何思美 張楊軍 張可 李昆燕 夏立秋 胡勝標(biāo)
摘 要:魚體中的腸道微生物菌群是一道天然的免疫屏障,能抑制病原微生物的定居和增殖,從而使魚體免受病害侵襲。洞庭湖是重要魚類及水生生物的棲息地和基因庫,其中鯉形目(Cypriniformes)和鱸形目(Perciformes)種類最多,鲇形目(Siluriformes)種類相對較少。洞庭湖魚類群落結(jié)構(gòu)及生物多樣性已引起廣泛關(guān)注,但生態(tài)系統(tǒng)還是受到了一定程度的破壞,很少有研究將其腸道微生物群的特征作為改善洞庭湖生態(tài)系統(tǒng)的潛在因素。為了探測洞庭湖重要魚類中的微生物群,使用16S rRNA高通量測序表征了鲇形目、鱸形目和鯉形目中6種魚[黃顙魚(Pelteobagrus fulvidraco)、鱖魚(Siniperca chuatsi)、鯽魚(Carassius auratus)、翹嘴魚(Culter alburnus)、草魚(Ctenopharyngodom idella)、鰱魚(Hypophthalmichthys molitrix)]的腸道細(xì)菌群落多樣性、組成和潛在的功能。所有魚類腸道樣本中有5種優(yōu)勢菌門,包括厚壁菌門(Fimicutes)、變形桿菌門(Proteobacteria)、梭桿菌門(Fusobacteriota)、放線菌門(Actinobacteriota)和藍(lán)細(xì)菌門(Cyanobacteria)。鯉形目和鱸形目魚類的細(xì)菌組成相似,鲇形目中醋酸桿菌屬(Cetobacterium)所占比例高,而鯉形目中醋酸桿菌屬和氣單胞菌屬(Aeromonas)所占比例均高。對這6種魚類腸道微生物群的微生物群落的物種組成和功能進(jìn)行預(yù)測,發(fā)現(xiàn)鱖魚腸道微生物菌群物種的豐富度最高,并且代謝過程較為旺盛,推測這可能與鱸形目的抗病能力和適應(yīng)能力有關(guān)。深入了解魚類腸道微生物菌群的多樣性、組成與潛在功能,不僅可以更好地對微生態(tài)制劑使用和其水質(zhì)管理進(jìn)行調(diào)控,而且對魚類的健康養(yǎng)殖具有重要的參考價值。
關(guān)鍵詞:魚類;腸道微生物種群;鲇形目;鱸形目;鯉形目
中圖分類號:S917.1? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A? ? ? ? ? ? ? ? ? DOI:10.3969/j.issn.1007-7146.2023.02.007
The Diversity and Composition of Gut Microbiota in Six Species of Fish from the Dongting Lake Area
HE Simei, ZHANG Yangjun, ZHANG Ke, LI Kunyan, XIA Liqiu, HU Shengbiao*
(State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China)
Abstract: The gut microbiota in fish is a natural immune barrier, which can inhibit the colonization and proliferation of pathogenic microorganisms, so as to protect the fish from diseases. Dongting Lake is a vital fish and aquatic organisms habitat and gene pool, with more Cypriniformes and Perciformes species present than Siluriformes. The fish community structure and biodiversity in Dongting Lake have attracted extensive attentions, whereas the ecosystem has been damaged to a certain extent. Few studies have taken the characteristics of fish intestinal microbiota as a potential factor to improve the ecosystem of Dongting Lake. In order to detect the microbial community in important fish populations in Dongting Lake. The 16S rRNA high-throughput sequencing was used to characterize the gut bacterial community diversity, composition and potential functions of six fishes including Pelteobagrus fulvidraco, Siniperca chuatsi, Carassius auratus, Culter alburnus, Ctenopharyngodom idella, Hypophthalmichthys molitrix, which are in Siluriformes, Perciformes and Cypriniformes. There were five dominant phyla in all fish gut samples, including Fimicutes, Proteobacteria, Fusobacteriota, Actinobacteriota and Cyanobacteria. The bacterial composition of Cypriniformes and Perciformes was similar. The proportion of Cetobacterium in Siluriformes was high, while the proportion of Cetobacterium and Aeromonas in Cypriniformes were high. The species composition and function of the microbial community of the gut microbiota of the six fish species were predicted. We found that the species richness of the gut microbiota of Siniperca chuatsi was the highest, and the metabolic process was more vigorous. We speculated that this may be related to the disease resistance and adaptability of Perciformes. An in-depth understanding of the diversity, composition and potential functions of fish gut microbiota can not only better regulate the use of probiotics and their water quality management, but also have important reference values for the healthy breeding of fish.
Key words: fish; gut microbiota; Cypriniformes; Perciformes; Siluriformes
(Acta Laser Biology Sinica, 2023, 32(2): 153-159)
魚類約有20 000種,對維持水域生態(tài)系統(tǒng)功能穩(wěn)定具有實質(zhì)性的影響,是目前公認(rèn)的最受關(guān)注的水生生物之一[1]。魚類腸道微生物群是最大、最復(fù)雜的微生態(tài)系統(tǒng),其代謝產(chǎn)物對調(diào)節(jié)宿主健康、營養(yǎng)和免疫至關(guān)重要[2-3]。洞庭湖是長江重要的水生生物棲息地和資源庫[4],目前共有魚類11目113種,其中鯉形目(Siluriformes)、鱸形目(Perciformes)和鲇形目(Cypriniformes)最多[5]。Song等[6]利用基于16S rRNA基因的Illumina Miseq技術(shù)對普里茲灣海域4種南極魚類13個樣本的腸道微生物群落組成進(jìn)行了研究,發(fā)現(xiàn)腸道微生物群落較為相似,但相對豐度存在較大的差異。鯉魚(Cyprinus carpio)等野生魚類的細(xì)菌組成模式是之前研究的重點[7-8]。本研究主要集中分析鲇形目、鱸形目和鯉形目中包括黃顙魚(Pelteobagrus fulvidraco,PF)、鱖魚(Siniperca chuatsi,SC)、鯽魚(Carassius auratus,CA)、翹嘴魚(Culter alburnus,EI)、草魚(Ctenopharyngodom idella,CI)、鰱魚(Hypophthalmichthys molitrix,HM)的腸道微生物群落的多樣性和組成。
隨著研究技術(shù)和方法的進(jìn)步和發(fā)展,人們對腸道微生物群落研究結(jié)果的準(zhǔn)確性和可靠性越來越感興趣。從分子生物學(xué)方法[如變形梯度凝膠電泳(denaturing gradient gel electrophoresis, DGGE)[9]、末端限制性片段長度多態(tài)性(terminal-restriction fragment length polymorphism,T-RFLP)[10]、熒光原位雜交(fluorescence in situ hybridization,F(xiàn)ISH)[11]、實時熒光定量PCR(quantitative real-time PCR,RT-qPCR)[12]]到16S rRNA測序,再到相關(guān)組學(xué)研究?;诩?xì)菌表達(dá)的16S rRNA基因具有原核生物的特征,由高度保守和可變的區(qū)域組成,可以用于特定物種的鑒定[13]。本研究通過Illumina Miseq檢測16S rRNA基因的V3-V4可變區(qū)來評估魚類腸道的微生物多樣性[14-15],從而對洞庭湖區(qū)6種魚類腸道微生物群落的結(jié)構(gòu)和組成進(jìn)行了比較分析,有利于揭示魚類抗病性、營養(yǎng)特性和生長發(fā)育及品質(zhì)特性與腸道微生物群之間的關(guān)系。
1 材料與方法
1.1 材料
試驗魚樣品采集來自洞庭湖區(qū)安鄉(xiāng)縣6種本地魚(每種3尾),包括黃顙魚、鱖魚、鯽魚、翹嘴魚、草魚、鰱魚(表1),無病害癥狀。
1.2 魚腸道內(nèi)容物的提取
使用50 mg/L的三卡因(MS222)對魚進(jìn)行安樂死[16]。首先用75%酒精擦拭體表,在無菌條件下剪開腹部,用吸水紙吸干表面的血跡,用0.9%無菌生理鹽水多次沖洗腸道外壁。在無菌條件下,取出魚的整個腸道,并通過無菌解剖刀去除后腸內(nèi)容物,將回收的腸道內(nèi)容物存放于無菌離心管中,液氮速凍,保存于-80℃超低溫冰箱中備用[17-18]。
1.3 16S rRNA序列擴(kuò)增
使用細(xì)菌基因組 DNA 快速抽提試劑盒提取基因組DNA后,用1%瓊脂糖凝膠電泳檢測提取的基因組DNA。對16S rRNA基因高突變區(qū)V3-V4設(shè)計上下游引物338F(5'-ACTCCTACGGGAGGCAGCA-3')和806R(5'- GGACTACHVGGGTWTCTAAT-3'),并進(jìn)行PCR擴(kuò)增:95℃初始變性3 min;95℃變性30 s,53℃退火30 s,72℃延伸42 s,共29個循環(huán);最后72℃延伸10 min,10℃直至停止。PCR儀為ABI GeneAmp?9700。PCR試驗使用Trans Start Fastpfu DNA Polymerase轉(zhuǎn)基因AP221-02,20.0 μL反應(yīng)體系為:Fast Pfu Buffer(5×)4.0 μL、2.5 mmol/L dNTPs 2.0 μL、上游引物 (5 μmol/L) 0.8 μL、下游引物 (5 μmol/L) 0.8 μL、Fast Pfu Polymerase 0.4 μL、牛血清白蛋白(bovine serum albumin,BSA) 0.2 μL、基因組DNA模板10 ng,加ddH2O補足至20.0 μL。所有試驗操作均在潔凈房試驗條件下進(jìn)行,每個樣品重復(fù)3次。用2%瓊脂糖凝膠對PCR產(chǎn)物進(jìn)行電泳檢測。采用AxyPrepDNA凝膠回收試劑盒(AXYGEN公司)回收PCR產(chǎn)物。使用Tru SeqTM DNA Sample Prep Kit(美國Illumina公司)構(gòu)建Paired-End(PE)擴(kuò)增子文庫,Qubit定量,送至上海美吉生物醫(yī)藥科技有限公司Illumina Miseq平臺測序。
1.4 生物信息學(xué)分析
利用Qiime對Illumina Miseq平臺產(chǎn)生的原始數(shù)據(jù)進(jìn)行處理[19]。通過生信云在線軟件分析18個樣品,共獲得1 772 608條原始序列,有效序列為886 304條,有效堿基數(shù)為365 524 387個堿基,平均序列長度為412 bp。
2 結(jié)果與分析
2.1 腸道微生物群落Alpha-/Beta-多樣性分析
根據(jù)Shannon指數(shù)可知,SC組微生物多樣性最大,遠(yuǎn)高于HM組和PF組(P<0.001)(圖1a)。Chao指數(shù)顯示,CA組細(xì)菌群落的豐富度最高,與HM組(P<0.001)差異極顯著(圖1b)。此外,HM組的微生物群落多樣性和豐富度低于其他5組,即EI組、CA組、CI組、PF組和SC組(圖1a、1b)?;赽ray_curtis相異性的PCoA揭示了一個清晰的聚類模型,用于觀察不同魚類微生物群落之間的關(guān)系。PCoA得到的細(xì)菌組分通過PC1和PC2得到明顯的分離。例如,CI組分別與CA組和EI組無交聯(lián)(CA、CI和HM為鯉形目)(圖1c)。相似性分析(analysis of similarities,ANOSIM)顯示,6種魚類微生物群落(R2=0.623 5,P<0.001)存在顯著差異,基于分類操作單元(operational taxonomic unit,OTU)分類,鯉形目(HM、EI、CA、CI)分別與鲇形目(PF)和鱸形目(SC)顯著不同(圖1d)。
2.2 腸道微生物群落的相對豐度差異檢驗
基于腸道微生物群落多樣性在結(jié)構(gòu)上表現(xiàn)出的顯著差異進(jìn)一步可視化了所有魚個體腸道細(xì)菌群落的分類組成。在OTU水平上,Venn圖顯示了每個魚類類群共有的和特有的OTU,其中共有的OTU有21個(圖2a)。根據(jù)生物學(xué)目間的分類,洞庭湖地區(qū)的6種魚類分為鲇形目、鱸形目和鯉形目,其中黃顙魚為鲇形目,鱖魚為鱸形目,鰱魚、翹嘴魚、鯽魚、草魚為鯉形目。此外,鲇形目、鱸形目和鯉形目中分別有111、1 154、1 404個OTU ,共有的OTU為93個(圖2b)。群落條形圖顯示了6種魚類腸道微生物群落的前35位優(yōu)勢種,以及鲇形目、鱸形目和鯉形目的前28位優(yōu)勢種(圖2c、2d)。此外,鯉形目中鰱魚、翹嘴魚、鯽魚、草魚的優(yōu)勢種屬差異較大:HM組中所占比例最高的是氣單胞菌屬(Aeromonas),EI組是羅姆布茨菌屬(Romboutsia),鯽魚為桿菌屬(Bacilli),CI組則為醋酸桿菌屬(Cetobacterium)和弧菌屬(Vibrio)(圖2c)。腸道微生物群落的分布中,厚壁菌門(Fimicutes)、變形桿菌門(Proteobacteria)、梭桿菌門(Fusobacteriota)、放線菌門(Actinobacteriota)和藍(lán)細(xì)菌門(Cyanobacteria)是前5個優(yōu)勢菌門(圖2e、2f)。
2.3 組間腸道微生物群落組成差異
這6種魚除了分類組成在結(jié)構(gòu)上存在差異外,腸道微生物的分類組成也十分豐富。在屬水平上,Kruskal-Wallis H組間分析發(fā)現(xiàn)這6種魚類存在顯著差異(P<0.05)(圖3a)。鲇形目、鱸形目和鯉形目之間的腸道微生物群落也表現(xiàn)出顯著差異(P<0.05)(圖3b)。盡管腸道微生物群落的優(yōu)勢菌門相似,但各種微生物的相對豐度卻差異顯著,可推測,這種差異是由于宿主生長、營養(yǎng)、免疫等因素造成的。此外,通過LefSe(LED effect size)分析鑒定鲇形目、鱸形目和鯉形目腸道細(xì)菌的不同豐度特征和相關(guān)類別。鲇形目中腸道細(xì)菌的門類主要為梭桿菌門,鱸形目為放線菌門,鯉形目為變形桿菌門(圖3c)。
2.4 腸道微生物群落功能預(yù)測
進(jìn)一步利用PICRUSt對6種魚類的微生物功能進(jìn)行評估和預(yù)測,發(fā)現(xiàn)最多的聚類是氨基酸、碳水化合物、輔酶、核苷酸、脂質(zhì)和無機(jī)物的轉(zhuǎn)運和代謝(圖4)。直源同源群集(clusters of ortholog groups,COG)功能分類統(tǒng)計柱狀圖提示,6種魚類腸道微生物群落的微生物功能特征差異不大,如能量的產(chǎn)生與轉(zhuǎn)換、氨基酸的轉(zhuǎn)運與代謝、核苷酸的轉(zhuǎn)運與代謝、碳水化合物的轉(zhuǎn)運與代謝、輔酶的轉(zhuǎn)運與代謝、脂質(zhì)的轉(zhuǎn)運與代謝、轉(zhuǎn)錄、細(xì)胞壁/膜/包膜生物合成等。
3 討論
魚類腸道細(xì)菌群落的形成是一個復(fù)雜的過程,不僅是養(yǎng)殖水體、飼料和環(huán)境的具體反映,也是機(jī)體抵御外來疾病入侵和定殖的重要屏障[20]。隨著微生物數(shù)據(jù)分析和高通量測序技術(shù)的進(jìn)步,腸道微生物群落將成為未來宿主和生態(tài)健康的一個衡量標(biāo)準(zhǔn)[21-22]。已有研究顯示,腸道微生物的優(yōu)勢菌門為厚壁菌門、變形菌門、擬桿菌門、放線菌門和梭桿菌門,其中厚壁菌門和擬桿菌門占腸道微生物群落的90%[23-25]。與大多數(shù)研究一致,魚腸道微生物菌落分析表明,厚壁菌門、變形菌門、梭桿菌門、放線菌門、藍(lán)細(xì)菌門是前5個優(yōu)勢菌門。無菌斑馬魚(Brachydanio rerio)試驗中的證據(jù)表明,腸道微生物群落促進(jìn)了脂肪的吸收和腸道上皮中脂滴的形成,其中厚壁菌門是關(guān)鍵的部分[26]。對虹鱒(Oncorhynchus mykiss)的研究表明,變形菌門的豐度占絕對優(yōu)勢,但關(guān)于變形菌對魚類的作用機(jī)制卻知之甚少[27-28]。各種魚之間OTU數(shù)量和菌群組成等都差異很大,推測可能與食性、環(huán)境適應(yīng)能力有關(guān)。其中,草魚為食草性動物,鱖魚和翹嘴魚為食肉性動物,鯽魚、黃顙魚和鰱魚為雜食性動物。本研究采用LEfSe分支圖對鲇形目、鱸形目和鯉形目腸道微生物的不同豐度特征及相關(guān)類別進(jìn)行可視化分析,為研究腸道微生物群落組成提供了一個更全面的依據(jù)。本研究在屬水平上使用了Kruskal-Wallis H Bar圖來分析腸道微生物的分類組成是否豐富。氣單胞菌屬、鯨桿菌屬、梭桿菌屬、分枝桿菌屬在鲇形目、鱸形目和鯉形目中存在顯著差異。據(jù)報道,氣單胞菌可以產(chǎn)生水解酶,因此被認(rèn)為是許多魚類正常腸黏膜中的必需成員[8]。從淡水魚類腸道中分離得到的鯨桿菌屬能夠產(chǎn)生維生素B12,如鯉魚和莫桑比克羅非魚(Tilapia mossambica)[29]。16S rRNA高通量測序提高了生成數(shù)據(jù)的相關(guān)性,而測序數(shù)據(jù)必須輔以代謝組學(xué)等類似技術(shù)才能完全掌握魚類腸道微生物種群定性和定量分類變化的功能影響[30]。
洞庭湖區(qū)魚類腸道微生物群落的研究為魚類健康養(yǎng)殖和疾病防控提供了重要基礎(chǔ)。本研究首次對洞庭湖區(qū)6種本地魚(鲇形目、鱸形目和鯉形目)的腸道微生物群落多樣性和組成進(jìn)行了研究,為優(yōu)化魚類功能飼料和微生態(tài)制劑、調(diào)節(jié)腸道微生物結(jié)構(gòu)和推動洞庭湖區(qū)魚類健康養(yǎng)殖產(chǎn)業(yè)發(fā)展提供了科學(xué)依據(jù)。
參考文獻(xiàn)(References):
[1] L?V?QUE C, OBERDORFF T, PAUGY D, et al. Global diversity of fish (pisces) in freshwater[J]. Hydrobiologia, 2008, 595(1): 545-567.
[2] ROOKS M G, GARRETT W S. Gut microbiota, metabolites and host immunity[J]. Nature Reviews Immunology, 2016, 16(6): 341-352.
[3] WU M, WU X, ZHU J, et al. Selenium-enriched and ordinary green tea extracts prevent high blood pressure and alter gut microbiota composition of hypertensive rats caused by high-salt diet[J]. Food Science and Human Wellness, 2022, 11(3): 738-751.
[4] LI G, CHEN W, ZHANG X, et al. Ecosystem service values in the Dongting Lake eco-economic zone and the synergistic impact of its driving factors[J]. International Journal of Environmental Research and Public Health, 2022, 19(5): 3121-3137.
[5] YUAN X, YANG X, GE H, et al. Temporal distribution of fish community structure in Dongting Lake estuary[J]. Agricultural Sciences, 2019, 10(3): 294-301.
[6] SONG W, LI L, HUANG H, et al. The gut microbial community of Antarctic fish detected by 16S rRNA gene sequence analysis[J]. BioMed Research International, 2016, 2016(15): 1-7.
[7] YE L, AMBERG J, CHAPMAN D, et al. Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish[J]. The ISME Journal, 2014, 8(3): 541-551.
[8] ZOU S, GONG L, KHAN T A, et al. Comparative analysis and gut bacterial community assemblages of grass carp and crucian carp in new lineages from the Dongting Lake area[J]. Microbiology Open, 2020, 9(5): 996-1013.
[9] STRATHDEE F, FREE A. Denaturing gradient gel electrophoresis (DGGE)[J]. Methods in Molecular Biology (Clifton, NJ), 2013, 1054: 145-157.
[10] MARSH T L. Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products[J]. Current Opinion in Microbiology, 1999, 2(3): 323-327.
[11] HU L, RU K, ZHANG L, et al. Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine[J]. Biomarker Research, 2014, 2(1): 3-15.
[12] GADKAR V Y, FILION M. New developments in quantitative real-time polymerase chain reaction technology[J]. Current Issues in Molecular Biology, 2014, 16: 1-6.
[13] SCHROEDER B O, B?CKHED F. Signals from the gut microbiota to distant organs in physiology and disease[J]. Nature Medicine, 2016, 22(10): 1079-1089.
[14] BUKIN Y S, GALACHYANTS Y P, MOROZOV I V, et al. The effect of 16S rRNA region choice on bacterial community metabarcoding results[J]. Scientific Data, 2019, 9(1): 94-107.
[15] CHEN Z, HUI P C, HUI M, et al. Impact of preservation method and 16S rRNA hypervariable region on gut microbiota profiling[J]. mSystems, 2019, 4(1): 271-288.
[16] TOPIC POPOVIC N, STRUNJAK-PEROVIC I, COZ-RAKOVAC R, et al. Tricaine methane-sulfonate (MS-222) application in fish anaesthesia: tricaine methane-sulfonate (MS-222) application[J]. Journal of Applied Ichthyology, 2012, 28(4): 553-564.
[17] WU S, REN Y, PENG C, et al. Metatranscriptomic discovery of plant biomass-degrading capacity from grass carp intestinal microbiomes[J]. FEMS Microbiology Ecology, 2015, 91(10): 107-115.
[18] GAJARDO K, RODILES A, KORTNER T M, et al. A high-resolution map of the gut microbiota in atlantic salmon (Salmo salar): a basis for comparative gut microbial research[J]. Scientific Reports, 2016, 6: 30893-30902.
[19] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336.
[20] LIU Z, LI A, WANG Y, et al. Comparative analysis of microbial community structure between healthy and Aeromonas veronii-infected Yangtze finless porpoise[J]. Microbial Cell Factories, 2020, 19(1): 123-134.
[21] SEHNAL L, BRAMMER-ROBBINS E, WORMINGTON A M, et al. Microbiome composition and function in aquatic vertebrates: small organisms making big impacts on aquatic animal health[J]. Frontiers in Microbiology, 2021, 12: 408-428.
[22] YANG H, WU J, DU H, et al. Quantifying the colonization of environmental microbes in the fish gut: a case study of wild fish populations in the Yangtze River[J]. Frontiers in Microbiology, 2022, 12: 409-420.
[23] ARUMUGAM M, RAES J, PELLETIER E, et al. Enterotypes of the human gut microbiome[J]. Nature, 2011, 473(7346): 174-180.
[24] RINNINELLA E, RAOUL P, CINTONI M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases[J]. Microorganisms, 2019, 7(1): 14-35.
[25] SHARMIN F, WAKELIN S, HUYGENS F, et al. Firmicutes dominate the bacterial taxa within sugar-cane processing plants[J]. Scientific Reports, 2013, 3: 3107-3113.
[26] SEMOVA I, CARTEN J D, STOMBAUGH J, et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish[J]. Cell Host & Microbe, 2012, 12(3): 277-288.
[27] LIU H, GUO X, GOONERATNE R, et al. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels[J]. Scientific Reports, 2016, 6: 24340-24351.
[28] MERRIFIELD D L, BURNARD D, BRADLEY G, et al. Microbial community diversity associated with the intestinal mucosa of farmed rainbow trout (Oncoryhnchus mykiss Walbaum)[J]. Aquaculture Research, 2009, 40(9): 1064-1072.
[29] SUGITA H, MIYAJIMA C, DEGUCHI Y. The vitamin B12-producing ability of the intestinal microflora of freshwater fish[J]. Aquaculture, 1991, 92: 267-276.
[30] TURNER P V. The role of the gut microbiota on animal model reproducibility[J]. Animal Models and Experimental Medicine, 2018, 1(2): 109-115.
收稿日期:2022-11-24;修回日期:2022-12-02。
基金項目:國家自然科學(xué)基金項目(32070090);湖南省發(fā)育生物工程與新產(chǎn)品合作創(chuàng)新中心項目(20134486)。
作者簡介:何思美,碩士研究生。
* 通信作者:胡勝標(biāo),教授,主要從事微生物分子生物學(xué)等方向的研究。E-mail: shengbiaohu@hunnu.edu.cn。