聶剛 亓俊華
摘 要:為探討非轉(zhuǎn)移性細(xì)胞1(NME1)基因在皮膚黑色素瘤(SKCM)中的表達(dá)及其與臨床預(yù)后的相關(guān)性,通過(guò)GEPIA數(shù)據(jù)庫(kù)及UALCAN數(shù)據(jù)庫(kù)分析NME1在SKCM組織中的表達(dá);通過(guò)GSCA數(shù)據(jù)庫(kù)、GEPIA數(shù)據(jù)庫(kù)和TIMER數(shù)據(jù)庫(kù)分析NME1表達(dá)水平與SKCM患者總生存率的相關(guān)性;通過(guò)cBioPortal數(shù)據(jù)庫(kù)分析SKCM患者中NME1基因的突變情況及其與患者總生存率的相關(guān)性;通過(guò)STRING數(shù)據(jù)庫(kù)分析可能與NME1相互作用的蛋白,并利用Metascape數(shù)據(jù)庫(kù)對(duì)其進(jìn)行功能富集分析;通過(guò)TIMER數(shù)據(jù)庫(kù)分析SKCM中NME1的表達(dá)水平與免疫細(xì)胞浸潤(rùn)水平的相關(guān)性。結(jié)果顯示:NME1在SKCM組織中表達(dá)水平明顯高于正常組織;NME1的高表達(dá)與轉(zhuǎn)移性SKCM患者較低的總生存率顯著相關(guān);NME1基因變異與SKCM患者總生存率無(wú)明顯相關(guān)性;NME1及其相互作用蛋白主要參與ARF6運(yùn)輸通路、嘌呤代謝、細(xì)胞發(fā)育的調(diào)節(jié)、DNA代謝等生物學(xué)過(guò)程;轉(zhuǎn)移性SKCM中NME1的高表達(dá)與CD4+T細(xì)胞、CD8+T細(xì)胞、中性粒細(xì)胞、巨噬細(xì)胞和樹(shù)突狀細(xì)胞較低的免疫浸潤(rùn)水平相關(guān)。本研究表明,在轉(zhuǎn)移性SKCM患者中,NME1高表達(dá)與較低的免疫細(xì)胞浸潤(rùn)水平和總生存率相關(guān)。 NME1有望成為轉(zhuǎn)移性SKCM免疫細(xì)胞浸潤(rùn)和預(yù)后相關(guān)的生物學(xué)標(biāo)志物。
關(guān)鍵詞:皮膚黑色素瘤;NME1;免疫浸潤(rùn);臨床預(yù)后
中圖分類號(hào):R739.5? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A? ? ? ? ? ? ? ? ? ? ? ? ?DOI:10.3969/j.issn.1007-7146.2023.02.010
The Expression of NME1 in Skin Cutaneous Melanoma and Its Correlation with Clinical Prognosis
NIE Ganga, QI Junhuab*
(The Seventh Affiliated Hospital, Sun Yat-sen University? a. Department of Dermatology; b. Department of Clinical Medical Laboratory, Shenzhen 518107, China)
Abstract: The purpose of this study is to investigate the expression of? non-metastatic cell 1 (NME1) in skin cutaneous melanoma (SKCM) and its correlation with clinical prognosis. The expression of NME1 in SKCM was analyzed using GEPIA database and UALCAN database. GSCA database, GEPIA database and TIMER database were used to analyze the relationship between the expression of NME1 and the overall survival rate of SKCM patients. The mutation of NME1 in SKCM and its correlation with the overall survival rate of SKCM patients were analyzed through cBioPortal database. The proteins that may interact with NME1 were analyzed by STRING database, and their functions were enriched by Metascape database. The correlation between the expression of NME1 and immune cells infiltration level in SKCM was analyzed using TIMER database. The results showed that the expression of NME1 in SKCM was significantly higher than that in normal tissues. The high expression of NME1 was significantly related to the lower overall survival rate of metastatic SKCM patients. NME1 gene mutation has no significant correlation with the overall survival rate of SKCM patients. NME1 and its interacting proteins are mainly involved in ARF6 trafficking pathway, purine metabolism, regulation of cell development, DNA metabolic process and other biological processes. The high expression of NME1 in metastatic SKCM was significantly correlated with the lower infiltration level of CD4+T cell, CD8+T cell, neutrophil, macrophage and dendritic cell. This study shows that the high expression of NME1 is related to the lower level of immune infiltrating cells, and the overall survival rate in patients with metastatic SKCM. NME1 is expected to become a biomarker related to the infiltration of immune cells and prognosis of metastatic SKCM.
Key words: SKCM; NME1; immune infiltration; clinical prognosis
(Acta Laser Biology Sinica, 2023, 32(2): 177-183)
皮膚黑色素瘤(skin cutaneous melanoma,SKCM)是最具侵襲性的皮膚癌。據(jù)報(bào)道,SKCM引起的死亡占皮膚癌相關(guān)死亡的75%以上[1]。隨著精準(zhǔn)醫(yī)療的發(fā)展,SKCM患者的生存時(shí)間和生活質(zhì)量不斷得到改善。然而,腫瘤的復(fù)發(fā)和轉(zhuǎn)移仍然是SKCM患者死亡的主要原因[2],因此,迫切需要我們尋找有效的分子標(biāo)記物以實(shí)現(xiàn)對(duì)SKCM的早期預(yù)防和治療。
NME(non-metastatic cells)基因家族是最早發(fā)現(xiàn)的腫瘤轉(zhuǎn)移抑制相關(guān)基因。目前已發(fā)現(xiàn)10個(gè)NME基因家族成員,包括NME1~NME10[3]。NME基因家族具有核苷二磷酸激酶功能的保守結(jié)構(gòu)域[4],參與多種生理和病理過(guò)程,如細(xì)胞增殖、發(fā)育、轉(zhuǎn)移和分化等[5-6]。NME1基因是NME基因家族中被研究最多的成員,其與腫瘤細(xì)胞分化和轉(zhuǎn)移抑制功能等高度相關(guān)[7]。有研究報(bào)道,在SKCM中,NME1的高表達(dá)與低轉(zhuǎn)移潛能相關(guān)[8]。本研究擬通過(guò)多個(gè)生物信息學(xué)數(shù)據(jù)庫(kù)分析SKCM中NME1的表達(dá)、預(yù)后價(jià)值和功能網(wǎng)絡(luò),并進(jìn)一步探索SKCM中NME1對(duì)腫瘤免疫的影響,以期為SKCM的發(fā)病機(jī)制、治療及預(yù)后評(píng)價(jià)提供新思路。
1 材料與方法
1.1 GEPIA數(shù)據(jù)庫(kù)分析
GEPIA(Gene Expression Profiling Interactive Analysis)是一個(gè)網(wǎng)絡(luò)服務(wù)器(http://gepia.cancer-pku.cn/index.html),包含來(lái)自癌癥基因組圖譜(the cancer genome atlas,TCGA)和基因型-組織表達(dá)(genotype-tissue expression,GTEx)項(xiàng)目的9 736個(gè)腫瘤和8 587個(gè)正常樣本的RNA測(cè)序表達(dá)數(shù)據(jù),可用于差異分析、患者生存分析和相關(guān)性分析[9]。本研究利用GEPIA數(shù)據(jù)庫(kù)分析NME1在SKCM組織和正常組織中的表達(dá)差異以及NME1表達(dá)水平與SKCM患者總生存率的相關(guān)性。
1.2 UALCAN數(shù)據(jù)庫(kù)分析
UALCAN(The University of ALabama at Birmingham CANcer data analysis Portal)數(shù)據(jù)庫(kù)(http://ualcan.path.uab.edu/)是一個(gè)提供基因表達(dá)量和生存分析的數(shù)據(jù)庫(kù),用于癌癥轉(zhuǎn)錄組數(shù)據(jù)的分析。本研究通過(guò)UALCAN數(shù)據(jù)庫(kù)分析NME1的表達(dá)與SKCM患者臨床病理特征的關(guān)系。
1.3 GSCA數(shù)據(jù)庫(kù)分析
GSCA(Gene Set Cancer Analysis)數(shù)據(jù)庫(kù)(http://bioinfo.life.hust.edu.cn/GSCA/#/)包含了TCGA和GDSC的33種類型的癌癥數(shù)據(jù),是一個(gè)綜合單基因分析、多基因分析、免疫浸潤(rùn)分析、突變分析、藥物敏感性分析的交叉式綜合性癌癥分析數(shù)據(jù)庫(kù)。本研究利用GSCA數(shù)據(jù)庫(kù)分析NME1與SKCM患者總生存率的相關(guān)性。
1.4 TIMER數(shù)據(jù)庫(kù)分析
TIMER(Tumor Immune Estimation Resource)數(shù)據(jù)庫(kù)(https://cistrome.shinyapps.io/timer/)是一個(gè)專為系統(tǒng)分析不同癌癥類型中免疫細(xì)胞浸潤(rùn)而設(shè)計(jì)的數(shù)據(jù)庫(kù)。該數(shù)據(jù)庫(kù)包括來(lái)自TCGA的32種癌癥類型的10 897個(gè)樣本,以評(píng)估6種免疫細(xì)胞(B 細(xì)胞、 CD4+T細(xì)胞、CD8+T細(xì)胞、中性粒細(xì)胞、巨噬細(xì)胞和樹(shù)突狀細(xì)胞)浸潤(rùn)的豐度[10]。本研究通過(guò)TIMER數(shù)據(jù)庫(kù)首先驗(yàn)證NME1的表達(dá)水平與SKCM患者累計(jì)生存率的相關(guān)性,然后分析SKCM組織中NME1的表達(dá)水平與不同免疫細(xì)胞浸潤(rùn)水平的相關(guān)性。
1.5 cBioPortal數(shù)據(jù)庫(kù)分析
cBioPortal(http://cbioportal.org)數(shù)據(jù)庫(kù)的數(shù)據(jù)來(lái)源于TCGA、GDAC、UCSC、ICGC、IGV、Oncomine等多個(gè)數(shù)據(jù)庫(kù),可用于多個(gè)癌癥基因組學(xué)數(shù)據(jù)集的交互式探索[11]。本研究通過(guò)cBioPortal數(shù)據(jù)庫(kù)分析SKCM中NME1的突變情況及其與患者生存率的相關(guān)性。
1.6 STRING數(shù)據(jù)庫(kù)分析
STRING(Search Tool for the Retrieval of Interaction Gene/Proteins)數(shù)據(jù)庫(kù)(https://string-db.org/)是一個(gè)分析蛋白質(zhì)相互作用的在線數(shù)據(jù)庫(kù)[12]。本研究通過(guò)STRING數(shù)據(jù)庫(kù)探索可能與NME1相互作用的蛋白,并構(gòu)建蛋白互作網(wǎng)絡(luò)。
1.7 Metascape數(shù)據(jù)庫(kù)分析
Metascape(https://metascape.org/gp/index.html#/ main/step1)是一個(gè)旨在為基因提供全面注釋的在線網(wǎng)站[13]。本研究通過(guò)Metascape對(duì)NME1及其相互作用的蛋白進(jìn)行功能富集分析。
1.8 統(tǒng)計(jì)學(xué)方法
應(yīng)用各在線數(shù)據(jù)庫(kù)系統(tǒng)默認(rèn)的統(tǒng)計(jì)學(xué)方法分析,以P<0.05為有統(tǒng)計(jì)學(xué)差異。
2 結(jié)果與分析
2.1 NME1在SKCM中的表達(dá)
通過(guò)GEPIA數(shù)據(jù)庫(kù)分析SKCM組織(461個(gè)樣本)和正常組織(558個(gè)樣本)中NME1的表達(dá)差異(圖1a),結(jié)果顯示,SKCM組織中NME1的表達(dá)較正常組織顯著升高(P<0.05)。通過(guò)UALCAN數(shù)據(jù)庫(kù)進(jìn)一步分析NME1的表達(dá)與SKCM患者臨床病理特征的關(guān)系(圖1b、1c),結(jié)果顯示,NME1的表達(dá)水平與SKCM淋巴結(jié)轉(zhuǎn)移情況以及腫瘤臨床分期均無(wú)顯著相關(guān)性。此外,原發(fā)性SKCM和轉(zhuǎn)移性SKCM中NME1的表達(dá)水平也無(wú)顯著差異(圖1d)。
2.2 NME1的表達(dá)水平與SKCM患者總生存率的相關(guān)性分析
通過(guò)GSCA數(shù)據(jù)庫(kù)分析SKCM中NME1的表達(dá)水平與患者總生存率的相關(guān)性(圖2a),結(jié)果顯示,NME1的高表達(dá)與SKCM患者較低的總生存率顯著相關(guān)(P=0.003)。這種相關(guān)性在GEPIA數(shù)據(jù)庫(kù)(圖2b)和TIMER數(shù)據(jù)庫(kù)(圖2c)中得到了驗(yàn)證(相應(yīng)的P值分別為0.005、0.002)。通過(guò)TIMER數(shù)據(jù)庫(kù)進(jìn)行亞組分析,結(jié)果顯示,NME1的表達(dá)水平與原發(fā)性SKCM患者的總生存率無(wú)顯著相關(guān)性(P=0.268)(圖2d),但是NME1的高表達(dá)與轉(zhuǎn)移性SKCM患者較低的總生存率顯著相關(guān)(P=0.003)(圖2e)。
2.3 SKCM中NME1的突變情況及其與患者生存率的相關(guān)性
cBioPortal數(shù)據(jù)庫(kù)分析結(jié)果顯示,363例SKCM中有3例(0.83%)發(fā)生NME1基因變異,類型均為基因擴(kuò)增(圖3a)。NME1基因變異與SKCM患者的總體生存率無(wú)顯著相關(guān)性(P=0.982)(圖3b)。
2.4 NME1蛋白互作網(wǎng)絡(luò)及功能富集分析
通過(guò)STRING數(shù)據(jù)庫(kù)探索可能與NME1相互作用的蛋白,并構(gòu)建蛋白互作網(wǎng)絡(luò)(圖4a)。結(jié)果以NME1為核心,獲得了10個(gè)與NME1蛋白存在相互聯(lián)系的蛋白(NME2、DNM2、DNM1、ARF6、TIAM1、PRUNE、APEX1、GZMA、SET、ANP32)。進(jìn)一步通過(guò)Metascape數(shù)據(jù)庫(kù)對(duì)NME1及以上互作蛋白進(jìn)行功能富集分析,結(jié)果顯示,這些蛋白主要富集在ARF6運(yùn)輸通路、嘌呤代謝、細(xì)胞發(fā)育的調(diào)節(jié)、DNA代謝等生物學(xué)過(guò)程中(圖4b)。
2.5 轉(zhuǎn)移性SKCM中NME1表達(dá)水平與免疫細(xì)胞浸潤(rùn)水平的相關(guān)性分析
NME1的表達(dá)水平與原發(fā)性SKCM患者的總生存率無(wú)顯著相關(guān)性,而NME1的高表達(dá)與轉(zhuǎn)移性SKCM患者較低的總生存率顯著相關(guān)。因此,僅通過(guò)TIMER數(shù)據(jù)庫(kù)分析轉(zhuǎn)移性SKCM中NME1的表達(dá)水平與免疫細(xì)胞浸潤(rùn)水平的相關(guān)性(圖5)。結(jié)果顯示,在轉(zhuǎn)移性SKCM中,NME1的高表達(dá)與CD4+T細(xì)胞、CD8+T細(xì)胞、中性粒細(xì)胞、巨噬細(xì)胞和樹(shù)突狀細(xì)胞較低的免疫浸潤(rùn)水平相關(guān)(P值均小于0.05)。
3 討論
在本項(xiàng)研究中,我們?nèi)娣治隽薙KCM中NME1的表達(dá)水平和臨床預(yù)后價(jià)值,發(fā)現(xiàn)NME1在SKCM組織中的表達(dá)水平高于正常組織,并且NME1的高表達(dá)與轉(zhuǎn)移性SKCM患者較低的總生存率顯著相關(guān)。這提示,NME1在SKCM中可能發(fā)揮致癌基因的作用。NME1具有作為轉(zhuǎn)移性SKCM患者預(yù)后相關(guān)生物標(biāo)志物的潛力。然而,NME1的表達(dá)水平與SKCM淋巴結(jié)的轉(zhuǎn)移情況以及腫瘤臨床分期均無(wú)顯著相關(guān)性。此外,原發(fā)性SKCM和轉(zhuǎn)移性SKCM中NME1的表達(dá)水平也無(wú)顯著差異。這表明,NME1不能作為SKCM病情評(píng)估的生物標(biāo)志物。
NME1具有3'-5'外切酶活性,可能參與修復(fù)DNA中的單鏈斷裂和雙鏈斷裂,促進(jìn)基因組的不穩(wěn)定性,促進(jìn)惡性腫瘤的進(jìn)展[14]。本研究結(jié)果顯示,363例SKCM患者中僅3例發(fā)生NME1基因變異。此外,發(fā)生NME1基因變異的SKCM患者與未發(fā)生NME1基因變異的SKCM患者的總體生存率無(wú)顯著差異。因此,NME1基因突變可能不是促進(jìn)SKCM進(jìn)展的原因。為了進(jìn)一步探索NME1在SKCM發(fā)生發(fā)展中的潛在作用機(jī)制,本研究通過(guò)STRING數(shù)據(jù)庫(kù)獲得了10個(gè)與NME1蛋白存在相互聯(lián)系的蛋白(NME2、DNM2、DNM1、ARF6、TIAM1、PRUNE、APEX1、GZMA、SET、ANP32)。通過(guò)Metascape數(shù)據(jù)庫(kù)對(duì)NME1及以上互作蛋白進(jìn)行功能富集分析,結(jié)果顯示,這些蛋白主要富集在ARF6運(yùn)輸通路、嘌呤代謝、細(xì)胞發(fā)育的調(diào)節(jié)、DNA代謝等生物學(xué)過(guò)程中。腫瘤的發(fā)生、發(fā)展涉及大量的病理生理學(xué)過(guò)程。參與嘌呤核苷酸代謝的多種酶與腫瘤細(xì)胞的增殖有關(guān)。此外,尿酸具有抗氧化特性以及炎癥促進(jìn)劑的雙重作用。如果這兩種作用出現(xiàn)失衡,也可誘發(fā)腫瘤,促進(jìn)腫瘤進(jìn)展[15-16]。ARF6在哺乳動(dòng)物細(xì)胞中廣泛表達(dá),主要發(fā)揮調(diào)節(jié)質(zhì)膜運(yùn)輸和肌動(dòng)蛋白重塑的功能。研究表明,ARF6蛋白的激活和高表達(dá)可能與乳腺癌、胰腺癌、肺癌等多種腫瘤的侵襲和轉(zhuǎn)移密切相關(guān)[17]。結(jié)合以上文獻(xiàn)報(bào)道及本研究結(jié)果,我們推測(cè),NME1可能通過(guò)這些生物學(xué)過(guò)程參與SKCM的進(jìn)展。
腫瘤免疫微環(huán)境在腫瘤的發(fā)生、進(jìn)展中具有重要作用。既往研究表明,免疫浸潤(rùn)參與了黑色素瘤的進(jìn)展[18]。本研究結(jié)果提示,轉(zhuǎn)移性SKCM中NME1的表達(dá)水平與CD4+T細(xì)胞、CD8+T細(xì)胞、中性粒細(xì)胞、巨噬細(xì)胞和樹(shù)突狀細(xì)胞的免疫浸潤(rùn)水平負(fù)相關(guān)。CD4+T細(xì)胞可以通過(guò)TGFβ1/YBX1/HIF2α信號(hào)調(diào)節(jié)多種腫瘤細(xì)胞的增殖[19]。CD8+T細(xì)胞在腫瘤微環(huán)境或腫瘤周圍組織中均表現(xiàn)出抗黑色素瘤的能力[20],可以通過(guò)釋放顆粒酶和穿孔素攻擊黑色素瘤細(xì)胞[21-22]。M1型巨噬細(xì)胞和M2型巨噬細(xì)胞是巨噬細(xì)胞的兩個(gè)主要亞群[23],前者具有抗腫瘤作用,后者能促進(jìn)腫瘤的生長(zhǎng)、侵襲和轉(zhuǎn)移[24-25]。與巨噬細(xì)胞類似,N1型中性粒細(xì)胞具有抗腫瘤作用,而N2型中性粒細(xì)胞能促進(jìn)腫瘤生長(zhǎng)[26]。樹(shù)突狀細(xì)胞不僅為T細(xì)胞活化提供共刺激信號(hào),還能與B細(xì)胞及NK細(xì)胞相互作用,發(fā)揮抗腫瘤效應(yīng)[27]。這表明,轉(zhuǎn)移性SKCM中NME1的高表達(dá)可能通過(guò)下調(diào)免疫細(xì)胞浸潤(rùn)水平導(dǎo)致轉(zhuǎn)移性SKCM患者的不良預(yù)后。關(guān)于NME1對(duì)轉(zhuǎn)移性SKCM免疫微環(huán)境影響的具體機(jī)制仍有待研究。
本研究表明,在轉(zhuǎn)移性SKCM患者中,NME1的高表達(dá)與較低的免疫細(xì)胞浸潤(rùn)水平和總生存率相關(guān)。NME1有望成為轉(zhuǎn)移性SKCM免疫細(xì)胞浸潤(rùn)和預(yù)后相關(guān)的生物學(xué)標(biāo)志物。值得注意的是,本研究是基于公共數(shù)據(jù)庫(kù)進(jìn)行挖掘的,存在一定的局限性,如樣本量較小、未在基因表達(dá)的蛋白水平進(jìn)行驗(yàn)證、缺乏臨床SKCM組織樣本中 NME1的表達(dá)情況等。因此,本研究結(jié)果仍有待于進(jìn)一步的研究證實(shí)。
參考文獻(xiàn)(References):
[1] REBECCA V W, SOMASUNDARAM R, HERLYN M. Pre-clinical modeling of cutaneous melanoma [J]. Nature Communications, 2020, 11(1): 2858.
[2] SCHADENDORF D, VAN AKKOOI A C J, BERKING C, et al. Melanoma [J]. Lancet, 2018, 392(10151): 971-984.
[3] DESVIGNES T, PONTAROTTI P, FAUVEL C, et al. Nme protein family evolutionary history, a vertebrate perspective [J]. BMC Evolutionary Biology, 2009, 9: 256.
[4] PUTS G S, LEONARD M K, PAMIDIMUKKALA N V, et al. Nuclear functions of NME proteins [J]. Laboratory Investigation, 2018, 98(2): 211-218.
[5] BOISSAN M, DABERNAT S, PEUCHANT E, et al. The mammalian Nm23/NDPK family: from metastasis control to cilia movement [J]. Molecular and Cellular Biochemistry, 2009, 329(1/2): 51-62.
[6] MARINO N, NAKAYAMA J, COLLINS J W, et al. Insights into the biology and prevention of tumor metastasis provided by the Nm23 metastasis suppressor gene [J]. Cancer and Metastasis Reviews, 2012, 31(3/4): 593-603.
[7] BANERJEE S, JHA H C, ROBERTSON E S. Regulation of the metastasis suppressor Nm23-H1 by tumor viruses [J]. Naunyn-schmiedebergs Archives of Pharmacology, 2015, 388(2): 207-224.
[8] MCCORKLE J R, LEONARD M K, KRANER S D, et al. The metastasis suppressor NME1 regulates expression of genes linked to metastasis and patient outcome in melanoma and breast carcinoma [J]. Cancer Genomics & Proteomics, 2014, 11(4): 175-194.
[9] TANG Z, LI C, KANG B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses [J]. Nucleic Acids Research, 2017, 45(W1): W98-W102.
[10] LI T, FU J, ZENG Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells [J]. Nucleic Acids Research, 2020, 48(W1): W509-W514.
[11] CERAMI E, GAO J, DOGRUSOZ U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data [J]. Cancer Discovery, 2012, 2(5): 401-404.
[12] SZKLARCZYK D, GABLE A L, LYON D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets [J]. Nucleic Acids Research, 2019, 47(D1): D607-D613.
[13] ZHOU Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets [J]. Nature Communications, 2019, 10(1): 1523.
[14] ZHANG Q, MCCORKLE J R, NOVAK M, et al. Metastasis suppressor function of NM23-H1 requires its 3'-5' exonuclease activity [J]. International Journal of Cancer, 2011, 128(1): 40-50.
[15] KIM A W, BATUS M, MYINT R, et al. Prognostic value of xanthine oxidoreductase expression in patients with non-small cell lung cancer [J]. Lung Cancer, 2011, 71(2): 186-190.
[16] LINDER N, BUTZOW R, LASSUS H, et al. Decreased xanthine oxidoreductase (XOR) is associated with a worse prognosis in patients with serous ovarian carcinoma [J]. Gynecologic Oncology, 2012, 124(2): 311-318.
[17] LI R, PENG C, ZHANG X, et al. Roles of Arf6 in cancer cell invasion, metastasis and proliferation [J]. Life Sciences, 2017, 182: 80-84.
[18] WANG X, XIONG H, LIANG D, et al. The role of SRGN in the survival and immune infiltrates of skin cutaneous melanoma (SKCM) and SKCM-metastasis patients [J]. BMC Cancer, 2020, 20(1): 378.
[19] WANG Y, WANG Y, XU L, et al. CD4 + T cells promote renal cell carcinoma proliferation via modulating YBX1 [J]. Experimental Cell Research, 2018, 363(1): 95-101.
[20] DUNN G P, BRUCE A T, IKEDA H, et al. Cancer immunoediting: from immunosurveillance to tumor escape [J]. Nature Communications, 2002, 3(11): 991-998.
[21] GARRIDO F, CABRERA T, APTSIAURI N. “Hard” and “soft” lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy [J]. International Journal of Cancer, 2010, 127(2): 249-256.
[22] FRUCI D, BENEVOLO M, CIFALDI L, et al. Major histocompatibility complex class I and tumour immuno-evasion: how to fool T cells and natural killer cells at one time [J]. Current Oncology, 2012, 19(1): 39-41.
[23] BENOIT M, DESNUES B, MEGE J L. Macrophage polarization in bacterial infections [J]. Journal of Immunology, 2008, 181(6): 3733-3739.
[24] SCHMIEDER A, MICHEL J, SCHONHAAR K, et al. Differentiation and gene expression profile of tumor-associated macrophages [J]. Seminars in Cancer Biology, 2012, 22(4): 289-297.
[25] WATKINS S K, EGILMEZ N K, SUTTLES J, et al. IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo [J]. Journal of Immunology, 2007, 178(3): 1357-1362.
[26] FRIDLENDER Z G, SUN J, KIM S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN [J]. Cancer Cell, 2009, 16(3): 183-194.
[27] GUILLEREY C, HUNTINGTON N D, SMYTH M J. Targeting natural killer cells in cancer immunotherapy [J]. Nature Communications, 2016, 17(9): 1025-1036.
收稿日期:2022-12-05;修回日期:2022-12-20。
作者簡(jiǎn)介:聶剛,主治醫(yī)師,主要從事皮膚腫瘤的基礎(chǔ)與臨床研究。
* 通信作者:亓俊華,主管技師,主要從事皮膚腫瘤的基礎(chǔ)與臨床研究。E-mail: qijh3@mail.sysu.edu.cn。