毛曼姿 蔡華 陳智遠
【摘要】 慢性疾病逐漸成為我國居民死亡的首位原因,給社會造成巨大的負擔。飲食控制是對慢性疾病管理的重要方式。隔日禁食(alternate-day fasting,ADF)是一種禁食日與自由進食日交替進行的新興飲食模式。此綜述通過分析隔日禁食在慢性疾病的文獻,發(fā)現(xiàn)隔日禁食在預防和改善神經(jīng)系統(tǒng)疾病、心血管疾病、腫瘤、代謝性疾病等方面有著積極影響。目前隔日禁食的研究仍是在動物方面較多,廣泛的推廣需更多的臨床隨機試驗,評估其安全性、有效性和依從性。
【關(guān)鍵詞】 隔日禁食 慢性疾病 神經(jīng)系統(tǒng)疾病 心血管疾病 腫瘤 代謝性疾病
[Abstract] Chronic diseases have gradually become the first cause of death in our country, causing huge social burden. Diet control is an important way for the management of chronic diseases. Alternate-day fasting (ADF) is a new dietary pattern that alternates between fasting days with free-eating days. This review analyzes the literature on alternate-day fasting in chronic diseases, and finds that alternate-day fasting has a positive effect on the prevention and improvement of neurological disorder diseases, cardiovascular diseases, cancers, metabolic diseases and so on. At present, the study of alternate-day fasting is still more in animals, and more clinical randomized trials are need to evaluate its safety, effectiveness, and compliance.
[Key words] Alternate-day fasting Chronic disease Neurological disorder disease Cardiovascular disease Tumour Metabolic disease
隔日禁食(alternate-day fasting,ADF)是間歇性禁食(intermittent fasting,IF)的一種模式,具體做法是“禁食日”與“自由進食日”相交替進行。自由進食日可以隨意進食,不設能量限制,而禁食日可進食個體24 h所需能量的0%~25%的食物[1]。與傳統(tǒng)的能量限制相比,隔日禁食更容易被接受,依從性更高。目前隔日禁食在慢性疾病的研究尚未被總結(jié)。本綜述通過分析隔日禁食在慢性疾病的相關(guān)文獻,為將來進一步的研究及隔日禁食在相關(guān)疾病的預防與治療提供參考。
1 隔日禁食與神經(jīng)系統(tǒng)疾病
1.1 隔日禁食與阿爾茨海默病
阿爾茨海默?。ˋlzheimer's disease,AD)是一種神經(jīng)系統(tǒng)變性疾病,其病理表現(xiàn)以β-淀粉樣蛋白(amyloid protein-β,Aβ)沉積和神經(jīng)纖維纏結(jié)的為特征,而臨床表現(xiàn)為認知功能逐漸下降[2]。既往在AD小鼠的動物模型,發(fā)現(xiàn)ADF可以減輕認知損傷及改善記憶功能[3-5]。ADF能減少Aβ的沉積進而改善認知,清除Aβ障礙在AD的發(fā)生發(fā)展中是關(guān)鍵的一環(huán),而水通道蛋白4(aquaporin 4,AQP4)依賴的淋巴及神經(jīng)膠質(zhì)途徑是從間質(zhì)中清除Aβ的途徑之一[6]。有研究表明ADF可能通過恢復AQP4的極性防止Aβ沉積并改善APP/PS1小鼠(AD模型)的認知功能[7]。然而,Halagappa等[8]在3月齡的AD三重轉(zhuǎn)基因小鼠模型中進行了14個月的ADF和熱量限制(caloric restriction,CR)飲食,兩組小鼠在行為實驗中表現(xiàn)出探索行為的增強,并未發(fā)現(xiàn)ADF組小鼠海馬中的Aβ沉積程度和Tau蛋白磷酸化水平減低。即在不改變Aβ沉積程度的同時,ADF仍然可以改善小鼠的認知及記憶功能,Aβ沉積程度與認知功能障礙可能并不相關(guān),提示存在其余獨立機制促進ADF對于認知功能的保護。
ADF可能通過影響神經(jīng)營養(yǎng)因子介導認知功能的改善。大量研究證實腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor,BDNF)與阿爾茲海默病的發(fā)病及發(fā)展密切相關(guān),尤其與認知功能相關(guān)[9-11]。在ADF飲食模式中發(fā)生從葡萄糖到酮的代謝轉(zhuǎn)換,4~8 h的禁食即可提升嚙齒類動物的血清酮水平,進而激活BDNF在內(nèi)的多條信號通路,使得BDNF產(chǎn)生增加,進而刺激突觸形成及神經(jīng)發(fā)生活動,促進認知功能改善[12]。還有一種可能的機制是間歇性禁食保護神經(jīng)免受興奮毒性,增加突觸對于Aβ的抵抗力,改善空間記憶能力和認知功能[13]。相反的是,也有研究發(fā)現(xiàn)了ADF對于AD的有害影響,Lazic等[14]在2月齡的5XFAD雌性小鼠(AD模型)中進行4個月的ADF,結(jié)果表明ADF加劇了神經(jīng)炎癥及神經(jīng)元損傷,不同的基因型、性別、年齡、疾病的發(fā)生階段造成了這一試驗與之前的研究相反的結(jié)果。
在人類中的研究相對較少。Ooi等[15]進行為期3年的研究發(fā)現(xiàn),相較禁食時間偏短甚至不禁食的人群,堅持間歇性禁食明顯改善了認知功能。在肥胖人群中的研究發(fā)現(xiàn),間歇性禁食通過促進人類成年海馬神經(jīng)發(fā)生介導認知功能改善,但沒有觀察到其與連續(xù)性能量限制組之間的顯著差異[16]。既往有研究表明能量限制可以改善老年人的記憶功能[17],間歇性禁食在人類受試者中的對認知功能的益處可能并不獨立于能量攝入的減少。大量研究支持ADF可以作為改善AD認知功能的非藥物療法及輔助治療。但目前暫時缺乏臨床依據(jù),需更多臨床試驗研究其安全性及特定適應人群。
1.2 隔日禁食與帕金森病
大量實驗應用神經(jīng)毒素1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)或者魚藤酮抑制線粒體復合物I來構(gòu)建帕金森?。≒arkinson disease,PD)動物模型。在進行了3個月ADF或者隨意飲食后的小鼠中使用MPTP建立動物模型,實驗結(jié)果表明,相較隨意飲食組,ADF組小鼠黑質(zhì)中多巴胺能神經(jīng)元損傷較小,小鼠運動功能障礙較輕,并且在ADF組中發(fā)現(xiàn)了應激蛋白HSP-70和GRP-78水平的升高,提示在應用ADF后通過“應激反應”產(chǎn)生了神經(jīng)保護作用,提高了對于損傷的抵抗力。ADF可能減少PD這種年齡相關(guān)神經(jīng)退行性疾病的發(fā)生[18]。有趣的是,研究者將ADF與魚藤酮同時應用于小鼠身上時,ADF并未發(fā)揮神經(jīng)保護作用,反而加重了神經(jīng)元變性。在ADF組還觀察到興奮氨基酸的增加和更高的脂質(zhì)水平,高水平的興奮氨基酸發(fā)揮“興奮性毒性”,炎癥脂質(zhì)的增加加重了線粒體損傷,伴隨著禁食導致的能量下降,可能使得在ADF時對神經(jīng)毒性更加敏感[19]。這提示在不同的疾病階段應用ADF可能導致相反的結(jié)果。
許多家族性PD與α-突觸核蛋白基因突變有關(guān),因而部分研究者使用該基因突變的小鼠(SNCA小鼠)作為PD動物模型,建立類似PD患者的腦干自主神經(jīng)功能損傷。在該種小鼠中進行12周的ADF,通過監(jiān)測心率評估小鼠自主神經(jīng)功能,觀察到ADF緩解了在PD模型小鼠出現(xiàn)的自主神經(jīng)功能障礙(對心率的控制能力減低)[20]。有研究者發(fā)現(xiàn)8周的生酮飲食顯著降低了PD患者的帕金森病評分量表(MDS-UPDRS)評分,并且改善排尿、疲勞等非運動癥狀,這是目前主要治療PD的藥物左旋多巴治療效果較差的方面[21]。在禁食期間,ADF會使酮體增加,造成和生酮飲食類似的血清學變化,因而可能對于PD患者有相同的益處。目前ADF在PD方面的研究較少,結(jié)合目前已有的證據(jù),需要先進行一定時間的ADF,激活神經(jīng)元適應性應激反應通路,才能產(chǎn)生神經(jīng)保護作用,但進行飲食控制的時間節(jié)點并不清楚,仍需更進一步的研究。
2 隔日禁食與心血管疾病
在動物和人類實驗中都表明隔日禁食有著心血管保護作用。在進行ADF喂養(yǎng)后再誘導心肌梗死發(fā)生的大鼠模型中,心肌細胞在梗死早期的凋亡減少,在晚期梗死面積相對較小,并且未出現(xiàn)隨意進食組大鼠發(fā)生的不良心室重構(gòu)[22]。而在建立心肌梗死大鼠模型后再進行ADF喂養(yǎng),大鼠心臟的新生毛細血管生成增多,心臟功能改善,死亡率相較正常喂養(yǎng)組也明顯減低(ADF組大鼠的死亡率為12.5%,而對照組大鼠的死亡率為77%)[23]。上述研究表明無論在梗死前或者梗死后進行ADF均可以減低心肌缺血損傷,獲得心血管方面的益處。ADF對心血管的保護可能的機制:一方面與降低能量攝入,可以減少細胞內(nèi)氧自由基的形成,進而減少氧化應激相關(guān);另一方面,ADF可以誘導細胞抗應激基因表達增加,如上調(diào)BDNF相關(guān)基因表達[22]。研究表明,BDNF促進血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)表達增加,而VEGF可以誘導新生血管的生成并激活下游Akt信號通路提高心肌細胞的存活率[23]。在老年性心力衰竭方面,ADF可以下調(diào)隨年齡增加的ERK1/2和PI3Kγ信號通路,并且恢復STAT3轉(zhuǎn)錄因子活性,從而減輕大鼠心臟年齡相關(guān)的氧化應激,降低心肌纖維化水平[24]。
在肥胖人群中,ADF可以減低體重、體脂、內(nèi)臟脂肪比例、腰圍、降低甘油三酯及總膽固醇,并增加低密度脂蛋白膽固醇(low density lipoprotein cholesterol,LDL-C)粒徑,從而減少心血管疾病發(fā)生風險[1,25]。但ADF不會改變高密度脂蛋白膽固醇(high density lipoprotein cholesterol,HDL-C)濃度,而聯(lián)合運動可以獲得更好的減重及改善血脂效果,甚至提高HDL-C水平[26]。在正常和超重成人中,ADF可以減低瘦素,增加脂聯(lián)素,并獲得不同程度的減重、減低體脂、增加LDL-C粒徑效果[27]。除了上述影響,近期的研究發(fā)現(xiàn),4周的ADF降低非肥胖人群的收縮壓、舒張壓、脈壓、脈搏波傳導速度及Framingham危險評分,提示短期的ADF對于健康人也有心血管保護作用[28]。
然而,ADF是否只有心血管益處仍存在爭議,一項在大鼠中進行的為期6個月的隨機對照實驗表明,長期ADF可能促進心肌細胞萎縮和心臟纖維化,導致舒張功能障礙,降低心臟儲備[29]。因此在臨床廣泛應用ADF,仍需評估長期安全性,權(quán)衡在心血管方面的利弊。
3 隔日禁食與腫瘤
禁食可以誘導全身的代謝反應,不僅對腫瘤的進展獲得部分治療作用,更為重要的是使正常細胞和腫瘤細胞對于外界壓力產(chǎn)生差異的反應。在與化療、放療和酪氨酸激酶抑制劑聯(lián)合使用時,使正常細胞抵抗力增加,而癌細胞的抵抗力降低,不僅提高患者治療的耐受性且改善治療的效果。這些作用通常與降低胰島素樣生長因子-1(insulin like growth factor-1,IGF-1),減低葡萄糖濃度以及增加細胞自噬有關(guān)[30]。有研究表明ADF可以降低小鼠細胞增殖率[31]。而細胞增殖在中腫瘤的發(fā)病中尤為重要,ADF或許可減輕癌癥風險。Siegel等[32]研究了短期ADF對于荷瘤大鼠的存活率的影響,ADF組大鼠第10天存活率比隨意飲食組高37.5%。一項國外研究探討了4個月ADF對于OF1小鼠(淋巴瘤發(fā)病率極高的一種小鼠模型)中年齡相關(guān)淋巴瘤發(fā)病率的影響,ADF組沒有小鼠發(fā)生淋巴瘤,而隨意進食組小鼠淋巴瘤發(fā)病率達到30%以上,且全部死亡[33]。Sun等[34]通過對小鼠體內(nèi)外的研究發(fā)現(xiàn)ADF能通過誘導癌細胞自噬,影響腫瘤微環(huán)境,從而抑制結(jié)腸癌小鼠癌細胞的增殖。
對代謝綜合征患者的研究發(fā)現(xiàn)每日大于14 h的禁食可以上調(diào)部分腫瘤抑制基因的表達,下調(diào)部分促進腫瘤發(fā)生的蛋白表達,并且被認為與生物鐘節(jié)律的重置相關(guān)[35]。在乳腺癌患者中的研究發(fā)現(xiàn),短期禁食(化療前后24 h)可減少新輔助化療的血液學毒性[36]。進一步研究表明,應用模擬禁食飲食改善了進行新輔助化療乳腺癌患者的生活質(zhì)量[37]。但禁食也可能造成一定的副作用,如惡心、嘔吐、疲勞、頭暈等。以上研究表明隔日禁食對于腫瘤患者具有有益作用,尤其可以作為聯(lián)合化療的輔助療法,改善治療效果及不良反應。
4 隔日禁食與代謝性疾病
4.1 隔日禁食與代謝相關(guān)脂肪性肝病
目前代謝相關(guān)脂肪性肝?。╩etabolic associated fatty liver disease,MAFLD)的治療依賴于生活方式的改變,而飲食控制與運動療法是其基本的治療方法。在高脂飲食誘導脂肪肝的肥胖小鼠中進行4周ADF,結(jié)果表明ADF可以有效減少脂肪生成并減輕炎癥反應,抑制疾病進展[38]。另一項研究在此種小鼠中進行16周的ADF也發(fā)現(xiàn)了對肝臟相同的保護作用[39]。一項大鼠的研究發(fā)現(xiàn)ADF對非酒精性脂肪肝炎大鼠模型的組織學有所改善。并觀察到脂肪生成標志物ACACA、PPAR-γ、PPAR-α的減低及凋亡調(diào)節(jié)因子Caspase-3、p53、Bcl-2的減少,炎癥標志物COX-2的減低及自噬標志物LC3的升高和P62的降低,提示ADF影響MAFLD的機制與抗脂肪生成、增強細胞自噬,抗凋亡、抗氧化應激有關(guān)[40]。
EASL指南推薦將減重7%~10%作為肥胖/超重患者的干預目標[41]。以往的研究表明減重7%~10%可以獲得肝臟組織學方面的改變,改善肝臟炎癥甚至減輕肝纖維化[42]。一項為期12周的隨機對照實驗表明,ADF可以改善MAFLD患者的血清甘油三酯、總膽固醇水平,并可以在不降低非脂體重的情況下顯著降低體重(6.1±0.5)%,但短期干預中未觀察到肝臟硬度值變化[43]。另一項8周的隨機對照實驗發(fā)現(xiàn),ADF組中MAFLD患者體重減輕,肝酶降低,甚至還觀察到肝臟細胞的脂肪變性和纖維化的程度減輕[44]??赡苡捎趯嶒灂r間較短,上述研究并未觀察到血脂指標的顯著變化。上述兩項研究中,參與者對于ADF的依從性都較高。其中第一項研究ADF組95%的參與者完成了研究,第二項研究中,參與者遵守ADF的頻率也在75%以上。間歇性禁食對于人類的影響被認為與代謝轉(zhuǎn)換及攝入能量受限有關(guān)[45]。但目前缺少長期的動物及人類研究,而且由于肝活檢的局限性,目前多使用超聲評估肝臟脂肪變性和纖維化程度,未來臨床上進行ADF的有效性和安全性仍需進一步評估。
4.2 隔日禁食與糖尿病
Ob/ob小鼠和db/db小鼠是常用的糖尿病動物模型,這兩種小鼠瘦素相關(guān)基因及受體發(fā)生突變,具有明顯的胰島素抵抗[46]。在兩種小鼠的研究中均發(fā)現(xiàn)ADF能降低空腹血糖、TC、LDL-C水平,改善糖耐量,減輕胰島素抵抗[47-49]。在db/db小鼠中研究發(fā)現(xiàn),其在糖代謝方面的改善與恢復原有糖尿病受阻的胰島素-PI3K-AKT通路以及抑制糖異生中關(guān)鍵酶的表達有關(guān)[49]。在db/db小鼠的另一個研究發(fā)現(xiàn)ADF促進成纖維細胞生長因子21(fibroblast growth factor 21,F(xiàn)GF21)生成,通過下游信號轉(zhuǎn)導通路促進胰島素信號轉(zhuǎn)導及糖原合成、對抗炎癥以及增強細胞自噬。并通過促進膽汁酸代謝,調(diào)節(jié)脂質(zhì)和能量代謝,從而改善糖尿病相關(guān)的糖脂代謝異常[50-51]。其中細胞自噬/溶酶體途徑和神經(jīng)生成素3(neurogenin 3,Ngn3)對于恢復肥胖誘導的糖尿病小鼠的糖耐量以及保護胰島β細胞具有至關(guān)重要的意義[52-53]。這表明小鼠模型中,ADF對于2型糖尿病有積極影響。
而在人類中關(guān)于ADF的研究較少。已發(fā)現(xiàn)在糖尿病前期個體中,3~24周的ADF可以不同程度的降低空腹血糖和血清胰島素濃度,并增加對胰島素的敏感性[54]。在加拿大的案例報道中,三名2型糖尿病患者均遵循ADF的飲食模式到隨訪結(jié)束,HbA1c顯著降低,而且均可停用胰島素降糖,有兩名患者甚至可停用降糖藥物[55]。12個月的IF(5︰2模式)和CR降低HbA1c的能力相當[56],而禁食天數(shù)更多的ADF模式是否能相對CR更優(yōu)需遠期試驗證明。動物學實驗已證明ADF的益處,可以保護β細胞功能,減輕胰島素抵抗,與增強自噬通量及恢復Ngn3水平有關(guān)。在人類的益處是來自能量限制所致的體重減輕還是禁食自身的特點所致,仍需進一步的試驗。但不可否認其可以作為一種替代飲食模式應用于糖尿病及糖尿病前期。需要注意的是在禁食日有發(fā)生不良血糖事件的風險,尤其是使用磺脲類及胰島素的人群需注意監(jiān)測血糖及在禁食日適當減量。
5 總結(jié)
已有的動物和人類研究表明,隔日禁食對于慢性疾病的發(fā)生發(fā)展中有積極影響,甚至可以改善預后。其具體的機制與代謝轉(zhuǎn)換,抗氧化應激,細胞自噬等相關(guān),但也有一部分研究存在相反的結(jié)果。臨床上的應用需更大規(guī)模的隨機對照試驗評估其有效性、安全性及依從性,尤其是要評估其對于特定適用人群(年齡、性別、體重等)及疾病的發(fā)展階段的優(yōu)劣。將來隔日禁食與其它飲食模式及運動相結(jié)合可以作為新的研究方向。
參考文獻
[1] KLEMPEL M C,KROEGER C M,VARADY K A.Alternate day fasting(ADF)with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet[J].Metabolism,2013,62(1):137-143.
[2] AHMED T F,AHMED A,IMTIAZ F.History in perspective:how Alzheimer's disease came to be where it is?[J].Brain Res,2021,1758:147342.
[3] FONTAN-LOZANO A,SAEZ-CASSANELLI J L,INDA M C,et al.Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor[J].J Neurosci,2007,27(38):10185-10195.
[4] SINGH R,LAKHANPAL D,KUMAR S,et al.Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats[J].Age(Dordr),2012,34(4):917-933.
[5] DIAS G P,MURPHY T,STANGL D,et al.Intermittent fasting enhances long-term memory consolidation,adult hippocampal neurogenesis,and expression of longevity gene Klotho[J].Mol Psychiatry,2021,26(11):6365-6379.
[6] MESTRE H,HABLITZ L M,XAVIER A L R,et al.Aquaporin-4-dependent glymphatic solute transport in the rodent brain[J/OL].eLife,2018,7:e40070.https://elifesciences.org/articles/40070.
[7] ZHANG J,ZHAN Z,LI X,et al.Intermittent fasting protects against Alzheimer's disease possible through restoring aquaporin-4 polarity[J].Front Mol Neurosci,2017,10:395.
[8] HALAGAPPA V K,GUO Z,PEARSON M,et al.Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease[J].Neurobiol Dis,2007,26(1):212-220.
[9] ISMAIL N A,LEONG ABDULLAH M F I,HAMI R,et al.A narrative review of brain-derived neurotrophic factor(BDNF)on cognitive performance in Alzheimer's disease[J].Growth Factors,2020,38(3-4):210-225.
[10] QIN X Y,CAO C,CAWLEY N X,et al.Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer's disease:a meta-analysis study (N=7277)[J].Mol Psychiatry,2017,22(2):312-320.
[11] NG T K S, HO C S H, TAM W W S,et al.Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer's disease (AD):a systematic review and meta-analysis[J].International Journal of Molecular Sciences,2019,20(2):257.
[12] MATTSON M P.An evolutionary perspective on why food overconsumption impairs cognition[J].Trends Cogn Sci,2019,23(3):200-212.
[13] LIU Y,CHENG A,LI Y J,et al.SIRT3 mediates hippocampal synaptic adaptations to intermittent fasting and ameliorates deficits in APP mutant mice[J].Nat Commun,2019,10(1):1886.
[14] LAZIC D,TESIC V,JOVANOVIC M,et al.Every-other-day feeding exacerbates inflammation and neuronal deficits in 5XFAD mouse model of Alzheimer's disease[J].Neurobiol Dis,2020,136:104745.
[15] OOI T C,MERAMAT A,RAJAB N F,et al.Intermittent fasting enhanced the cognitive function in older adults with mild cognitive impairment by inducing biochemical and metabolic changes:a 3-year progressive study[J].Nutrients,2020,12(9):2644.
[16] KIM C,PINTO A M,BORDOLI C,et al.Energy restriction enhances adult hippocampal neurogenesis-associated memory after four weeks in an adult human population with central obesity;a randomized controlled trial[J].Nutrients,2020,12(3):638.
[17] WITTE A V,F(xiàn)OBKER M,GELLNER R,et al.Caloric restriction improves memory in elderly humans[J].Proc Natl Acad Sci U S A,2009,106(4):1255-1260.
[18] DUAN W,MATTSON M P.Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease[J].J Neurosci Res,1999,57(2):195-206.
[19] TATULLI G,MITRO N,CANNATA S M,et al.Intermittent fasting applied in combination with Rotenone treatment exacerbates dopamine neurons degeneration in mice[J].Front Cell Neurosci,2018,12:4.
[20] GRIFFIOEN K J,ROTHMAN S M,LADENHEIM B,et al.Dietary energy intake modifies brainstem autonomic dysfunction caused by mutant α-synuclein[J].Neurobiol Aging,2013,34(3):928-935.
[21] PHILLIPS M C L,MURTAGH D K J,GILBERTSON L J,et al.Low-fat versus ketogenic diet in Parkinson's disease:A pilot randomized controlled trial[J].Mov Disord,2018,33(8):1306-1314.
[22] AHMET I,WAN R,MATTSON M P,et al.Cardioprotection by intermittent fasting in rats[J].Circulation,2005,112(20):3115-3121.
[23] KATARE R G,KAKINUMA Y,ARIKAWA M,et al.Chronic intermittent fasting improves the survival following large myocardial ischemia by activation of BDNF/VEGF/PI3K signaling pathway[J].J Mol Cell Cardiol,2009,46(3):405-412.
[24] MATTSON M P,LONGO V D,HARVIE M.Impact of intermittent fasting on health and disease processes[J].Ageing Res Rev,2017,39:46-58.
[25] HODDY K K,KROEGER C M,TREPANOWSKI J F,et al.Meal timing during alternate day fasting:Impact on body weight and cardiovascular disease risk in obese adults[J].Obesity (Silver Spring),2014,22(12):2524-2531.
[26] BHUTANI S,KLEMPEL M C,KROEGER C M,et al.Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans[J].Obesity (Silver Spring),2013,21(7):1370-1379.
[27] VARADY K A,BHUTANI S,KLEMPEL M C,et al.Alternate day fasting for weight loss in normal weight and overweight subjects:a randomized controlled trial[J].Nutrition J,2013,12(1):146.
[28] STEKOVIC S,HOFER S J,TRIPOLT N,et al.Alternate day fasting improves physiological and molecular markers of aging in healthy,non-obese humans[J/OL].Cell Metab,2019,30(3):462-476.e6.https://linkinghub.elsevier.com/retrieve/pii/S1550-4131(19)30429-2.
[29] AHMET I,WAN R,MATTSON M P,et al.Chronic alternate-day fasting results in reduced diastolic compliance and diminished systolic reserve in rats[J].J Card Fail,2010,16(10):843-853.
[30] NENCIONI A,CAFFA I,CORTELLINO S,et al.Fasting and cancer:molecular mechanisms and clinical application[J].Nat Rev Cancer,2018,18(11):707-719.
[31] VARADY K A,ROOHK D J,MCEVOY-HEIN B K,et al.Modified alternate-day fasting regimens reduce cell proliferation rates to a similar extent as daily calorie restriction in mice[J].FASEB J,2008,22(6):2090-2096.
[32] SIEGEL I,LIU T L,NEPOMUCENO N,et al.Effects of short-term dietary restriction on survival of mammary ascites tumor-bearing rats[J].Cancer Invest,1988,6(6):677-680.
[33] DESCAMPS O,RIONDEL J,DUCROS V,et al.Mitochondrial production of reactive oxygen species and incidence of age-associated lymphoma in OF1 mice:effect of alternate-day fasting[J].Mech Ageing Dev,2005,126(11):1185-1191.
[34] SUN P,WANG H,HE Z,et al.Fasting inhibits colorectal cancer growth by reducing M2 polarization of tumor-associated macrophages[J].Oncotarget,2017,8(43):74649-74660.
[35] MINDIKOGLU A L,ABDULSADA M M,JAIN A,et al.Intermittent fasting from dawn to sunset for four consecutive weeks induces anticancer serum proteome response and improves metabolic syndrome[J].Sci Rep,2020,10(1):18341.
[36] DE GROOT S,VREESWIJK M P,WELTERS M J,et al.The effects of short-term fasting on tolerance to(neo)adjuvant chemotherapy in HER2-negative breast cancer patients:a randomized pilot study[J].BMC Cancer,2015,15:652.
[37] LUGTENBERG R T,DE GROOT S,KAPTEIN A A,et al.Quality of life and illness perceptions in patients with breast cancer using a fasting mimicking diet as an adjunct to neoadjuvant chemotherapy in the phase 2 DIRECT(BOOG 2013-14)trial[J].Breast Cancer Res Treat,2021,185(3):741-758.
[38] ZHANG W,WANG J,WANG L,et al.Alternate-day fasting prevents non-alcoholic fatty liver disease and working memory impairment in diet-induced obese mice[J].J Nutr Biochem,2022,110:109146.
[39] LIU X,ZHANG Y,MA C,et al.Alternate-day fasting alleviates high fat diet induced non-alcoholic fatty liver disease through controlling PPARα/Fgf21 signaling[J].Molecular Biology Reports,2022,49(4):3113-3122.
[40] ELSAYED H R H,EL-NABLAWAY M,KHATTAB B A,et al.Independent of calorie intake,short-term alternate-day fasting alleviates NASH,with modulation of markers of lipogenesis,autophagy,apoptosis,and inflammation in rats[J].J Histochem Cytochem,2021,69(9):575-596.
[41] European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO).EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease[J].J Hepatol,2016,64(6):1388-1402.
[42] ARMANDI A,SCHATTENBERG J M.Beyond the paradigm of weight loss in non-alcoholic fatty liver disease:from pathophysiology to novel dietary approaches[J].Nutrients,2021,13(6):1977.
[43] CAI H,QIN Y L,SHI Z Y,et al.Effects of alternate-day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease:a randomised controlled trial[J].BMC Gastroenterol,2019,19(1):219.
[44] JOHARI M I,YUSOFF K,HARON J,et al.A Randomised controlled trial on the effectiveness and adherence of modified alternate-day calorie restriction in improving activity of non-alcoholic fatty liver disease[J].Sci Rep,2019,9(1):11232.
[45] PUGLIESE N,PLAZ TORRES M C,PETTA S,et al.Is there an'ideal'diet for patients with NAFLD?[J/OL].Eur J Clin Invest,2022,52(3):e13659.https://pubmed.ncbi.nlm.nih.gov/34309833/.
[46]簡磊,符策崗,揭勇.2型糖尿病小鼠模型構(gòu)建的研究進展[J].生命科學研究,2019,23(3):237-244.
[47] SWOAP S J,BINGAMAN M J,HULT E M,et al.Alternate-day feeding leads to improved glucose regulation on fasting days without significant weight loss in genetically obese mice[J].Am J Physiol Regul Integr Comp Physiol,2019,317(3):R461-R469.
[48] KIM Y H,LEE J H,YEUNG J L,et al.Thermogenesis-independent metabolic benefits conferred by isocaloric intermittent fasting in ob/ob mice[J].Scientific Reports,2019,9(1):2479.
[49]田孟軍.每日限食與隔日禁食對2型糖尿病小鼠糖脂代謝影響及機制研究[D].合肥:安徽醫(yī)科大學,2021.
[50] ZHANG H,ZHANG W,YUN D,et al.Alternate-day fasting alleviates diabetes-induced glycolipid metabolism disorders:roles of FGF21 and bile acids[J].J Nutr Biochem,2020,83:108403.
[51] FISHER F M,MARATOS-FLIER E.Understanding the Physiology of FGF21[J].Annu Rev Physiol,2016,78:223-241.
[52] LIU H,JAVAHERI A,GODAR R J,et al.Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway[J].Autophagy,2017,13(11):1952-1968.
[53] BROWN M R,MATVEYENKO A V.It's what and when you eat:an overview of transcriptional and epigenetic responses to dietary perturbations in pancreatic islets[J].Front Endocrinol (Lausanne),2022,13:842603.
[54] BARNOSKY A R,HODDY K K,UNTERMAN T G,et al.Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention:a review of human findings[J].Transl Res,2014,164(4):302-311.
[55] FURMLI S,ELMASRY R,RAMOS M,et al.Therapeutic use of intermittent fasting for people with type 2 diabetes as an alternative to insulin[J].BMJ Case Rep,2018,2018:bcr2017221854.
[56] CARTER S,CLIFTON P M,KEOGH J B.Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes:a randomized noninferiority trial[J/OL].JAMA Netw Open,2018,1(3):e180756.https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2688344.