摘要:目的 探討多發(fā)性骨髓瘤(MM)患者淋巴細胞來源微泡(LMP)的表達及其臨床意義。方法 選取65例初診MM患者(初診組)及30例健康體檢志愿者為對照組,初診組經(jīng)4療程化療后8例在3個月內(nèi)死亡,余57例納入化療后組。流式細胞儀檢測3組外周血LMP的表達及初診組外周血淋巴細胞亞群及骨髓MM細胞免疫表型表達;比較化療后不同療效組間LMP;受試者工作特征(ROC)曲線確定各LMP預(yù)測死亡的截斷值,LMP≥截斷值為High(H)組,<截斷值的為Low(L)組,進行Kaplan-Meier生存分析;將Kaplan-Meier分析中P<0.05的變量納入Cox回歸分析,分析患者死亡的影響因素;比較不同LMP組間淋巴細胞亞群及骨髓瘤細胞免疫表型差異。結(jié)果 初診組LMP、CD3+LMP、CD3+CD8+LMP比例低于對照組,NKLMP比例、CD4+/CD8+LMP高于對照組(P<0.05)?;熀蠼MCD3+CD8+LMP比例高于初診組,CD3+CD4+LMP比例、CD4+/CD8+LMP低于初診組(P<0.05)。完全緩解(CR)+非常好的部分緩解(VGPR)組CD3+LMP、CD3+CD8+LMP比例高于部分緩解(PR)+微小緩解(MR)+疾病進展(PD)組(P<0.01),而NKLMP比例、CD4+/CD8+LMP則低于PR+MR+PD組(P<0.05)。Kaplan-Meier分析顯示,LLMP組中位生存時間(OS)較HLMP組縮短(P<0.01);LNKTLMP組中位OS較HNKTLMP組縮短(P<0.05)。Cox回歸分析顯示LLMP、LNKTLMP是患者死亡的獨立危險因素(HR分別為4.620、2.706,P<0.05)。LLMP組CD3+CD4+T比例、CD4+/CD8+T高于HLMP組(P<0.05)。LLMP組MM細胞CD117+比例高于HLMP組(P<0.05)。結(jié)論 MM患者存在LMP分泌紊亂,LMP、NKTLMP與MM預(yù)后密切相關(guān),未來靶向調(diào)節(jié)LMP分泌或可延長生存,改善預(yù)后。
關(guān)鍵詞:多發(fā)性骨髓瘤;流式細胞術(shù);預(yù)后;B淋巴細胞;T淋巴細胞;淋巴細胞來源微泡
中圖分類號:R733.3 文獻標(biāo)志碼:A DOI:10.11958/20231100
The detection and clinical significance of microparticles derived from lymphocytes in"patients with multiple myeloma
WANG Ningfang, ZHAO Chongshan, LIU Fang, ZHAO Penghao, ZHANG Dongdong, CAI Zhuowen, CAI Fangfang
Department of Hematology, Hebei Petro China Central Hospital, Langfang 065000, China
Abstract: Objective To investigate the expression and clinical significance of lymphocyte-derived microvesicles (LMP) in patients with multiple myeloma (MM). Methods A total of 65 newly diagnosed MM patients were used as the initial diagnosis group, and 30 health examination volunteers were selected as the control group. After 4 courses of chemotherapy, 8 patients in the initial diagnosis group died within 3 months, and the remaining 57 patients were included in the post chemotherapy group. Flow cytometry was used to detect the expression of LMP in peripheral blood of three groups, as well as the immune phenotype expression of peripheral blood lymphocyte subsets and bone marrow MM cells in the initial diagnosis group. Values of LMP between different therapeutic groups after chemotherapy were compared. The receiver operating characteristic (ROC) curve was used to determine the cutoff value for predicting death for each LMP. For the high (H) group with LMP ≥ cut-off value and the low (L) group with LMP<cut-off value, Kaplan Meier survival analysis was performed. Variables with a P value<0.05 in Kaplan Meier analysis were included into Cox regression analysis to analyze influencing factors of patient death. The differences in lymphocyte subpopulations and myeloma cell immunophenotypes were compared between different LMP groups. Results The proportions of LMP, CD3+LMP and CD3+CD8+LMP were lower in the initial diagnosis group than those in the control group, while the proportions of NKLMP and CD4+/CD8+LMP were higher than those in the control group (P<0.05). The proportion of CD3+CD8+LMP was higher in the post chemotherapy group than that in the initial diagnosis group, while the proportion of CD3+CD4+LMP and the ratio of CD4+/CD8+LMP were lower than those in the initial diagnosis group (P<0.05). The proportion of CD3+LMP and ratio of CD3+CD8+LMP were higher in the CR+VGPR group" than those in the PR+MR+PD group (P<0.01), while the proportion of NKLMP and ratio of CD4+/CD8+LMP were lower than those in the PR+MR+PD group (P<0.05). Kaplan Meier analysis showed that the median survival time (OS) was shorter in the LLMP group than that of the HLMP group (P<0.01). The median OS was shorter in the LNKTLMP group than that in the HNKTLMP group (P<0.05). Cox regression analysis showed that LLMP and LNKTLMP were independent risk factors for patient mortality, with HR 4.620 and 2.706 (P<0.05). The proportions of CD3+CD4+T and CD4+/CD8+T were higher in the LLMP group than those in the HLMP group (P<0.05). The proportion of CD117+ in MM cells was higher in the LLMP group than that in the HLMP group (P<0.05). Conclusion Patients with MM have abnormal secretion of LMP. The LMP and NKTLMP are closely correlated with prognosis of MM. Targeted regulation of LMP secretion may improve the survival and prognosis of MM.
Key words: multiple myeloma; flow cytometry; prognosis; B-lymphocytes; T-lymphocytes; lymphocyte-derived microparticles
微泡(microparticles,MP)是從細胞膜上脫落的小囊泡,攜帶有母細胞來源的蛋白質(zhì)及遺傳物質(zhì),不同細胞來源的MP可通過其表面的特異性配體與靶細胞的受體相互結(jié)合而發(fā)揮作用[1-3]。腫瘤源性MP可調(diào)控骨髓微環(huán)境,通過調(diào)控血管生成、腫瘤細胞遷移、免疫應(yīng)答等促進腫瘤細胞生長,誘導(dǎo)腫瘤耐藥,導(dǎo)致腫瘤復(fù)發(fā)進展[4-6]。多發(fā)性骨髓瘤(multiple myeloma,MM)來源的MP可表達CD138、CD38、組織因子、表皮和生長因子受體等,穿透進入靶細胞,作用于血管生成[7];還可通過傳遞miR-106a-5p和miR-146a-5p,上調(diào)吲哚胺2,3-雙加氧酶1、程序性死亡配體1、趨化因子配體5等各種免疫抑制因子的分泌,激活白細胞介素(IL)-6介導(dǎo)的Janus激酶信號傳導(dǎo)及轉(zhuǎn)錄激活蛋白3(Janus Kinase-signal transducer and activator of transcription protein 3,JAK-STAT3)信號傳導(dǎo),提高T細胞的免疫抑制功能,誘導(dǎo)MM的免疫逃逸,導(dǎo)致MM進展[8-9]。目前尚鮮見關(guān)于MM患者淋巴細胞來源MP在MM發(fā)生、發(fā)展中作用的報道。本研究旨在探究MM患者淋巴細胞來源微泡(lymphocyte-derived microparticles,LMP)的表達情況,探討LMP與淋巴細胞亞群及預(yù)后的相關(guān)性,以期尋找評估預(yù)后的新指標(biāo),為靶向免疫治療、改善預(yù)后提供依據(jù)。
1 對象與方法
1.1 研究對象 選取2017年2月—2023年4月于河北中石油中心醫(yī)院的初診MM患者(初診組)65例,男32例,女33例,中位年齡67(49,88)歲。IgA型14例,IgD型3例,IgG型25例,輕鏈κ型11例,輕鏈λ型12例。按照國際分期(International Staging System,ISS):Ⅰ期8例,Ⅱ期23例,Ⅲ期34例。Durie Salmon(DS)分期:Ⅰ期2例,Ⅱ期11例,Ⅲ期52例。修正的國際分期(Revised International Staging System,R-ISS):Ⅰ期5例,Ⅱ期42例,Ⅲ期18例。經(jīng)過4療程化療后8例患者在3個月內(nèi)死亡,余57例納入化療后組,男27例,女30例,中位年齡66(49,88)歲。IgA型13例,IgD型2例,IgG型24例,輕鏈κ型6例,輕鏈λ型12例。ISS:Ⅰ期8例,Ⅱ期21例,Ⅲ期28例。DS:Ⅰ期2例,Ⅱ期10例,Ⅲ期45例。R-ISS:Ⅰ期5例,Ⅱ期38例,Ⅲ期14例。診斷標(biāo)準參考《中國多發(fā)性骨髓瘤診治指南(2017年修訂)》[10]。排除標(biāo)準:既往接受過抗MM治療的復(fù)發(fā)、難治患者,資料不完整;不能控制的癲癇患者;嚴重未控制的精神疾病患者?;熀筮_完全緩解(complete response,CR)12例,非常好的部分緩解(very good partial response,VGPR)19例,部分緩解(partial response,PR)16例,微小緩解(micro response,MR)5例,疾病進展(progressive disease,PD)5例。對照組:用隨機數(shù)字表法選取2020年3月1日—8月31日在我院體檢的健康志愿者30例,男13例,女17例,中位年齡40(29,58)歲。納入標(biāo)準:年齡<60歲,能清楚表達自己意愿者。通過打電話、門診或住院病歷等方式進行隨訪。隨訪截止日期2023年4月30日,隨訪時間0.25~70個月。總體生存時間(OS):從診斷之日至患者死亡或末次隨訪時間。本研究已通過醫(yī)院倫理委員會批準(KYLL-2022-30),所有患者及志愿者均已簽署知情同意書。
1.2 主要試劑及儀器 鼠抗人CD45-PerCp-CY5.5、CD3- FITC、CD4- PE-Cy7、CD8- APC、CD19-APC、CD16+56-PE抗體,鼠抗人CD45-V500、CD38-BV421、CD117-PE-Cy7、CD56-PerCP-Cy5.5、CD27-PE-Cy7、CD81-FITC、CD200-APC,鼠抗人IgG1均購自美國BD公司。紅細胞裂解液購自美國BD公司。Himac CR21G低溫高速離心機購自日本HITACHI公司;流式細胞儀NAVIOS購自美國貝克曼公司。
1.3 LMP、淋巴細胞亞群、MM免疫表型的測定
1.3.1 LMP檢測 采集初診組、化療后組及對照組空腹外周血5 mL; EDTA抗凝處理后2 500×g離心20 min,吸取上清液轉(zhuǎn)移至另一干燥EP管中;-80 ℃冰箱凍存,集中處理;凍存標(biāo)本于4 ℃解凍,4 ℃、2 500×g離心20 min,吸取上清液轉(zhuǎn)移至另一干燥EP管中;將上一步中吸取的上清液4 ℃、16 000×g離心15 min,小心棄上清液,沉淀物即為MP;向沉淀物中加入100 μL PBS重懸,震蕩儀混勻。向提取到的MP中加入鼠抗人CD45-PerCp-CY5.5、CD3-FITC、CD4-PE-Cy、CD8-APC、CD19-APC、CD16+56-PE單克隆抗體各20 μL,震蕩混勻,4 ℃孵育30 min;PBS沖洗1次,16 000×g離心15 min,洗掉多余抗體,棄上清液;沉淀物用1.5%多聚甲醛200 μL重懸;流式儀上機檢測。先用FSC、SSC射門(R1),獲取MP,見圖1A;再用SSC、CD45射門(R2),獲取LMP,見圖1B;十字門射門獲取CD3+LMP、CD3+CD8+LMP、CD3+CD4+LMP、CD4+/CD8+LMP、CD3-CD16+CD56+LMP(NK細胞-LMP,NKLMP)、CD3+16+56+LMP(NKT細胞-LMP,NKTLMP)、CD19+LMP(B淋巴細胞-LMP,BLMP)在LMP中所占比例,見圖1C—1F。
1.3.2 淋巴細胞亞群檢測 采集初診組肝素抗凝外周血2 mL。取鼠抗人CD45-PerCp-CY5.5、CD3-FITC、CD4-PE-Cy7、CD8-APC、CD19-APC、CD16+56-PE單克隆抗體各20 μL,分別加入100 μL肝素抗凝的外周血,室溫孵育15 min,加入紅細胞裂解液2 mL于冰上裂解10 min,PBS洗滌2次,400×g離心5 min,最后用1.5%多聚甲醛150 μL重懸,用流式細胞儀檢測。分析淋巴細胞占有核細胞的比例(L%),CD3+T、CD3+CD4+T、CD3+CD8+T、NK、B細胞占T淋巴細胞的比例,以及CD3+CD4+T/CD3+CD8+T(CD4+/CD8+T)。
1.3.3 MM免疫表型測定 采集初診組肝素抗凝骨髓血3 mL。取鼠抗人CD45-V500、CD38-BV421、CD117-PE-Cy7、CD56-PerCP-Cy5.5、CD27-PE-Cy7、CD81-FITC、CD200-APC單克隆抗體各20 μL,分別加入100 μL肝素抗凝的骨髓血,室溫孵育15 min,加入紅細胞裂解液2 mL于冰上裂解10 min,PBS洗滌2次,400×g離心5 min,最后用1.5%多聚甲醛150 μL重懸,用流式細胞儀上機檢測。
1.4 統(tǒng)計學(xué)方法 采用SPSS 26.0軟件進行數(shù)據(jù)分析。符合正態(tài)分布的計量資料以[x] ±s表示,2組間比較采用t檢驗;非正態(tài)分布的計量資料以M(P25,P75)表示,2組間比較采用Mann-Whitney U檢驗。計數(shù)資料以例(%)表示,2組間比較采用χ2檢驗。用受試者工作特征(ROC)曲線確定LMP預(yù)測死亡的界值。采用Kaplan-Merier法進行生存分析,各組生存曲線比較應(yīng)用Log-rank檢驗;多因素Cox回歸分析患者死亡的影響因素。P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 對照組和初診組LMP比較 初診組LMP、CD3+LMP、CD3+CD8+LMP比例低于對照組(P<0.01),NKLMP比例、CD4+/CD8+LMP高于對照組(P<0.05);2組間CD3+CD4+LMP、NKTLMP、BLMP比例差異無統(tǒng)計學(xué)意義,見表1。
2.2 初診組和化療后組LMP比較 化療后組CD3+CD8+LMP比例高于初診組,CD3+CD4+LMP比例、CD4+/CD8+LMP低于初診組(P<0.05);2組LMP、CD3+LMP、NKLMP、NKTLMP、BLMP比例差異無統(tǒng)計學(xué)意義,見表2。
2.3 化療后不同療效組間LMP比較 CR+VGPR組CD3+LMP、CD3+CD8+LMP比例高于PR+MR+PD組(P<0.01),而NKLMP比例、CD4+/CD8+LMP則低于PR+MR+PD組(P<0.05),2組間其他LMP比例差異無統(tǒng)計學(xué)意義,見表3。
2.4 LMP預(yù)測死亡的ROC曲線 對初診MM患者進行隨訪,中位OS 18(10,22)個月,隨訪結(jié)束時死亡27例,存活38例。ROC曲線顯示初診LMP、NKTLMP預(yù)測死亡的截斷值分別為2.56%、10.98%,P<0.05,余LMP預(yù)測死亡的ROC分析差異無統(tǒng)計學(xué)意義,見圖2、表4。
2.5 LMP與MM患者預(yù)后的分析 將ROC曲線分析有統(tǒng)計學(xué)意義的LMP和NKTLMP納入生存分析,根據(jù)ROC曲線所確定的截斷值,根據(jù)患者初診LMP將其分為2組,≥截斷值為High(H)組,<截斷值為Low(L)組,進行Kaplan-Meier分析。LLMP組中位OS較HLMP組縮短(19個月vs. 未達到);LNKTLMP組中位OS較HNKTLMP組縮短(22個月vs. 未達到);見表5、圖3。
2.6 MM患者多因素Cox回歸分析 以1=死亡,0=截尾(隨訪結(jié)束),將Kaplan-Meier分析中P<0.05的變量(LMP、NKTLMP)納入Cox分析,各LMP分組依據(jù)ROC曲線獲得的截斷值,LLMP、LNKTLMP=1,HLMP、HNKTLMP=0;結(jié)果顯示LLMP、LNKTLMP是患者死亡的獨立危險因素,見表6。
2.7 不同LMP組間淋巴細胞亞群的比較 LLMP組CD3+CD4+T比例、CD4+/CD8+T高于HLMP組(P<0.05);2組間L、CD3+T、CD3+CD8+、NK、B比例差異無統(tǒng)計學(xué)意義,見表7。
2.8 不同LMP組間MM免疫表型的比較 LLMP組MM細胞CD117+比例顯著高于HLMP組(P<0.05),其余免疫表型差異無統(tǒng)計學(xué)意義,見表8。
3 討論
MM是漿細胞惡性腫瘤,目前仍不可治愈。大部分患者治療后可復(fù)發(fā),且由于遺傳學(xué)和表觀遺傳學(xué)修飾導(dǎo)致異質(zhì)性MM細胞克隆產(chǎn)生,在微環(huán)境和選擇性壓力作用后更趨復(fù)雜,給疾病監(jiān)測帶來了巨大的挑戰(zhàn)[9]。MP可由正常和腫瘤細胞分泌,影響機體干細胞自我更新、免疫應(yīng)答及凝血,全面影響腫瘤生存進展[11-12]。一項外周血MP在腫瘤中的研究顯示,外周血循環(huán)MP有望成為一種新型腫瘤標(biāo)志物,在腫瘤細胞難以獲取時,具有獨特的優(yōu)勢[13-14]。
MP由母細胞包膜脫落,包含大量母細胞特異性表面標(biāo)記,這些分子標(biāo)記可以作為母細胞的“指紋”反映母細胞的狀態(tài)。研究證實腫瘤源性MP可激活免疫抑制,并可抑制骨髓祖細胞向樹突狀細胞轉(zhuǎn)化[15]。MM源性MP能阻止CD4+T、CD8+T細胞增殖,刺激和富集調(diào)節(jié)性T細胞[16],并通過骨髓源性抑制細胞傳遞IL-6、轉(zhuǎn)化生長因子β1,改變T細胞對IL-2的反應(yīng),促使淋巴細胞轉(zhuǎn)化為調(diào)節(jié)性T細胞而不是細胞毒性T細胞,最終形成免疫抑制微環(huán)境[17]。MM源性MP還可通過STAT通路刺激骨髓源性抑制細胞產(chǎn)生精氨酸酶1、誘導(dǎo)性一氧化氮合酶,進而增強T細胞抑制,誘導(dǎo)MM的免疫逃逸,導(dǎo)致MM復(fù)發(fā)進展[18-19]。研究證實MM源性MP可以通過提高調(diào)節(jié)性T細胞,增強抑制T細胞功能的酶合成達到免疫抑制目的[16-17]。本研究發(fā)現(xiàn)初診組CD3+LMP、CD3+CD8+LMP比例低于對照組,而CD3+CD4+LMP比例與對照組差異無統(tǒng)計學(xué)意義,推測MM患者CD3+LMP分泌缺陷,而這種缺陷主要來源于CD3+CD8+LMP分泌減少。而化療后CD3+CD8+LMP比例較初診組升高,CD4+/CD8+LMP則顯著降低,且CR+VGPR組CD3+CD8+LMP比例高于PR+MR+PD組,化療增加了CD3+CD8+LMP的分泌,糾正了CD4+/CD8+LMP紊亂狀態(tài),且增加幅度與療效相關(guān)。未來靶向提高CD3+CD8+LMP分泌藥物或可提高短期內(nèi)化療效果和患者生活質(zhì)量。
研究證實,NK細胞在MM發(fā)生過程中占有中心位置,MM來源的MP降低了NK細胞刺激信號受體NKG2D、NKp46、NKp30等的表達,最終削弱了NK細胞對抗MM的能力[20-21]。MM來源MP可傳遞大量的基質(zhì)金屬蛋白酶10,促使NKG2D受體配體脫落,一旦NK受體配體可溶,就具有抑制受體而不是刺激受體的功能,導(dǎo)致NK細胞喪失了分泌腫瘤壞死因子α的能力,細胞毒性下降[22]。MM來源的MP可釋放大量的可溶性CD38,這種物質(zhì)可以將核苷酸轉(zhuǎn)化為腺苷,腺苷與存在于免疫細胞膜上的嘌呤P2受體結(jié)合,不僅引起NK細胞,而且引起T細胞和樹突狀細胞的免疫反應(yīng)缺陷[22-23]。研究證實MM源性MP可降低NK細胞活性[22]。本研究發(fā)現(xiàn)初診組NKLMP比例高于對照組,NKLMP是否和MM源性MP一樣,通過抑制NK細胞活性而達到抑制免疫的目的,尚需進一步研究。另外,本研究發(fā)現(xiàn)化療后CR+VGPR組NKLMP比例低于PR+MR+PD組,提示化療可糾正異常分泌的NKLMP,使得疾病達到緩解狀態(tài)。
B細胞在MM中發(fā)揮重要作用,通過中和抗體、調(diào)節(jié)抗原提呈、激活補體等方式完成免疫。MM患者骨髓瘤細胞的異常增殖抑制了B細胞的分化,導(dǎo)致B細胞數(shù)量顯著降低,最終導(dǎo)致體液免疫功能低下,B細胞體液免疫功能的恢復(fù)與MM預(yù)后相關(guān)[24-25]。本研究發(fā)現(xiàn)初診MM組與對照組BLMP差異無統(tǒng)計學(xué)意義,今后可進一步擴大樣本量進行檢測。本研究還發(fā)現(xiàn),初診組LMP低于對照組,LLMP組CD3+CD4+T比例、CD4+/CD8+T高于HLMP組,LLMP組中位OS縮短,LLMP是患者死亡的獨立保護因素。研究報道,CD4+T在腫瘤免疫過程中發(fā)揮重要作用,可分泌多種細胞活性因子,增強免疫效應(yīng),增強抗腫瘤活性,MM患者CD4+T減低,免疫功能低下,導(dǎo)致MM進展[26]。CD8+T細胞可分泌干擾素-γ,誘導(dǎo)單核細胞分化成經(jīng)典活化型巨噬細胞(M1型),釋放一氧化氮、活性氧等,直接殺傷MM細胞;還可誘導(dǎo)巨噬細胞分泌干擾素誘導(dǎo)蛋白9和干擾素誘導(dǎo)蛋白10,抑制血管生成,延緩腫瘤細胞生長[27]。CD8+細胞與CD4+細胞相互協(xié)調(diào),調(diào)節(jié)MM患者細胞免疫。CD4/CD8平衡紊亂,細胞免疫功能異常,抑制機體免疫調(diào)控功能[28-29]。本研究發(fā)現(xiàn)初診組CD4+/CD8+LMP高于對照組,且化療后CD4+/CD8+LMP降低,但并未發(fā)現(xiàn)CD4+/CD8+LMP與療效及預(yù)后相關(guān),提示化療后可糾正體內(nèi)CD4+/CD8+LMP紊亂。MM患者是否因CD4/CD8平衡紊亂影響了LMP的分泌,最終影響OS,尚需進一步研究。在對不同LMP組淋巴細胞亞群比較中發(fā)現(xiàn),LLMP組CD3+CD4+T比例、CD4+/CD8+T高于HLMP組,但CD3+CD4+T細胞及CD4/CD8紊亂是通過何種機制影響LMP分泌的尚不明確。
在對LMP與MM細胞免疫表型的研究中發(fā)現(xiàn),LLMP組骨髓瘤細胞CD117+比例高于HLMP組。CD117存在于正?;蜓耗[瘤細胞中,如造血干細胞、生殖細胞、黑色素瘤細胞可參與細胞增殖,但正常漿細胞不表達CD117[30-31]。研究報道,CD117表達缺失與不良風(fēng)險參數(shù)相關(guān),包括IgA同型或輕鏈疾病、ISS-Ⅲ期疾病、基線血清游離輕鏈異常和高漿細胞負擔(dān)。MM細胞CD117表達缺失與預(yù)后差相關(guān)[32]。本研究發(fā)現(xiàn)LLMP組MM細胞CD117高表達,LMP是否通過調(diào)節(jié)CD117表達而影響MM預(yù)后,尚需進一步研究。
綜上,本研究發(fā)現(xiàn)MM患者存在LMP分泌紊亂,LMP、NKTLMP與MM預(yù)后密切相關(guān),該兩指標(biāo)或可成為新的預(yù)后評估指標(biāo),將來靶向調(diào)節(jié)LMP分泌或可改善MM預(yù)后。但本研究并未檢測LMP對MM患者免疫微環(huán)境、細胞因子分泌、免疫細胞功能的影響,因此本研究結(jié)果有待多中心、前瞻性研究進一步驗證。
參考文獻
[1] LI X,WANG Q. Platelet-derived mmicroparticles and autoimmune diseases[J]. Int J Mol Sci,2023,24(12):10275. doi:10.3390/ijms241210275.
[2] MARKI A,LEY K. The expanding family of neutrophil-derived extracellular vesicles[J]. Immunol Rev,2022,312(1):52-60. doi:10.1111/imr.13103.
[3] KASSASSIR H,PAPIEWSKA-PAJ?K I,KRYCZKA J,et al. Platelet-derived microparticles stimulate the invasiveness of colorectal cancer cells via the p38MAPK-MMP-2/MMP-9 axis[J]. Cell Commun Signal,2023,21(1):51. doi:10.1186/s12964-023-01066-8.
[4] LIN Z,WU Y,XU Y,et al. Mesenchymal stem cell-derived exosomes in cancer therapy resistance:recent advances and therapeutic potential[J]. Mol Cancer,2022,21(1):179. doi:10.1186/s12943-022-01650-5.
[5] WHITESID T L. Immunosuppressive functions of melanoma cell-derived exosomes in plasma of melanoma patients[J]. Front Cell Dev Biol,2023,10:1080925. doi:10.3389/fcell.2022.1080925.
[6] YE Q,LI Z,LI Y,et al. Exosome-derived microRNA:implications in melanoma progression,diagnosis and treatment[J]. Cancers(Basel),2022,15(1):80. doi:10.3390/cancers15010080.
[7] ALLEGRA A,DI GIOACCHINO M,TONACCI A,et al. Multiple myeloma cell-derived exosomes:Implications on tumorigenesis,diagnosis,prognosis and therapeutic strategies[J]. Cells,2021,10(11):2865. doi:10.3390/cells10112865.
[8] ALIPOOR S D,CHANG H. Exosomal miRNAs in the tumor microenvironment of multiple myeloma[J]. Cells,2023,12(7):1030. doi:10.3390/cells12071030.
[9] MIZUHARA K,SHIMURA Y,TSUKAMOTO T,et al. Tumour-derived exosomes promote the induction of monocytic myeloid-derived suppressor cells from peripheral blood mononuclear cells by delivering miR-106a-5p and miR-146a-5p in multiple myeloma[J]. Br J Haematol,2023,203(3):426-438. doi:10.1111/bjh.19049.
[10] 中國醫(yī)師協(xié)會血液科醫(yī)師分會,中華醫(yī)學(xué)會血液學(xué)分會,中國醫(yī)師協(xié)會多發(fā)性骨髓瘤專業(yè)委員會. 中國多發(fā)性骨髓瘤診治指南(2017年修訂)[J]. 中華內(nèi)科雜志,2017,56(11):866-870. Chinese Hematology Association,Chinese Society of Hematology,Chinese Myeloma Committee-Chinese Hematology Association. The guidelines for the diagnosis and management of multiple myeloma in China(2017 revision)[J]. Chinese Journal of Internal Medicine,2017,56(11):866-870. doi:10.3760/cma.j.issn.0578-1426.2017.11.021.
[11] SHI Q,JI T,TANG X,et al. The role of tumor-platelet interplay and micro tumor thrombi during hematogenous tumor metastasis[J]. Cell Oncol(Dordr),2023,46(3):521-532. doi:10.1007/s13402-023-00773-1.
[12] LOPEZ K,LAI S W T,LOPE GONZALEZ E J,et al. Extracellular vesicles:a dive into their role in the tumor microenvironment and cancer progression[J]. Front Cell Dev Biol,2023,11:1154576. doi:10.3389/fcell.2023.1154576.
[13] KOTELEVETS L,CHASTRE E. Extracellular vesicles in colorectal cancer:from tumor growth and metastasis to biomarkers and nanomedications[J]. Cancers(Basel),2023,15(4):1107. doi:10.3390/cancers15041107.
[14] KHALIFE J,SANCHEZ J F,PICHIORRI F. Extracellular vesicles in hematological malignancies:from biomarkers to therapeutic tools[J]. Diagnostics(Basel),2020,10(12):1065. doi:10.3390/diagnostics10121065.
[15] PANDO A,SCHORL C,F(xiàn)AST L D,et al. Tumor derived extracellular vesicles modulate gene expression in T cells[J]. Gene,2023,850:146920. doi:10.1016/j.gene.2022.146920.
[16] SHAO Q,DENG L,LIU H,et al. Involvement of MM cell-derived exosomes in T lymphocytes immune responses[J]. Oncol Lett,2020,20(4):31. doi:10.3892/ol.2020.11892.
[17] CLAYTON A,MITCHELL J P,COURT J,et al. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2[J]. Cancer Res,2007,67(15):7458-7466. doi:10.1158/0008-5472.CAN-06-3456.
[18] WANG J,DE VEIRMAN K,DE BEULE N,et al. The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells[J]. Oncotarget,2015,6(41):43992-44004. doi:10.18632/oncotarget.6083.
[19] WANG J,DE VEIRMAN K,F(xiàn)AICT S,et al. Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression[J]. J Pathol,2016,239(2):162-173. doi:10.1002/path.4712.
[20] 熊文杰,劉煥勛,史敦云,等. 骨髓瘤細胞來源外泌體對NK細胞表面活化受體的影響[J]. 中國實驗血液學(xué)雜志,2017,25(6):1713-1717. XIONG W J,LIU H X,SHI D Y,et al. Effect of myeloma-derived exosomes on surface activating receptors of NK cells[J]. Journal of Experimental Hematology,2017,25(6):1713-1717. doi:10.7534/j.issn.1009-2137.2017.06.024.
[21] GODFREY J,BENSON DM J R. The role of natural killer cells in immunity against multiple myeloma[J]. Leuk Lymphoma,2012,53(9):1666-1676. doi:10.3109/10428194.2012.676175.
[22] ZINGONI A,CECERE F,VULPIS E,et al. Genotoxic stress induces senescence-associated ADAM10-dependent release of NKG2D MIC ligands in multiple myeloma cells[J]. J Immunol,2015,195(2):736-748. doi:10.4049/jimmunol.1402643.
[23] CHILLEMI A,QUARONA V,ANTONIOLI L,et al. Roles and modalities of ectonucleotidases in remodeling the multiple myeloma niche[J]. Front Immunol,2017,8:305. doi:10.3389/fimmu. 2017.00305.
[24] SHRIVASTAVA T,VAN RHEE F,AL HADIDI S. Targeting B cell maturation antigen in patients with multiple myeloma:current perspectives[J]. Onco Targets Ther,2023,16:441-464. doi:10.2147/OTT.S370880.
[25] JAKUBIKOVA J,CHOLUJOVA D,BEKE G,et al. Heterogeneity of B cell lymphopoiesis in patients with premalignant and active myeloma[J]. JCI Insight,2023,8(3):e159924. doi:10.1172/jci.insight.159924.
[26] HAABETH O A W,HENNIG K,F(xiàn)AUSKANGER M,et al. CD4+T-cell killing of multiple myeloma cells is mediated by resident bone marrow macrophages[J]. Blood Adv,2020,4(12):2595-2605. doi:10.1182/bloodadvances.2020001434.
[27] FENG P,YAN R,DAI X,et al. The alteration and clinical significance of Th1/Th2/Th17/Treg cells in patients with multiple myeloma[J]. Inflammation,2015,38(2):705-709. doi:10.1007/s10753-014-9980-4.
[28] 鄒靖云,劉月,曹陽,等. 多發(fā)性骨髓瘤CD4/CD8比值和中性粒細胞與淋巴細胞比值的臨床意義[J]. 白血病·淋巴瘤,2020,29(4):219-224. ZOU J Y,LIU Y,CAO Y,et al. Clinical significances of CD4/CD8 ratio and neutrophil-to-lymphocyte ratio in patients with multiple myeloma[J]. Journal of Leukemia and Lymphoma,2020,29(4):219-224. doi:10.3760/cma.j.cn115356-20190215-00031.
[29] 嚴志民,劉彥權(quán),黃走方,等. T細胞亞群與細胞因子水平變化在多發(fā)性骨髓瘤患者臨床診療及預(yù)后評估中的價值[J]. 中國實驗血液學(xué)雜志,2022,30(6):1791-1796. YAN Z M,LIU Y Q,HUAN Z F,et al. The value of T cell subsets and cytokine levels changes in the clinical diagnosis,treatment and prognosis evaluation of multiple myeloma[J]. Journal of Experimental Hematology,2022,30(6):1791-1796. doi:10.19746/j.cnki.issn.1009-2137.2022.06.025.
[30] FRUMENTO G,ZUO J,VERMA K,et al. CD117(c-Kit)is expressed during CD8+ T cell priming and stratifies sensitivity to apoptosis according to strength of TCR engagement[J]. Front Immunol,2019,10:468. doi:10.3389/fimmu.2019.00468.
[31] DINH H Q,EGGERT T,MEYER M A,et al. Coexpression of CD71 and CD117 identifies an early unipotent neutrophil progenitor population in human bone marrow[J]. Immunity,2020,53(2):319-334.e6. doi:10.1016/j.immuni.2020.07.017.
[32] AWASTHI N P,MISHRA S,GUPTA G,et al. Immunophenotypic characterization of normal and abnormal plasma cells in bone marrow of newly diagnosed multiple myeloma patients[J]. Indian J Pathol Microbiol,2023,66(2):295-300. doi:10.4103/ijpm.ijpm_505_21.
基金項目:廊坊市科學(xué)技術(shù)研究與發(fā)展計劃項目(2022013120)
作者單位:河北中石油中心醫(yī)院血液科(郵編065000)
作者簡介:王寧方(1985),女,副主任醫(yī)師,主要從事多發(fā)性骨髓瘤免疫微環(huán)境方面研究。E-mail:330455281@qq.com
(本文編輯 李志蕓)