亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        心外膜脂肪組織在心血管疾病中研究進展

        2023-12-29 00:00:00王釗刁樹玲
        中國醫(yī)學(xué)創(chuàng)新 2023年31期

        【摘要】 心外膜脂肪組織(epicardial adipose tissue,EAT)在心血管疾?。╟ardiovascular disease,CVD)發(fā)展過程中起著重要作用,最近EAT越來越受到關(guān)注。EAT是位于心肌和心外膜內(nèi)臟層之間的一個獨特脂肪庫,它是一種可量化的、可改變的組織,具有局部和全身效應(yīng)的脂肪組織。EAT在一定程度參與心房顫動(atrial fibrillation,AF)、冠心病(coronary heart disease,CHD)、心力衰竭(heart failure,HF)的發(fā)生發(fā)展。在這篇綜述中,將討論EAT的解剖結(jié)構(gòu)和生理功能以及與心血管疾病的關(guān)系,還討論了EAT的測量方法和干預(yù)EAT的治療方法。

        【關(guān)鍵詞】 心外膜脂肪 冠心病 房顫 心力衰竭

        Research Progress of Epicardial Adipose Tissue in Cardiovascular Diseases/WANG Zhao, DIAO Shuling. //Medical Innovation of China, 2023, 20(31): -170

        [Abstract] Epicardial adipose tissue (EAT) plays an important role in the development of cardiovascular disease (CVD). Recently, EAT has attracted more and more attention. EAT is a unique fat pool between the heart muscle and the visceral layer of the epicardium. It is a quantifiable and changeable tissue with local and systemic effects. EAT is involved in the occurrence and development of atrial fibrillation (AF), coronary heart disease (CHD) and heart failure (HF) to a certain extent. In this review, we will discuss the anatomical structure and physiological function of EAT and its relationship with cardiovascular diseases, as well as the measurement methods of EAT and the treatment methods of ETA intervention.

        [Key words] Epicardial adipose tissue Coronary heart disease Atrial fibrillation Heart failure

        First-author's address: Binzhou Medical University Hospital, Binzhou 256603, China

        doi:10.3969/j.issn.1674-4985.2023.31.038

        盡管強化了心血管疾病的二級預(yù)防,仍有較大的心血管不良事件發(fā)生的風(fēng)險。肥胖作為心血管疾病的獨立危險因素,其體脂分布是心血管疾病的重要預(yù)測因子[1]。當皮下脂肪組織(subcutaneous adipose tissue,SAT)不能再儲存多余的營養(yǎng)物質(zhì)時,內(nèi)臟脂肪組織(visceral adipose tissue,VAT)就會增加。EAT作為一種VAT,它位于心肌表面和心包臟層之間,與心臟、冠狀動脈直接接觸。在生理條件下,EAT具有產(chǎn)熱和保護心臟等作用;而在病理狀態(tài)下,EAT通過分泌多種促炎細胞因子/脂肪因子,參與心血管疾病的發(fā)生發(fā)展[2]。但它可以通過經(jīng)胸超聲心動圖(transthoracic echocardiography,TTE)、計算機斷層掃描(computed tomography,CT)及磁共振成像(magnetic resonance imaging,MRI)等來測量,也可以通過一些治療方法可以干預(yù)EAT,例如降糖藥物、降脂藥物、運動和飲食等。該綜述的主要焦點是EAT,作為一種新的心血管疾病治療的新靶點。

        1 EAT解剖結(jié)構(gòu)和生理功能

        在胚胎學(xué)和形態(tài)學(xué)上,EAT與VAT相似,兩者都來自胸膜內(nèi)胚層[3]。在解剖學(xué)上,心臟周圍有兩種不同的脂肪組織,被稱為EAT和心包脂肪組織(pericardial adipose tissue,PAT),其中包括冠狀動脈周圍脂肪組織(perivascular adipose tissue,PVAT)。相比之下,PAT位于心包臟層和壁層之間,EAT位于心肌表面,與心臟之間沒有任何筋膜的隔離。EAT和PAT之間的血管供應(yīng)也有所不同,EAT是由冠狀動脈的分支提供,而PAT是來自乳腺內(nèi)動脈的分支[4]。EAT占整個心臟質(zhì)量的15%~20%,包裹約80%的心臟表面[5]。EAT主要覆蓋的心臟區(qū)域包括房室溝、室間溝以及冠狀動脈,它也可聚集在左心房表面、右心房前壁、右心室游離壁和左心室心尖[4]。

        EAT具有產(chǎn)熱、代謝和保護冠狀動脈、心肌的作用,其可以通過對游離脂肪酸(free fatty acids,F(xiàn)FAs)攝取調(diào)節(jié)心肌對FFAs代謝平衡,保護冠狀動脈和心肌,并FFAs氧化分解作為心臟的一種能量來源。EAT作為過量FFAs的局部存儲場所,防止血液中高濃度FFAs對心肌和冠狀動脈的毒性作用。EAT還作為一個旁分泌和內(nèi)分泌器官,可產(chǎn)生抗炎脂肪因子(如脂聯(lián)素、IL-1)、促炎脂肪因子(如瘦素、IL-6、TNF-α、CRP)、血管擴張劑(如NO、脂聯(lián)素、腎上腺髓質(zhì)素),以及血管收縮劑(如血管緊張素Ⅱ、內(nèi)皮素-1)[3]。在正常生理條件下,EAT可通過旁分泌抗炎脂肪細胞因子來心臟保護,在EAT功能障礙時,EAT分泌的平衡被破壞,保護性脂肪細胞因子的產(chǎn)生和分泌下降,而促炎脂肪因子的釋放增多,在心血管疾病發(fā)展中發(fā)揮潛在作用。

        2 EAT的測量

        目前,心外膜脂肪定量的方法主要包括TTE、CT、MRI。每種方法各有優(yōu)勢和不足,TTE常用于EAT厚度的測量,而CT和MRI主要用于EAT體積的測量。

        在TTE中,EAT為位于心包與心肌之間的高回聲區(qū)域,在右心室游離壁和心包頂部更為明顯。測量時采取左側(cè)臥位,超聲探頭垂直于主動脈瓣環(huán),取胸骨旁左心室長軸切面進行觀察,放置參考線穿過右心室游離壁和主動脈環(huán),然后在右心房收縮末期,測量心室游離壁和心包頂?shù)暮穸茸鳛镋AT的定量方法[6]。TTE價格便宜,應(yīng)用廣泛,而且它不具有輻射暴露,然而它存在一些重要的局限性,TTE不可以測量EAT體積,并且EAT易與心包積液混淆[7]。

        在CT中,EAT為低密度層,CT值閾值通常在-190~-30 HU,且EAT值閾值衰減與體積呈負相關(guān)[8]。EAT測量方法:首先在縱向上從肺動脈分叉處開始,止于左心室心尖水平,然后所有成像層面上的心包都被半自動地勾畫出來,使用手動勾畫每個層面上的EAT的輪廓,最后計算總EAT體積[9]。CT的優(yōu)勢是能清晰顯影EAT和PAT之間的心包結(jié)構(gòu),不足是具有電離輻射。此外,冠狀動脈CTA可評估是否存在冠狀動脈粥樣硬化斑塊以及管腔狹窄程度。

        在MRI中,MRI被認為是計算EAT體積最敏感的方法,與CT相比,MRI可以提高三維EAT體積測量。EAT可以在不同的CMR序列獲得的圖像,但常用電影序列/穩(wěn)態(tài)自由進動成像序列,EAT位于低信號心肌和心包臟層之間的高信號、淺灰色區(qū)域,可采用Simpson法計算EAT體積[7]。MRI雖較為敏感,但檢查耗時費力且價格昂貴,會增加患者負擔(dān),臨床應(yīng)用受限極大。

        3 EAT與心血管疾病

        3.1 EAT與心房顫動

        近來研究發(fā)現(xiàn),EAT可作為心房顫動獨立危險因素,并且EAT在心房顫動的發(fā)生、發(fā)展和復(fù)發(fā)中起著重要作用,其機制如炎癥和脂肪細胞浸潤、纖維化、氧化應(yīng)激都參與了心房顫動形成[10-11]。Ishii等[12]發(fā)現(xiàn)EAT纖維化重構(gòu)是心房心肌纖維化的重要影響因素,首先與心外膜中央脂肪細胞(central-EAT,C-EAT)相比,心外膜邊緣脂肪細胞(marginal-EAT,M-EAT)直徑越小,EAT的纖維化越嚴重,巨噬細胞和肌成纖維細胞的浸潤越豐富。其次EAT纖維化與C-EAT直徑呈正相關(guān),與M-EAT直徑呈負相關(guān),與C-EAT和M-EAT直徑比值呈正相關(guān)。并且持續(xù)性房顫患者EAT纖維化和心肌纖維化程度、C-EAT/M-EAT直徑比值和EAT值閾值衰減均大于陣發(fā)性房顫患者。發(fā)現(xiàn)持續(xù)性房顫患者EAT不均勻分布可能影響心房顫動或CHD的發(fā)生,EAT以心房為優(yōu)勢分布,CHD以心室為優(yōu)勢分布[13]。Dereli等[14]在隨訪262例非瓣膜性持續(xù)性房顫患者發(fā)現(xiàn)EAT厚度可預(yù)測心房顫動患者電轉(zhuǎn)復(fù)成功率和復(fù)發(fā)率。Maeda等[15]發(fā)現(xiàn)在經(jīng)過射頻消融(radiofrequency ablation,RFA)治療的心房顫動患者中,發(fā)現(xiàn)高EAT體積組易表現(xiàn)出心臟代謝紊亂、左心房擴張和左室功能障礙,并且是射頻消融術(shù)后心房顫動復(fù)發(fā)的獨立預(yù)測因子。最后EAT還與心房顫動患者發(fā)生缺血性腦卒相關(guān),經(jīng)過射頻消融術(shù)后治療的心房顫動患者無論是否復(fù)發(fā)、CHA2DS2-VASc評分如何、心房周圍EAT體積較大、既往有血栓栓塞病史和肌酐清除率較低,都與射頻消融術(shù)后出現(xiàn)缺血性腦卒獨立相關(guān)[16]。

        3.2 EAT與冠心病

        冠心病是一種以冠狀動脈粥樣硬化閉塞為特征,導(dǎo)致心肌氧需求和供應(yīng)之間的不匹配的慢性疾病,越來越多研究證明EAT與冠心病密切相關(guān)[3]。EAT功能失調(diào)導(dǎo)致促炎脂肪因子(瘦素、抵抗素、單噬菌體趨化蛋白-1和IL-8)產(chǎn)生而增加,促進單核細胞遷移和激活到巨噬細胞,進而釋放額外的細胞因子,導(dǎo)致進一步的炎癥,其炎癥參與冠心病所有階段,從早期動脈粥樣硬化發(fā)生到最終的斑塊破裂和動脈粥樣硬化血栓形成[17]。Shambu等[18]發(fā)現(xiàn)EAT厚度與冠心病的存在和嚴重程度相關(guān)。在一項回顧性研究中發(fā)現(xiàn)大于65歲的患者中EAT厚度與冠狀動脈微血管功能障礙獨立相關(guān),還可以預(yù)測是否存在冠狀動脈微血管功能障礙的患者[19]。EAT還可以預(yù)測冠狀動脈痙攣、ST段抬高型心肌梗死患者病變血管TIMI血流較低以及心肌梗死后出現(xiàn)室性心律失常、早期充血性心力衰竭和心臟破裂的風(fēng)險[20-21]。最后,EAT被認為通過調(diào)節(jié)心肌梗死后調(diào)節(jié)粒細胞生成、纖維化和最終的心功能來影響心肌愈合[3,22]。

        3.3 EAT與心力衰竭

        心力衰竭是各種心血管疾病發(fā)展的終末階段,以心肌收縮或舒張功能下降不能滿足機體代謝需要為主要表現(xiàn)。近來研究發(fā)現(xiàn),隨著EAT體積的增加心臟充盈壓和容量負荷同時也增加,也可以隨著EAT心肌浸潤,破壞了心肌結(jié)構(gòu),促進心肌纖維化[23]。文獻[24]研究發(fā)現(xiàn)心力衰竭患者EAT厚度明顯增加,并與2型糖尿病和心房顫動有關(guān),此外,還發(fā)現(xiàn)EAT與心肌損傷、血糖水平和腎功能不全的生物標志物相關(guān)。Zhu等[25]發(fā)現(xiàn)肥胖患者左室舒張功能降低與脂肪分布相關(guān),其EAT和SAT可能比體重指數(shù)更能預(yù)測舒張功能不全。Gorter等[26]發(fā)現(xiàn)在射血分數(shù)保留型心力衰竭中,肥胖、右心室EAT體積增加與右心室充盈壓力增加和室壁運動障礙有關(guān)[27]。在收縮性或舒張性心力衰竭患者中,EAT體積與心肌細胞體積呈正相關(guān),EAT體積也隨著心功能的下降而增加,獨立于其他心肌纖維化危險因素[28]。Parisi等[29]發(fā)現(xiàn)EAT在預(yù)測接受植入性心律轉(zhuǎn)復(fù)除顫儀(ICD)治療的心力衰竭患者的臨床預(yù)后具有潛在的二級預(yù)防作用,還發(fā)現(xiàn)EAT具有促進心肌纖維化和腎上腺素能紊亂的病理特性,從而影響心力衰竭發(fā)生發(fā)展以及預(yù)后,并有利于心律失常底物的發(fā)展。最后發(fā)現(xiàn)經(jīng)過減肥手術(shù),隨著EAT體積減小,全身炎癥反應(yīng)和心力衰竭的風(fēng)險也降低,還發(fā)現(xiàn)手術(shù)切除EAT可以改善心室的結(jié)構(gòu)和功能[30]。

        4 EAT治療策略

        4.1 降糖藥物

        雙胍類藥物(Metformin)是常見2型糖尿病的治療藥物,該藥物通過活化AMP蛋白激酶(AMPK)的途徑促進糖異生、葡萄糖攝取、糖酵解和糖原合成發(fā)揮降糖作用。研究發(fā)現(xiàn)通過二甲雙胍單藥治療3個月后,治療組顯著降低了2型糖尿病患者的EAT厚度[31]。

        鈉-葡萄糖共轉(zhuǎn)運體(SGLT-2)抑制劑是通過抑制近球腎小管對葡萄糖的重吸收,降低腎糖閾、促進尿糖排泄。有兩項不同的臨床研究探討SGLT-2抑制劑對EAT的影響。在一項隨訪6個月的隨訪研究中,與基線組相比降糖藥物降低了EAT的體積,其中達格列凈效果更明顯[32]。另一項研究發(fā)現(xiàn),在二甲雙胍中加入達格列凈可顯著減少EAT體積,并且與體重減輕無關(guān)[33]。其他SGLT-2抑制劑(包括魯格列凈、卡格列凈)與達格列凈有相同作用[34-35]。

        胰高血糖素樣肽1(GLP-1)可以依賴葡萄糖濃度的方式促進胰島素分泌,減少胰高血糖素的分泌。EAT具有GLP-1和GLP-2作用的潛在靶點,GLP-1受體激活參與FFAs氧化和促進白色脂肪分化為棕色脂肪基因表達,因此,GLP-1可能以EAT GLP-1受體為靶點,減少局部脂肪形成、提高脂肪利用和誘導(dǎo)棕色脂肪分化[36]。一項研究發(fā)現(xiàn)在應(yīng)用索馬魯肽和杜拉魯肽治療3個月后均能降低2型糖尿病患者的EAT體積[37]。還有研究發(fā)現(xiàn)二甲雙胍中利拉魯肽也可顯著降低EAT體積[38]。

        噻唑烷二酮類藥物(TZDs)通過激活過氧化物酶體增殖物激活受體(PPAR)起作用,增加靶組織對胰島素作用的敏感性而降低血糖。吡格列酮在治療2型糖尿病中已被證明通過降低促炎白細胞介素(如IL-1β、IL-1Ra和IL-10)的表達來減輕EAT的炎癥特征[11,39]。

        二肽基肽酶4抑制劑(DDP-4)通過抑制內(nèi)源性多肽高血糖素樣肽-1(GLP-1)和葡萄糖依賴的促胰島素肽(GIP)的降解來發(fā)揮降血糖作用。在一項6個月研究,招募了26名通過西格列汀單藥治療2型糖尿病患者,結(jié)果顯示西格列汀可減少EAT體積[從(9.98±2.63)mm減少到(8.10±2.11)mm,下降15%][40]。

        4.2 他汀類藥物

        他汀類藥物已被證明可以減少EAT的體積,不是依賴降低低密度脂蛋白(L-LDL)作用,而是它的抗炎作用。在一項主動脈瓣狹窄(AS)術(shù)后患者研究中表明他汀類藥物治療與EAT厚度和炎癥特征之間存在關(guān)聯(lián),并他汀類藥物抗炎作用是直接作用于EAT,并與TTE上EAT厚度的減少相平行[41]。在另一項研究表明隨著時間的推移他汀類藥物誘導(dǎo)EAT值閾值衰減減少,還發(fā)現(xiàn)他汀類藥物通過減少細胞數(shù)量、血管供應(yīng)和炎癥,導(dǎo)致EAT代謝活性的降低[42]。因此EAT是他汀類藥物治療的潛在新靶點。

        4.3 其他方法

        運動、飲食可以減少心臟脂肪組織體積,其耐力訓(xùn)練在減少EAT優(yōu)于阻力訓(xùn)練,低碳水化合物飲食在減少EAT量方面優(yōu)于低脂飲食[43]。

        5 總結(jié)

        EAT的解剖位置決定了它在心血管疾病中的獨特相關(guān)性。EAT不僅僅是一個儲脂組織,還是一個復(fù)雜的分泌器官,直接和間接地參與多種心血管疾病的發(fā)生發(fā)展。EAT常規(guī)采用TTE、CT 及MRI等可對其厚度和體積進行評估,藥物治療、運動和飲食方法可以降低 EAT厚度和體積,改善EAT炎癥狀態(tài)和代謝紊亂,恢復(fù)其對冠脈/心肌的保護作用,這為臨床心血管疾病的診斷、預(yù)后及危險分層提供了新的途徑。

        參考文獻

        [1] EI EI KHAING N,SHYONG T E,LEE J,et al.Epicardial and visceral adipose tissue in relation to subclinical atherosclerosis in a Chinese population[J/OL].PLoS One,2018,13(4):e0196328.https://journals.plos.org/plosone/ar ticle?id=10.1371/journal.pone.0196328.

        [2] CONCEI??O G,MARTINS D,MIRANDA I M,et al.

        Unraveling the role of epicardial adipose tissue in coronary artery disease:partners in crime?[J].Int J Mol Sci,2020,21(22):8866.

        [3] ANSALDO A M,MONTECUCCO F,SAHEBKAR A,et al.

        Epicardial adipose tissue and cardiovascular diseases[J].Int J Cardiol,2019,278:254-260.

        [4] BERG G,MIKSZTOWICZ V,MORALES C,et al.Epicardial adipose tissue in cardiovascular disease[J].Adv Exp Med Biol,2019,1127:131-143.

        [5] ADAMI G F,CARBONE F,MONTECUCCO F,et al.Adipose tissue composition in obesity and after bariatric surgery[J].Obes Surg,2019,29(9):3030-3038.

        [6] YAMAGUCHI S,OTAKI Y,TAMARAPPOO B,et al.The association between epicardial adipose tissue thickness around the right ventricular free wall evaluated by transthoracic echocardiography and left atrial appendage function[J].Int J Cardiovasc Imaging,2020,36(4):585-593.

        [7] MONTI C B,CODARI M,DE CECCO C N,et al.Novel imaging biomarkers:epicardial adipose tissue evaluation[J].The British Journal of Radiology,2020,93(1113):20190770.

        [8] LIU Z,WANG S,WANG Y,et al.Association of epicardial adipose tissue attenuation with coronary atherosclerosis in patients with a high risk of coronary artery disease[J].Atherosclerosis,2019,284:230-236.

        [9] XU L,XU Y,COULDEN R,et al.Comparison of epicardial adipose tissue radiodensity threshold between contrast and non-contrast enhanced computed tomography scans:a cohort study of derivation and validation[J].Atherosclerosis,2018,275:74-79.

        [10] GAETA M,BANDERA F,TASSINARI F,et al.Is epicardial fat depot associated with atrial fibrillation?A systematic review and meta-analysis[J].Europace,2017,19(5):747-752.

        [11] ZHOU M,WANG H,CHEN J,et al.Epicardial adipose tissue and atrial fibrillation:possible mechanisms,potential therapies,and future directions[J].Pacing Clin Electrophysiol,2020,43(1):133-145.

        [12] ISHII Y,ABE I,KIRA S,et al.Detection of fibrotic remodeling of epicardial adipose tissue in patients with atrial fibrillation:imaging approach based on histological observation[J].Heart Rhythm O2,2021,2(4):311-323.

        [13] HASEBE H,YOSHIDA K,NOGAMI A,et al.Difference in epicardial adipose tissue distribution between paroxysmal atrial fibrillation and coronary artery disease[J].Heart Vessels,2020,35(8):1070-1078.

        [14] DERELI S,BAYRAMOGLU A,YONTAR O C,et al.

        Epicardial fat thickness:a new predictor of successful electrical cardioversion and atrial fibrillation recurrence[J].Echocardiography,2018,35(12):1926-1931.

        [15] MAEDA M,OBA K,YAMAGUCHI S,et al.Usefulness of epicardial adipose tissue volume to predict recurrent atrial fibrillation after radiofrequency catheter ablation[J].Am J Cardiol,2018,122(10):1694-1700.

        [16] AHN J,SHIN S Y,SHIM J,et al.Association between epicardial adipose tissue and embolic stroke after catheter ablation of atrial fibrillation[J].J Cardiovasc Electrophysiol,2019,30(11):2209-2216.

        [17] GUGLIELMO M,LIN A,DEY D,et al.Epicardial fat and coronary artery disease:role of cardiac imaging[J].Atherosclerosis,2021,321:30-38.

        [18] SHAMBU S K,DESAI N,SUNDARESH N,et al.Study of correlation between epicardial fat thickness and severity of coronary artery disease[J].Indian Heart J,2020,72(5):445-447.

        [19] MAHMOUD I,DYKUN I,KARNER L,et al.Epicardial adipose tissue differentiates in patients with and without coronary microvascular dysfunction[J].Int J Obes (Lond),2021,45(9):2058-2063.

        [20] KATAOKA T,HARADA K,TANAKA A,et al.Relationship between epicardial adipose tissue volume and coronary artery spasm[J].Int J Cardiol,2021,324:8-12.

        [21] MOHAMED A.Predicting mortality and no-reflow in STEMI patients using epicardial adipose tissue[J].Clin Cardiol,2021,44(10):1371-1376.

        [22] HORCKMANS M,BIANCHINI M,SANTOVITO D,et al.

        Pericardial adipose tissue regulates granulopoiesis,fibrosis,and cardiac function after myocardial infarction[J].Circulation,2018,137(9):948-960.

        [23] VAN WOERDEN G,VAN VELDHUISEN D J,GORTER T M,et al.Importance of epicardial adipose tissue localization using cardiac magnetic resonance imaging in patients with heart failure with mid-range and preserved ejection fraction[J].Clin Cardiol,2021,44(7):987-993.

        [24] VAN WOERDEN G,GORTER T M,WESTENBRINK B D,et al.Epicardial fat in heart failure patients with mid-range and preserved ejection fraction[J].Eur J Heart Fail,2018,20(11):1559-1566.

        [25] ZHU L,GU S,WANG Q,et al.Left ventricular myocardial deformation:a study on diastolic function in the Chinese male population and its relationship with fat distribution[J].Quant Imaging Med Surg,2020,10(3):634-645.

        [26] GORTER T M,VAN WOERDEN G,RIENSTRA M,et al.

        Epicardial adipose tissue and invasive hemodynamics in heart failure with preserved ejection fraction[J].JACC Heart Fail,2020,8(8):667-676.

        [27] KOEPP K E,OBOKATA M,REDDY Y N V,et al.

        Hemodynamic and functional impact of epicardial adipose tissue in heart failure with preserved ejection fraction[J].JACC Heart Fail,2020,8(8):657-666.

        [28] WU C K,TSAI H Y,SU M M,et al.Evolutional change in epicardial fat and its correlation with myocardial diffuse fibrosis in heart failure patients[J].J Clin Lipidol,2017,11(6):1421-1431.

        [29] PARISI V,CONTE M,PETRAGLIA L,et al.Echocardiographic epicardial adipose tissue thickness for risk stratification of patients with heart failure[J].Front Physiol,2020,11:43.

        [30] PACKER M.Epicardial Adipose Tissue may mediate deleterious effects of obesity and inflammation on the myocardium[J].J Am Coll Cardiol,2018,71(20):2360-2372.

        [31] ZIYREK M,KAHRAMAN S,OZDEMIR E,et al.Metformin monotherapy significantly decreases epicardial adipose tissue thickness in newly diagnosed type 2 diabetes patients[J].Rev Port Cardiol(Engl Ed),2019,38(6):419-423.

        [32] SATO T,AIZAWA Y,YUASA S,et al.The effect of dapagliflozin treatment on epicardial adipose tissue volume[J].Cardiovasc Diabetol,2018,17(1):6.

        [33] IACOBELLIS G,GRA-MENENDEZ S.Effects of Dapagliflozin on epicardial fat thickness in patients with type 2 diabetes and obesity[J].Obesity (Silver Spring),2020,28(6):1068-1074.

        [34] BOUCHI R,TERASHIMA M,SASAHARA Y,et al.

        Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes:a pilot study[J].Cardiovasc Diabetol,2017,16(1):32.

        [35] YAGI S,HIRATA Y,ISE T,et al.Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus[J].Diabetol Metab Syndr,2017,9(1):78.

        [36] DOZIO E,VIANELLO E,MALAVAZOS A E,et al.Epicardial adipose tissue GLP-1 receptor is associated with genes involved in fatty acid oxidation and white-to-brown fat differentiation:A target to modulate cardiovascular risk?[J].Int J Cardiol,2019,292:218-224.

        [37] IACOBELLIS G,VILLASANTE FRICKE A C.Effects of Semaglutide versus Dulaglutide on epicardial fat thickness in subjects with type 2 diabetes and obesity[J].J Endocr Soc,2020,4(4):bvz042.

        [38] IACOBELLIS G,MOHSENI M,BIANCO S D,et al.

        Liraglutide causes large and rapid epicardial fat reduction[J].Obesity (Silver Spring),2017,25(2):311-316.

        [39] XOURGIA E,PAPAZAFIROPOULOU A,MELIDONIS A.Effects of antidiabetic drugs on epicardial fat[J].World J Diabetes,2018,9(9):141-148.

        [40] LIMA-MARTINEZ M M,PAOLI M,RODNEY M,et al.Effect of Sitagliptin on epicardial fat thickness in subjects with type 2 diabetes and obesity:a pilot study[J].Endocrine,2016,51(3):448-455.

        [41] PARISI V,PETRAGLIA L,D'ESPOSITO V,et al.Statin therapy modulates thickness and inflammatory profile of human epicardial adipose tissue[J].Int J Cardiol,2019,274:326-330.

        [42] RAGGI P,GADIYARAM V,ZHANG C,et al.Statins reduce epicardial adipose tissue attenuation independent of lipid lowering:a potential pleiotropic effect[J/OL].J Am Heart Assoc,2019,8(12):e013104.https://www.ahajournals.org/doi/full/10.1161/JAHA.119.013104.

        [43] LAUNBO N,ZOBEL E H,VON SCHOLTEN B J,et al.

        Targeting epicardial adipose tissue with exercise,diet,bariatric surgery or pharmaceutical interventions:a systematic review and meta-analysis[J/OL].Obes Rev,2021,22(1):e13136.https://onlinelibrary.wiley.com/doi/10.1111/obr.13136.

        (收稿日期:2023-03-01) (本文編輯:田婧)

        日韩精品成人无码AV片| 亚洲热妇无码av在线播放| 伊人久久五月丁香综合中文亚洲| 亚洲熟妇AV一区二区三区宅男| 有码中文字幕一区二区| 免费在线观看播放黄片视频| 69一区二三区好的精华| 无码不卡高清毛片免费 | 人妻少妇精品视频一区二区三| 欧美日韩亚洲中文字幕二区| 学生妹亚洲一区二区| 99久久久久久亚洲精品 | 91中文人妻熟女乱又乱| 中文字幕一区二区人妻性色| 精品无码AⅤ片| 成人在线视频亚洲国产| 欧美性猛交xxx嘿人猛交| 特级av毛片免费观看| 国产va精品免费观看| 国产又色又爽的视频在线观看91| 边添小泬边狠狠躁视频| 国自产偷精品不卡在线| 丰满少妇又紧又爽视频| 侵犯了美丽丰满人妻中文字幕 | 欧美性猛交xxxx乱大交3| 亚洲欧洲精品成人久久曰不卡| 91国语对白在线观看| 亚洲国产精品18久久久久久| 真人无码作爱免费视频禁hnn| 亚洲一区二区自拍偷拍| 国产二区中文字幕在线观看| 青青草原亚洲| 美女裸体自慰在线观看| 国产一区二区三区四区色| 国产视频一区二区三区在线免费| 亚洲日韩精品无码专区网站| 国产午夜精品久久久久99| 字幕网中文字幕精品一区| 久久精品aⅴ无码中文字字幕| 亚洲白白色无码在线观看| 亚洲av免费高清不卡|