[摘要]"線粒體衍生肽是一種新型的線粒體源性肽,可調(diào)節(jié)機(jī)體代謝。線粒體衍生肽廣泛分布于組織和血漿中,可通過血液循環(huán)到達(dá)心臟和骨骼肌等不同組織中。研究發(fā)現(xiàn),線粒體衍生肽MOTS-c具有重要的心臟保護(hù)作用,可影響心血管疾病的發(fā)生發(fā)展。本文就線粒體衍生肽MOTS-c在心血管疾病中的研究進(jìn)展進(jìn)行綜述。
[關(guān)鍵詞]"線粒體衍生肽;心血管疾病;生理作用;心臟保護(hù)
[中圖分類號]"R714.252""""[文獻(xiàn)標(biāo)識(shí)碼]"A""""[DOI]"10.3969/j.issn.1673-9701.2024.14.030
心血管疾病是全球患者殘疾和死亡的主要原因之一,其發(fā)病率呈逐年上升趨勢,嚴(yán)重影響患者的工作和生活[1]。線粒體衍生肽MOTS-c是維持和調(diào)節(jié)線粒體功能的重要肽類物質(zhì)之一。研究發(fā)現(xiàn),MOTS-c具有重要的心臟保護(hù)作用,可通過多種機(jī)制參與心血管疾病的病理生理過程。本文就線粒體衍生肽MOTS-c在心血管疾病中的研究進(jìn)展進(jìn)行綜述,旨在為心血管疾病的診治提供理論依據(jù)。
1""MOTS-c概述
線粒體的生理功能主要是調(diào)節(jié)代謝平衡和向機(jī)體提供能量,其是活性氧最重要的細(xì)胞來源,也是腺苷三磷酸的主要產(chǎn)生位點(diǎn)。線粒體衍生肽是線粒體基因組中短開放閱讀框編碼的肽家族,對線粒體的功能、相關(guān)基因的表達(dá)及機(jī)體代謝穩(wěn)態(tài)具有調(diào)節(jié)作用。線粒體衍生肽MOTS-c最初由Lee等[2]研究發(fā)現(xiàn),其在人12S核糖體RNA中尋找潛在的開放閱讀框,并發(fā)現(xiàn)一個(gè)可翻譯成包含16個(gè)氨基酸的肽,即MOTS-c。MOTS-c的主要結(jié)構(gòu)為Met-Arg-Trp-"Gln-Glu-Met-Gly-Tyr-Ile-Phe-Tyr-Pro-Arg-Lys-Leu-Arg,序列高度保守,特別是前11個(gè)氨基酸殘基。MOTS-c是一種新型線粒體源性肽,廣泛分布于組織和血漿中,與線粒體共定位。MOTS-c主要依賴AMP活化蛋白激酶(AMP-activated"protein"kinase,AMPK)調(diào)節(jié)代謝應(yīng)激和機(jī)體代謝,可通過血液循環(huán)到達(dá)其他組織,如骨骼肌、心肌、腎臟和循環(huán)血漿等[3]。
2""MOTS-c與心血管疾病
2.1""MOTS-c與高脂血癥
高脂血癥是一種常見的代謝紊亂性疾病,是心血管疾病的危險(xiǎn)因素之一[4]。MOTS-c是能量平衡的重要調(diào)節(jié)因子。葉酸-蛋氨酸循環(huán)和嘌呤從頭生物合成途徑是MOTS-c的細(xì)胞代謝靶點(diǎn)。該過程消耗5-甲基四氫葉酸,5-氨基咪唑-4-甲酰胺核糖核苷酸的水平提高,積累的5-氨基咪唑-4-甲酰胺核糖核苷酸可激活A(yù)MPK,通過磷酸化作用加速脂肪酸氧化[2,5]。高脂飲食誘導(dǎo)肥胖小鼠的血漿代謝物組學(xué)分析證實(shí),MOTS-c可通過抑制鞘脂、單甘油酯及二羧酸代謝途徑,提高胰島素敏感性并促進(jìn)胰島β細(xì)胞氧化,從而防止脂肪積累[6]。
絕經(jīng)后狀態(tài)與能量消耗減少體質(zhì)量增加等代謝紊亂風(fēng)險(xiǎn)增加有關(guān),可增加心血管疾病的發(fā)生風(fēng)險(xiǎn)[7]。切除肥胖小鼠卵巢,雌激素缺乏可增加小鼠的脂肪負(fù)荷,破壞脂肪的正常功能,從而發(fā)生胰島素抵抗、脂肪量過載;而給予去卵巢小鼠MOTS-c后,脂質(zhì)氧化相關(guān)基因的表達(dá)水平升高,脂質(zhì)生成相關(guān)基因的表達(dá)水平降低,循環(huán)游離脂肪酸水平降低,肝臟三酰甘油水平降低,脂肪生成相關(guān)基因水平降低,可預(yù)防卵巢切除誘導(dǎo)的體質(zhì)量增加。此外,MOTS-c可激活A(yù)MPK信號通路,改善能量耗散和胰島素敏感性;AMPK信號通路阻斷劑可減弱MOTS-c在脂肪細(xì)胞脂質(zhì)代謝調(diào)節(jié)中的作用[8]。Ramanjaneya等[9]首次證實(shí),循環(huán)脂質(zhì)與人MOTS-c之間的相關(guān)性,MOTS-c可通過激活蛋白激酶B和AMPK依賴性途徑提高胰島素敏感性。
2.2"nbsp;MOTS-c與動(dòng)脈粥樣硬化
動(dòng)脈粥樣硬化(atherosclerosis,AS)屬慢性炎癥反應(yīng)過程,是心血管疾病的主要病理學(xué)基礎(chǔ)[10]。腫瘤壞死因子-α(tumor"necrosis"factor-α,TNF-α)、白細(xì)胞介素(interleukin,IL)-1β和IL-6等炎癥因子的釋放不僅在AS的發(fā)生發(fā)展中起關(guān)鍵作用,其還在已建立的AS斑塊穩(wěn)定性中起關(guān)鍵作用。巨噬細(xì)胞來源的TNF-α和IL-1β作為AS的早期反應(yīng)細(xì)胞因子,通過直接損傷血管內(nèi)皮細(xì)胞引發(fā)炎癥級聯(lián)反應(yīng),導(dǎo)致促炎性細(xì)胞因子IL-6及其他中性粒細(xì)胞趨化因子的分泌,進(jìn)一步促進(jìn)斑塊的形成[11]。在細(xì)胞負(fù)調(diào)控因子中,信號轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄活化因子3(signal"transducer"and"activator"of"transcription"3,STAT3)和芳基烴受體(aryl"hydrocarbon"receptor,AhR)是限制巨噬細(xì)胞過度炎癥反應(yīng)的重要因素,STAT3在抑制巨噬細(xì)胞和中性粒細(xì)胞產(chǎn)生促炎性細(xì)胞因子方面發(fā)揮關(guān)鍵作用[12]。
Zhai等[13]研究發(fā)現(xiàn),MOTS-c可顯著改善耐甲氧西林金黃色葡萄球菌感染小鼠的生存狀態(tài),并在信使RNA和蛋白水平上抑制炎癥細(xì)胞因子的表達(dá),如TNF-α、IL-6和IL-1β;同時(shí),MOTS-c還可劑量依賴性促進(jìn)抗炎細(xì)胞因子IL-10的分泌。另外,MOTS-c可提高巨噬細(xì)胞的吞噬和殺菌能力。MOTS-c可抑制巨噬細(xì)胞中絲裂原活化蛋白激酶的磷酸化,提高STAT3和AhR的表達(dá)水平,從而發(fā)揮抗炎作用。MOTS-c通過促進(jìn)STAT3和AhR的表達(dá)抑制福爾馬林誘導(dǎo)的胞外信號調(diào)節(jié)激酶(extracellular"signal-regulated"kinase,ERK)、c-Jun氨基末端激酶(c-Jun"N-terminal"kinase,JNK)和p38的表達(dá)。ERK1/2、p38和JNK是絲裂原活化蛋白激酶信號通路中的主要激酶,其在巨噬細(xì)胞識(shí)別細(xì)菌后被激活[14]。這些激酶與TNF-α和IL-6等多種炎癥細(xì)胞因子的表達(dá)有關(guān)[15]。Shen等[16]研究表明,MOTS-c通過抑制核因子κB及激活核轉(zhuǎn)錄因子紅系2相關(guān)因子2/抗氧化反應(yīng)元件信號通路保護(hù)大鼠心肌細(xì)胞免受過氧化氫誘導(dǎo)的炎癥反應(yīng)和氧化應(yīng)激作用。綜上所述,MOTS-c在AS的發(fā)生發(fā)展中起重要作用,特別是在抗炎癥反應(yīng)和抗氧化應(yīng)激等方面,MOTS-c可能是AS的早期預(yù)測因子。
2.3""MOTS-c與冠狀動(dòng)脈內(nèi)皮功能障礙
內(nèi)皮在維持血管穩(wěn)態(tài)和調(diào)節(jié)血管功能方面起重要作用。內(nèi)皮功能障礙被定義為血管對生理或藥物應(yīng)激的不適當(dāng)舒縮反應(yīng)。冠狀動(dòng)脈內(nèi)皮功能障礙有助于斑塊的發(fā)展[17]。TNF-α、IL-1β和IL-6等促炎因子在內(nèi)皮細(xì)胞損傷的發(fā)生中起重要作用。TNF-α在內(nèi)皮細(xì)胞中可引起細(xì)胞毒性,最終在炎癥級聯(lián)反應(yīng)中通過產(chǎn)生反應(yīng)性自由基及IL-6等促炎因子導(dǎo)致?lián)p傷。IL-6是內(nèi)皮功能障礙和炎癥反應(yīng)中增加內(nèi)皮通透性的重要生物標(biāo)志物。IL-1β被認(rèn)為是血管炎癥的關(guān)鍵介質(zhì)[18]。研究表明,MOTS-c可激活A(yù)MPK,使TNF-α、IL-1β和IL-6等的表達(dá)下調(diào),從而改善內(nèi)皮功能[19]。
Qin等[20]招募40例經(jīng)影像學(xué)檢查無明顯冠狀動(dòng)脈結(jié)構(gòu)性病變的患者,根據(jù)是否存在內(nèi)皮功能障礙將患者分為兩組,與對照組相比,內(nèi)皮功能障礙組患者的MOTS-c水平更低;而大鼠主動(dòng)脈環(huán)相關(guān)研究表明,MOTS-c可改善乙酰膽堿介導(dǎo)的血管舒張,但其無直接的血管活性作用。Ya?ar等[21]研究證實(shí),MOTS-c與冠狀動(dòng)脈疾病具有強(qiáng)相關(guān)性,MOTS-c與SYNTAX評分呈負(fù)相關(guān)。MOTS-c可輔助識(shí)別冠狀動(dòng)脈疾病患者。
2.4""MOTS-c與血管鈣化和心肌重構(gòu)
血管鈣化是磷酸鈣晶體沉積于血管壁內(nèi)側(cè)和內(nèi)膜的病理過程,主要發(fā)生于血管、心肌和心臟瓣膜。血管鈣化會(huì)降低血管壁的彈性和順應(yīng)性,導(dǎo)致多種疾病進(jìn)程復(fù)雜化,導(dǎo)致慢性腎病、心臟瓣膜疾病和動(dòng)脈粥樣硬化患者預(yù)后惡化[22]。AMPK是細(xì)胞能量狀態(tài)的主傳感器。越來越多的證據(jù)表明,AMPK信號通路在血管鈣化中起重要作用。研究證實(shí),血管緊張素Ⅱ1型(angiotensin"Ⅱ"type"1,AT-1)和內(nèi)皮素-B(endothelin-B,ET-B)分別通過與其受體結(jié)合參與AMPK信號通路的調(diào)控[23-24]。AT-1受體水平的降低與氧化應(yīng)激程度降低相關(guān),可阻止心肌重構(gòu)心肌收縮功能障礙的發(fā)展[25]。值得關(guān)注的是,MOTS-c通過激活A(yù)MPK信號通路、降低AT-1受體和ET-B受體的表達(dá)水平,顯著降低尼古丁處理血管鈣化大鼠模型的收縮壓和舒張壓,維持正常心臟結(jié)構(gòu),逆轉(zhuǎn)心室重構(gòu),降低血管硬度,改善尼古丁誘導(dǎo)的血管和心臟異常[26]。推測MOTS-c是潛在的抗鈣化劑,其有益于心血管疾病功能障礙的改善。
作為一種運(yùn)動(dòng)模擬物,MOTS-c在改善糖尿病心臟病方面也有類似益處。由神經(jīng)調(diào)節(jié)蛋白1(neuregulin"1,NRG1)及其受體ErbB4組成的復(fù)合體在心臟發(fā)育和成人心臟結(jié)構(gòu)和功能的穩(wěn)態(tài)中發(fā)揮關(guān)鍵作用。NRG1/ErbB信號通路還可誘導(dǎo)心肌細(xì)胞增殖,調(diào)節(jié)血管生成和血管內(nèi)皮功能。研究發(fā)現(xiàn),MOTS-c可通過激活NRG1/ErbB4信號通路,改善大鼠的心肌功能,減少心臟結(jié)構(gòu)和功能異常[27]。
2.5""MOTS-c與心力衰竭
心力衰竭是由心臟泵無法滿足機(jī)體能量需求而引起的一種心臟綜合征。心力衰竭的發(fā)病涉及多種機(jī)制,包括炎癥、氧化應(yīng)激增加、能量代謝異常、心肌細(xì)胞凋亡、間質(zhì)纖維化和線粒體功能障礙等[28]。心臟是內(nèi)耗氧量高的器官,活性氧主要由心肌線粒體產(chǎn)生。研究表明,外源性MOTS-c可提高運(yùn)動(dòng)訓(xùn)練時(shí)心肌內(nèi)源性MOTS-c水平,提高心肌機(jī)械效率,增強(qiáng)心臟收縮功能,有助于改善心臟的舒張功能[29]。MOTS-c可減輕壓力負(fù)荷條件下的心功能障礙、減輕心臟炎癥反應(yīng),并提高心臟的抗氧化能力[30]。
MOTS-c通過減少活性氧的產(chǎn)生增強(qiáng)線粒體穩(wěn)態(tài),在這一過程中發(fā)揮重要作用;CCN1可提高心肌凋亡分子Fas配體(Fas"ligand,F(xiàn)asL)的水平,從而激活ERK1/2信號通路,導(dǎo)致擴(kuò)張型心肌病和晚期心力衰竭[31-32]。ERK/早期生長反應(yīng)因子1(early"growth"response"factor"1,EGR1)信號通路在多器官損傷過程中起關(guān)鍵作用。抑制ERK1/2可下調(diào)EGR1的水平,從而減少心肌缺血再灌注誘導(dǎo)的凋亡和自噬[33]。研究表明,MOTS-c可減弱糖尿病心臟病相關(guān)細(xì)胞凋亡、免疫調(diào)節(jié)、血管生成和脂肪酸代謝。MOTS-c可通過抑制CCN1的表達(dá),激活ERK1/2信號通路,降低EGR1的水平,減少心肌細(xì)胞凋亡,修復(fù)心肌線粒體損傷[34]。
3""小結(jié)
MOTS-c作為一個(gè)由16個(gè)氨基酸組成的短肽,可作為細(xì)胞自主肽發(fā)揮作用,還可以類似于激素的作用影響機(jī)體諸多病理生理代謝過程。MOTS-c作為調(diào)節(jié)和維持線粒體功能的重要肽類物質(zhì),通過多種機(jī)制參與心血管疾病的病理改變。希望通過關(guān)注MOTS-c在心血管疾病診斷和治療中的潛在應(yīng)用價(jià)值,進(jìn)一步探究MOTS-c在心血管疾病治療、心肌保護(hù)及細(xì)胞穩(wěn)態(tài)維持中的作用。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] FLORA"G"D,"NAYAK"M"K."A"brief"review"of"cardiovascular"diseases,"associated"risk"factors"and"current"treatment"regimes[J]."Curr"Pharm"Des,"2019,"25(38):"4063–4084.
[2] LEE"C,"ZENG"J,"DREW"B"G,"et"al."The"mitochondrial-"derived"peptide"MOTS-c"promotes"metabolic"homeostasis"and"reduces"obesity"and"insulin"resistance[J]."Cell"Metab,"2015,"21(3):"443–454.
[3] KIM"K"H,"SON"J"M,"BENAYOUN"B"A,"et"al."The"mitochondrial-encoded"peptide"MOTS-c"translocates"to"the"nucleus"to"regulate"nuclear"gene"expression"in"response"to"metabolic"stress[J]."Cell"Metab,"2018,"28(3):"516–524.
[4] YAO"Y"S,"LI"T"D,"ZENG"Z"H."Mechanisms"underlying"direct"actions"of"hyperlipidemia"on"myocardium:"An"updated"review[J]."Lipids"Health"Dis,"2020,"19(1):"23.
[5] LEE"H,"ZANDKARIMI"F,"ZHANG"Y,"et"al."Energy-"stress-mediated"AMPK"activation"inhibits"ferroptosis[J]."Nat"Cell"Biol,"2020,"22(2):"225–234.
[6] KIM"S"J,"MILLER"B,"MEHTA"H"H,"et"al."The"mitochondrial-derived"peptide"MOTS-c"is"a"regulator"of"plasma"metabolites"and"enhances"insulin"sensitivity[J]."Physiol"Rep,"2019,"7(13):"e14171.
[7] PEI"J,"HARAKALOVA"M,"DEN"RUIJTER"H,"et"al."Cardiorenal"disease"connection"during"post-menopause:"The"protective"role"of"estrogen"in"uremic"toxins"induced"microvascular"dysfunction[J]."Int"J"Cardiol,"2017,"238:"22–30.
[8] LU"H,"WEI"M,"ZHAI"Y,"et"al."MOTS-c"peptide"regulates"adipose"homeostasis"to"prevent"ovariectomy-induced"metabolic"dysfunction[J]."J"Mol"Med"(Berl),"2019,"97(4):"473–485.
[9] RAMANJANEYA"M,"JEROBIN"J,"BETTAHI"I,"et"al."Lipids"and"insulin"regulate"mitochondrial-derived"peptide"(MOTS-c)"in"PCOS"and"healthy"subjects[J]."Clin"Endocrinol"(Oxf),"2019,"91(2):"278–287.
[10] KONG"P,"CUI"Z"Y,"HUANG"X"F,"et"al."Inflammation"and"atherosclerosis:"Signaling"pathways"and"therapeutic"intervention[J]."Signal"Transduct"Target"Ther,"2022,"7(1):"131.
[11] LIBBY"P."Inflammation"during"the"life"cycle"of"the"atherosclerotic"plaque[J]."Cardiovasc"Res,"2021,"117(13):"2525–2536.
[12] HUTCHINS"A"P,"DIEZ"D,"MIRANDA-SAAVEDRA"D."The"IL-10/STAT3-mediated"anti-inflammatory"response:"Recent"developments"and"future"challenges[J]."Brief"Funct"Genomics,"2013,"12(6):"489–498.
[13] ZHAI"D,"YE"Z,"JIANG"Y,"et"al."MOTS-c"peptide"increases"survival"and"decreases"bacterial"load"in"mice"infected"with"MRSA[J]."Mol"Immunol,"2017,"92:"151–160.
[14] YIN"X,"JING"Y,"CHEN"Q,"et"al."The"intraperitoneal"administration"of"MOTS-c"produces"antinociceptive"and"anti-inflammatory"effects"through"the"activation"of"AMPK"pathway"in"the"mouse"formalin"test[J]."Eur"J"Pharmacol,"2020,"870:"172909.
[15] LI"H,"YANG"T,"ZHOU"H,"et"al."Emodin"combined"with"nanosilver"inhibited"sepsis"by"anti-inflammatory"protection[J]."Front"Pharmacol,"2016,"7:"536.
[16] SHEN"C,"WANG"J,"FENG"M,"et"al."The"mitochondrial-"derived"peptide"MOTS-c"attenuates"oxidative"stress"injury"and"the"inflammatory"response"of"H9c2"cells"through"the"Nrf2/ARE"and"NF-κB"pathways[J]."Cardiovasc"Eng"Technol,"2022,"13(5):"651–661.
[17] MEDINA-LEYTE"D"J,"ZEPEDA-GARCíA"O,"DOMíNGUEZ-PéREZ"M,"et"al."Endothelial"dysfunction,"inflammation"and"coronary"artery"disease:"Potential"biomarkers"and"promising"therapeutical"approaches[J]."Int"J"Mol"Sci,"2021,"22(8):"3850.
[18] HU"R,"WANG"M"Q,"NI"S"H,"et"al."Salidroside"ameliorates"endothelial"inflammation"and"oxidative"stress"by"regulating"the"AMPK/NF-κB/NLRP3"signaling"pathway"in"AGEs-induced"HUVECs[J]."Eur"J"Pharmacol,"2020,"867:"172797.
[19] LI"H,"REN"K,"JIANG"T,"et"al."MOTS-c"attenuates"endothelial"dysfunction"via"suppressing"the"MAPK/NF-κB"pathway[J]."Int"J"Cardiol,"2018,"268:"40.
[20] QIN"Q,"DELRIO"S,"WAN"J,"et"al."Downregulation"of"circulating"MOTS-c"levels"in"patients"with"coronary"endothelial"dysfunction[J]."Int"J"Cardiol,"2018,"254:"23–27.
[21] YA?AR"E,"?AKMAK"T,"BAYRAMO?LU"A,"et"al."MOTS-c"as"a"predictor"of"coronary"lesions"and"complexity"in"patients"with"stable"coronary"artery"disease[J]."Eur"Rev"Med"Pharmacol"Sci,"2022,"26(16):"5676–5682.
[22] VILLA-BELLOSTA"R."Vascular"calcification:"Key"roles"of"phosphate"and"pyrophosphate[J]."Int"J"Mol"Sci,"2021,"22(24):"13536.
[23] ZHAO"Y,"SHANG"F,"SHI"W,"et"al."Angiotensin"Ⅱ"receptor"type"1"antagonists"modulate"vascular"smooth"muscle"cell"proliferation"and"migration"via"AMPK/"mTOR[J]."Cardiology,"2019,"143(1):"1–10.
[24] HONDA"J,"KIMURA"T,"SAKAI"S,"et"al."The"glucagon-like"peptide-1"receptor"agonist"liraglutide"improves"hypoxia-induced"pulmonary"hypertension"in"mice"partly"via"normalization"of"reduced"ET(B)"receptor"expression[J]."Physiol"Res,"2018,"67(Suppl"1):"S175–S184.
[25] SINGH"K"D,"KARNIK"S"S."Angiotensin"type"1"receptor"blockers"in"heart"failure[J]."Curr"Drug"Targets,"2020,"21(2):"125–131.
[26] WEI"M,"GAN"L,"LIU"Z,"et"al."Mitochondrial-derived"peptide"MOTS-c"attenuates"vascular"calcification"and"secondary"myocardial"remodeling"via"adenosine"monophosphate-activated"protein"kinase"signaling"pathway[J]."Cardiorenal"Med,"2020,"10(1):"42–50.
[27] LI"S,"WANG"M,"MA"J,"et"al.nbsp;MOTS-c"and"exercise"restore"cardiac"function"by"activating"of"NRG1-ErbB"signaling"in"diabetic"rats[J]."Front"Endocrinol"(Lausanne),"2022,"13:"812032.
[28] THANDAVARAYAN"R"A,"CHITTURI"K"R,"GUHA"A."Pathophysiology"of"acute"and"chronic"right"heart"failure[J]."Cardiol"Clin,"2020,"38(2):"149–160.
[29] YUAN"J,"WANG"M,"PAN"Y,"et"al."The"mitochondrial"signaling"peptide"MOTS-c"improves"myocardial"performance"during"exercise"training"in"rats[J]."Sci"Rep,"2021,"11(1):"20077.
[30] ZHONG"P,"PENG"J,"HU"Y,"et"al."Mitochondrial"derived"peptide"MOTS-c"prevents"the"development"of"heart"failure"under"pressure"overload"conditions"in"mice[J]."J"Cell"Mol"Med,"2022,"26(21):"5369–5378.
[31] SU"B"C,"HSU"P"L,"MO"F"E."CCN1"triggers"adaptive"autophagy"in"cardiomyocytes"to"curb"its"apoptotic"activities[J]."J"Cell"Commun"Signal,"2020,"14(1):"93–100.
[32] HUBY"A"C,"TURDI"S,"JAMES"J,"et"al."FasL"expression"in"cardiomyocytes"activates"the"ERK1/2"pathway,"leading"to"dilated"cardiomyopathy"and"advanced"heart"failure[J]."Clin"Sci"(Lond),"2016,"130(4):"289–299.
[33] WANG"A,"ZHANG"H,"LIANG"Z,"et"al."U0126"attenuates"ischemia/reperfusion-induced"apoptosis"and"autophagy"in"myocardium"through"MEK/ERK/EGR-1"pathway[J]."Eur"J"Pharmacol,"2016,"788:"280–285.
[34] WANG"M,"WANG"G,"PANG"X,"et"al."MOTS-c"repairs"myocardial"damage"by"inhibiting"the"CCN1/ERK1/2/EGR1"pathway"in"diabetic"rats[J]."Front"Nutr,"2022,"9:"1060684.
(收稿日期:2023–07–06)
(修回日期:2024–04–21)