Biomed Res Int, 2015, 2015: 591475. DOI: 10.1155/2015/591475.
[14]PLUMMER P, ESKES G, WALLACE S, et al. Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research[J]. Arch Phys Med Rehabil, 2013, 94(12): 2565-2574.e6.DOI: 10.1016/j.apmr.2013.08.002.
[15]PASHLER H. Dual-task interference in simple tasks: data and theory[J]. Psychol Bull, 1994, 116(2): 220-244. DOI: 10.1037/0033-2909.116.2.220.
[16]MEYER D E, KIERAS D E. A computational theory of executive cognitive processes and multiple-task performance: part 1. Basic mechanisms[J]. Psychol Rev, 1997, 104(1): 3-65. DOI: 10.1037//0033-295x.104.1.3.
[17]FUJITA H, KASUBUCHI K, WAKATA S, et al. Role of the frontal cortex in standing postural sway tasks while dual-tasking: a functional near-infrared spectroscopy study examining working memory capacity[J]. Biomed Res Int, 2016, 2016: 7053867. DOI: 10.1155/2016/7053867.
[18]MASLOVAT D, CHUA R, SPENCER H C, et al. Evidence for a response preparation bottleneck during dual-task performance: effect of a startling acoustic stimulus on the psychological refractory period[J]. Acta Psychol, 2013, 144(3): 481-487. DOI: 10.1016/j.actpsy.2013.08.005.
[19]WOOLLACOTT M, SHUMWAY-COOK A. Attention and the control of posture and gait: a review of an emerging area of research[J]. Gait Posture, 2002, 16(1): 1-14. DOI: 10.1016/s0966-6362(01)00156-4.
[20]MANAF H, JUSTINE M, GOH H T. Axial segmental coordination during turning: effects of stroke and attentional loadings[J]. Motor Control, 2017, 21(1): 42-57. DOI: 10.1123/mc.2015-0040.
[21]NEGAHBAN H, EBRAHIMZADEH M, MEHRAVAR M. The effects of cognitive versus motor demands on postural performance and weight bearing asymmetry in patients with stroke[J]. Neurosci Lett, 2017, 659: 75-79. DOI: 10.1016/j.neulet.2017.08.070.
[22]YUAN Z W, PENG Y, WANG L S, et al. Effect of BCI-controlled pedaling training system with multiple modalities of feedback on motor and cognitive function rehabilitation of early subacute stroke patients[J]. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 2569-2577. DOI: 10.1109/TNSRE.2021.3132944.
[23]PARK M O, LEE S H. Effect of a dual-task program with different cognitive tasks applied to stroke patients: a pilot randomized controlled trial[J]. Neuro Rehabilitation, 2019, 44(2): 239-249. DOI: 10.3233/NRE-182563.
[24]PLUMMER-DAMATO P, KYVELIDOU A, STERNAD D, et al. Training dual-task walking in community-dwelling adults within 1 year of stroke: a protocol for a single-blind randomized controlled trial[J]. BMC Neurol, 2012, 12: 129. DOI: 10.1186/1471-2377-12-129.
[25]PLUMMER P, VILLALOBOS R M, VAYDA M S, et al. Feasibility of dual-task gait training for community-dwelling adults after stroke: a case series[J]. Stroke Res Treat, 2014, 2014: 538602. DOI: 10.1155/2014/538602.
[26]LIU Y C, YANG Y R, TSAI Y A, et al. Cognitive and motor dual task gait training improve dual task gait performance after stroke: a randomized controlled pilot trial[J]. Sci Rep, 2017, 7(1): 4070. DOI: 10.1038/s41598-017-04165-y.
[27]PANG M Y C, YANG L, OUYANG H X, et al. Dual-task exercise reduces cognitive-motor interference in walking and falls after stroke[J]. Stroke, 2018, 49(12): 2990-2998. DOI: 10.1161/STROKEAHA.118.022157.
[28]KIM G Y, HAN M R, LEE H G. Effect of dual-task rehabilitative training on cognitive and motor function of stroke patients[J]. J Phys Ther Sci, 2014, 26(1): 1-6. DOI: 10.1589/jpts.26.1.
[29]YANG Y R, WANG R Y, CHEN Y C, et al. Dual-task exercise improves walking ability in chronic stroke: a randomized controlled trial[J]. Arch Phys Med Rehabil, 2007, 88(10): 1236-1240. DOI: 10.1016/j.apmr.2007.06.762.
[30]SUBRAMANIAM S, WAN-YING HUI-CHAN C, BHATT T. A cognitive-balance control training paradigm using wii fit to reduce fall risk in chronic stroke survivors[J]. J Neurol Phys Ther, 2014, 38(4): 216-225. DOI: 10.1097/NPT.0000000000000056.
[31]PLUMMER P, ZUKOWSKI L A, FELD J A, et al. Cognitive-motor dual-task gait training within 3 years after stroke: a randomized controlled trial[J]. Physiother Theory Pract, 2022, 38(10): 1329-1344. DOI: 10.1080/09593985.2021.1872129.
[32]LEE K J, PARK G, SHIN J H. Differences in dual task performance after robotic upper extremity rehabilitation in hemiplegic stroke patients[J]. Front Neurol, 2021, 12: 771185. DOI: 10.3389/fneur.2021.771185.
[33]SHIN J H, PARK G, CHO D Y. Cognitive-motor interference on upper extremity motor performance in a robot-assisted planar reaching task among patients with stroke[J]. Arch Phys Med Rehabil, 2017, 98(4): 730-737. DOI: 10.1016/j.apmr.2016.12.004.
[34]GHEYSEN F, POPPE L, DESMET A, et al. Physical activity to improve cognition in older adults: can physical activity programs enriched with cognitive challenges enhance the effects? A systematic review and meta-analysis[J]. Int J Behav Nutr Phys Act, 2018, 15(1): 63. DOI: 10.1186/s12966-018-0697-x.
[35]BRUDERER-HOFSTETTER M, RAUSCH-OSTHOFF A K, MEICHTRY A, et al. Effective multicomponent interventions in comparison to active control and no interventions on physical capacity, cognitive function and instrumental activities of daily living in elderly people with and without mild impaired cognition: a systematic review and network meta-analysis[J]. Ageing Res Rev, 2018, 45: 1-14. DOI: 10.1016/j.arr.2018.04.002.
[36]CHOI J H, KIM B R, HAN E Y, et al. The effect of dual-task training on balance and cognition in patients with subacute post-stroke[J]. Ann Rehabil Med, 2015, 39(1): 81-90. DOI: 10.5535/arm.2015.39.1.81.
[37]LI H J, LI J, LI N X, et al. Cognitive intervention for persons with mild cognitive impairment: a meta-analysis[J]. Ageing Res Rev, 2011, 10(2): 285-296. DOI: 10.1016/j.arr.2010.11.003.
[38]趙依雙. 雙重任務(wù)訓(xùn)練改善腦卒中后步行能力的應(yīng)用進(jìn)展[J]. 中華物理醫(yī)學(xué)與康復(fù)雜志, 2020, 42(8): 752-754. DOI: 10.3760/cma.j.issn.0254-1424.2020.08.021.
[39]PLUMMER P, ESKES G. Measuring treatment effects on dual-task performance: a framework for research and clinical practice[J]. Front Hum Neurosci, 2015, 9: 225. DOI: 10.3389/fnhum.2015.00225.
[40]LUSSIER M, BUGAISKA A, BHERER L. Specific transfer effects following variable priority dual-task training in older adults[J]. Restor Neurol Neurosci, 2017, 35(2): 237-250. DOI: 10.3233/RNN-150581.
[41]SENGAR S, RAGHAV D, VERMA M, et al. Efficacy of dual-task training with two different priorities instructional sets on gait parameters in patients with chronic stroke[J]. Neuropsychiatr Dis Treat, 2019, 15: 2959-2969. DOI: 10.2147/NDT.S197632.
[42]PATEL P, BHATT T. Task matters: influence of different cognitive tasks on cognitive-motor interference during dual-task walking in chronic stroke survivors[J]. Top Stroke Rehabil, 2014, 21(4): 347-357. DOI: 10.1310/tsr2104-347.
[43]CHEN H I, FU S Y, LIU T W, et al. Changes in cognitive-motor interference during rehabilitation of cane walking in patients with subacute stroke: a pilot study[J]. PLoS One, 2022, 17(10): e0274425. DOI: 10.1371/journal.pone.0274425.
[44]PLUMMER-DAMATO P, ALTMANN L J, SARACINO D, et al. Interactions between cognitive tasks and gait after stroke: a dual task study[J]. Gait Posture, 2008, 27(4): 683-688. DOI: 10.1016/j.gaitpost.2007.09.001.
[45]YANG L, LAM F M, HUANG M Z, et al. Dual-task mobility among individuals with chronic stroke: changes in cognitive-motor interference patterns and relationship to difficulty level of mobility and cognitive tasks[J]. Eur J Phys Rehabil Med, 2018, 54(4): 526-535. DOI: 10.23736/S1973-9087.17.04773-6.
[46]RICE J, CORP D T, SWAROWSKY A, et al. Greater cognitive-motor interference in individuals post-stroke during more complex motor tasks[J]. J Neurol Phys Ther, 2022, 46(1): 26-33. DOI: 10.1097/NPT.0000000000000379.
[47]ESCHWEILER M, BOHR L, KESSLER J, et al. Combined cognitive and motor training improves the outcome in the early phase after stroke and prevents a decline of executive functions: a pilot study[J]. Neuro Rehabilitation, 2021, 48(1): 97-108. DOI: 10.3233/NRE-201583.
[48]BAEK C Y, YOON H S, KIM H D, et al. The effect of the degree of dual-task interference on gait, dual-task cost, cognitive ability, balance, and fall efficacy in people with stroke: a cross-sectional study[J]. Medicine, 2021, 100(24): e26275. DOI: 10.1097/MD.0000000000026275.
[49]BAETENS T, KEGEL A D, PALMANS T, et al. Gait analysis with cognitive-motor dual tasks to distinguish fallers from nonfallers among rehabilitating stroke patients[J]. Arch Phys Med Rehabil, 2013, 94(4): 680-686. DOI: 10.1016/j.apmr.2012.11.023.
[50]MUCI B, KESER I, MERIC A, et al. What are the factors affecting dual-task gait performance in people after stroke?[J]. Physiother Theory Pract, 2022, 38(5): 621-628. DOI: 10.1080/09593985.2020.1777603.
[51]LEE K B, KIM J H, LEE K S. The relationship between motor recovery and gait velocity during dual tasks in patients with chronic stroke[J]. J Phys Ther Sci, 2015, 27(4): 1173-1176. DOI: 10.1589/jpts.27.1173.
[52]PLUMMER-DAMATO P, ALTMANN L J. Relationships between motor function and gait-related dual-task interference after stroke: a pilot study[J]. Gait Posture, 2012, 35(1): 170-172. DOI: 10.1016/j.gaitpost.2011.08.015.
[53]COLLETT J, FLEMING M K, MEESTER D, et al. Dual-task walking and automaticity after stroke: insights from a secondary analysis and imaging sub-study of a randomised controlled trial[J]. Clin Rehabil, 2021, 35(11): 1599-1610. DOI: 10.1177/02692155211017360.
[54]TIMMERMANS C, ROERDINK M, JANSSEN T W J, et al. Dual-task walking in challenging environments in people with stroke: cognitive-motor interference and task prioritization[J]. Stroke Res Treat, 2018, 2018: 7928597. DOI: 10.1155/2018/7928597.
[55]ZUKOWSKI L A, FELD J A, GIULIANI C A, et al. Relationships between gait variability and ambulatory activity post stroke[J]. Top Stroke Rehabil, 2019, 26(4): 255-260. DOI: 10.1080/10749357.2019.1591038.
[56]SMULDERS K, VAN SWIGCHEM R, DE SWART B J, et al. Community-dwelling people with chronic stroke need disproportionate attention while walking and negotiating obstacles[J]. Gait Posture, 2012, 36(1): 127-132. DOI: 10.1016/j.gaitpost.2012.02.002.
[57]OHZUNO T, USUDA S. Cognitive-motor interference in post-stroke individuals and healthy adults under different cognitive load and task prioritization conditions[J]. J Phys Ther Sci, 2019, 31(3): 255-260. DOI: 10.1589/jpts.31.255.
[58]MULLICK A A, BANIA M C, TOMITA Y, et al. Obstacle avoidance and dual-tasking during reaching while standing in patients with mild chronic stroke[J]. Neurorehabil Neural Repair, 2021, 35(10): 915-928. DOI: 10.1177/15459683211023190.
[59]HOUWINK A, STEENBERGEN B, PRANGE G B, et al. Upper-limb motor control in patients after stroke: attentional demands and the potential beneficial effects of arm support[J]. Hum Mov Sci, 2013, 32(2): 377-387. DOI: 10.1016/j.humov.2012.01.007.
[60]KIM H, KIM H K, KIM N, et al. Dual task effects on speed and accuracy during cognitive and upper limb motor tasks in adults with stroke hemiparesis[J]. Front Hum Neurosci, 2021, 15: 671541. DOI: 10.3389/fnhum.2021.671541.
[61]DENNEMAN R P M, KAL E C, HOUDIJK H, et al. Over-focused? The relation between patients' inclination for conscious control and single- and dual-task motor performance after stroke[J]. Gait Posture, 2018, 62: 206-213. DOI: 10.1016/j.gaitpost.2018.03.008.
[62]SUBRAMANIAM S, HUI-CHAN C W Y, BHATT T. Effect of dual tasking on intentional vs. reactive balance control in people with hemiparetic stroke[J]. J Neurophysiol, 2014, 112(5): 1152-1158. DOI: 10.1152/jn.00628.2013.
[63]KIZONY R, LEVIN M F, HUGHEY L, et al. Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment[J]. Phys Ther, 2010, 90(2): 252-260. DOI: 10.2522/ptj.20090061.
[64]KANNAN L, VORA J, BHATT T, et al. Cognitive-motor exergaming for reducing fall risk in people with chronic stroke: a randomized controlled trial[J]. Neuro Rehabilitation, 2019, 44(4): 493-510. DOI: 10.3233/NRE-182683.
[65]BHATT T, SUBRAMANIAM S, VARGHESE R. Examining interference of different cognitive tasks on voluntary balance control in aging and stroke[J]. Exp Brain Res, 2016, 234(9): 2575-2584. DOI: 10.1007/s00221-016-4662-0.
[66]TISSERAND R, ARMAND S, ALLALI G, et al. Cognitive-motor dual-task interference modulates mediolateral dynamic stability during gait in post-stroke individuals[J]. Hum Mov Sci, 2018, 58: 175-184. DOI: 10.1016/j.humov.2018.01.012.
[67]BOURLON C, LEHENAFF L, BATIFOULIER C, et al. Dual-tasking postural control in patients with right brain damage[J]. Gait Posture, 2014, 39(1): 188-193. DOI: 10.1016/j.gaitpost.2013.07.002.
[68]JU S K, YOO W G. The effect of somatosensory and cognitive-motor tasks on the paretic leg of chronic stroke patients in the standing posture[J]. J Phys Ther Sci, 2014, 26(12): 1869-1870. DOI: 10.1589/jpts.26.1869.
[69]JU S, YOO W G, OH J S, et al. Effects of visual cue and cognitive motor tasks on standing postural control following a chronic stroke[J]. J Phys Ther Sci, 2018, 30(4): 601-604. DOI: 10.1589/jpts.30.601.
[70]KRAMER A F, ERICKSON K I. Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function[J]. Trends Cogn Sci, 2007, 11(8): 342-348. DOI: 10.1016/j.tics.2007.06.009.
[71]CABRAL D F, FRIED P, KOCH S, et al. Efficacy of mechanisms of neuroplasticity after a stroke[J]. Restor Neurol Neurosci, 2022, 40(2): 73-84. DOI: 10.3233/RNN-211227.
[72]CALEO M. Rehabilitation and plasticity following stroke: insights from rodent models[J]. Neuroscience, 2015, 311: 180-194. DOI: 10.1016/j.neuroscience.2015.10.029.
[73]DIMYAN M A, COHEN L G. Neuroplasticity in the context of motor rehabilitation after stroke[J]. Nat Rev Neurol, 2011, 7: 76-85. DOI: 10.1038/nrneurol.2010.200.
[74]VON BOHLEN UND HALBACH O, VON BOHLEN UND HALBACH V. BDNF effects on dendritic spine morphology and hippocampal function[J]. Cell Tissue Res, 2018, 373(3): 729-741. DOI: 10.1007/s00441-017-2782-x.
[75]VAYNMAN S, GOMEZ-PINILLA F. Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity[J]. J Neurosci Res, 2006, 84(4): 699-715. DOI: 10.1002/jnr.20979.
[76]付曉燕, 李愛麗. 認(rèn)知-運(yùn)動(dòng)控制雙重任務(wù)訓(xùn)練應(yīng)用于老年腦卒中后認(rèn)知障礙的臨床價(jià)值[J]. 實(shí)用臨床醫(yī)學(xué), 2021, 22(1): 43-45, 49. DOI: 10.13764/j.cnki.lcsy.2021.01.015.
[77]DBROWSKI J, CZAJKA A, ZIELIN""" ′SKA-TUREK J, et al. Brain functional reserve in the context of neuroplasticity after stroke[J]. Neural Plast, 2019, 2019: 9708905. DOI: 10.1155/2019/9708905.
[78]KIM J, LEE J, LEE G, et al. Relationship between lower limb muscle activity and cortical activation among elderly people during walking: effects of fast speed and cognitive dual task[J]. Front Aging Neurosci, 2022, 14: 1059563. DOI: 10.3389/fnagi.2022.1059563.
[79]BEURSKENS R, BOCK O. Does the walking task matter? Influence of different walking conditions on dual-task performances in young and older persons[J]. Hum Mov Sci, 2013, 32(6): 1456-1466. DOI: 10.1016/j.humov.2013.07.013.
[80]WARD N S. Compensatory mechanisms in the aging motor system[J]. Ageing Res Rev, 2006, 5(3): 239-254. DOI: 10.1016/j.arr.2006.04.003.
[81]TEO W P, RANTALAINEN T, NUZUM N, et al. Altered prefrontal cortex responses in older adults with subjective memory complaints and dementia during dual-task gait: an fNIRS study[J]. Eur J Neurosci, 2021, 53(4): 1324-1333. DOI: 10.1111/ejn.14989.
[82]AL-YAHYA E, JOHANSEN-BERG H, KISCHKA U, et al. Prefrontal cortex activation while walking under dual-task conditions in stroke: a multimodal imaging study[J]. Neurorehabil Neural Repair, 2016, 30(6): 591-599. DOI: 10.1177/1545968315613864.
[83]LIU Y C, YANG Y R, TSAI Y A, et al. Brain activation and gait alteration during cognitive and motor dual task walking in stroke-a functional near-infrared spectroscopy study[J]. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(12): 2416-2423. DOI: 10.1109/TNSRE.2018.2878045.
[84]HAWKINS K A, FOX E J, DALY J J, et al. Prefrontal over-activation during walking in people with mobility deficits: interpretation and functional implications[J]. Hum Mov Sci, 2018, 59: 46-55. DOI: 10.1016/j.humov.2018.03.010.
[85]HERMAND E, TAPIE B, DUPUY O, et al. Prefrontal cortex activation during dual task with increasing cognitive load in subacute stroke patients: a pilot study[J]. Front Aging Neurosci, 2019, 11: 160. DOI: 10.3389/fnagi.2019.00160.
[86]LIM S B, PETERS S, YANG C L, et al. Frontal, sensorimotor, and posterior parietal regions are involved in dual-task walking after stroke[J]. Front Neurol, 2022, 13: 904145. DOI: 10.3389/fneur.2022.904145.
(責(zé)任編輯:高艷華)
本文引用:向麗莎,張一.認(rèn)知-運(yùn)動(dòng)雙任務(wù)訓(xùn)練在腦卒中患者康復(fù)中的研究進(jìn)展[J].醫(yī)學(xué)研究與教育,2024,41(3):817.DOI:10.3969/j.issn.1674490X.2024.03.002.
第一作者:向麗莎(1999—),女,四川德陽(yáng)人,在讀碩士,主要從事認(rèn)知康復(fù)研究。E-mail: Xiangss@163.com
通信作者:張一(1975—),男,江蘇常州人,主任醫(yī)師,博士,博士生導(dǎo)師,主要從事神經(jīng)康復(fù)與認(rèn)知研究。E-mail: zhangyizhe1975@163.com