李昊巖 許海平,3 陳 曦,3
定子無鐵心永磁無刷直流電機(jī)驅(qū)動(dòng)拓?fù)湓O(shè)計(jì)方案及對(duì)比
李昊巖1,2許海平1,2,3陳 曦1,2,3
(1. 中國(guó)科學(xué)院電工研究所中國(guó)科學(xué)院電力電子與電氣驅(qū)動(dòng)重點(diǎn)實(shí)驗(yàn)室 北京 100190 2. 中國(guó)科學(xué)院大學(xué) 北京 100049 3. 齊魯中科電工先進(jìn)電磁驅(qū)動(dòng)技術(shù)研究院 濟(jì)南 250100)
單級(jí)三相全橋驅(qū)動(dòng)拓?fù)錈o法保證力矩控制模式的定子無鐵心永磁無刷直流電機(jī)在全電流指令范圍內(nèi)電樞電流連續(xù)。采用增加電樞回路等效電氣時(shí)間常數(shù)的思路,選取Buck+半橋、全橋串聯(lián)電感、Buck+全橋三種驅(qū)動(dòng)拓?fù)?,?duì)三種驅(qū)動(dòng)拓?fù)浔WC電機(jī)正常運(yùn)行的條件以及不同驅(qū)動(dòng)拓?fù)涞墓逃袑傩赃M(jìn)行理論分析、說明和對(duì)比。在基于數(shù)字控制器的三種驅(qū)動(dòng)平臺(tái)上,使用同一臺(tái)電機(jī)進(jìn)行實(shí)驗(yàn)驗(yàn)證。實(shí)驗(yàn)結(jié)果表明,三種驅(qū)動(dòng)拓?fù)渚鼙WC電機(jī)的正常運(yùn)行,實(shí)測(cè)電流波形證明了關(guān)于拓?fù)涮攸c(diǎn)的理論分析的合理性。對(duì)三種驅(qū)動(dòng)拓?fù)鋵?shí)測(cè)穩(wěn)態(tài)運(yùn)行性能進(jìn)行了詳細(xì)的數(shù)學(xué)分析,為小功率無鐵心永磁無刷直流電機(jī)的工程應(yīng)用提供了參考依據(jù)。
定子無鐵心 永磁無刷直流電機(jī) Buck+半橋 全橋串聯(lián)電感 Buck+全橋
反作用飛輪或動(dòng)量輪是一種衛(wèi)星姿態(tài)控制的執(zhí)行機(jī)構(gòu)。通過控制電機(jī)的電能流動(dòng)方向,使衛(wèi)星受到沿電機(jī)軸向的反作用力矩。多個(gè)動(dòng)量輪組合可實(shí)現(xiàn)衛(wèi)星的三軸姿態(tài)穩(wěn)定[1]。由于電機(jī)工作在空間環(huán)境,氣動(dòng)阻力可忽略不計(jì);軸承加工及潤(rùn)滑技術(shù)的發(fā)展保證了動(dòng)量輪軸承在長(zhǎng)壽命中維持極低的摩擦阻力。根據(jù)需求,期望動(dòng)量輪的輸出力矩大范圍連續(xù)可調(diào),但并不需要較大功率的輸出,因此電機(jī)工作在力矩控制模式下的空載狀態(tài)。
無刷直流電機(jī)(Brushless Direct Current Motor, BLDCM)因其具有結(jié)構(gòu)簡(jiǎn)單、效率高、功率密度高、壽命長(zhǎng)、機(jī)械性能好等優(yōu)點(diǎn),被廣泛地應(yīng)用于新能源汽車、醫(yī)療器械、航空航天、船舶推進(jìn)、風(fēng)力發(fā)電等多種功率等級(jí)的領(lǐng)域[2-6]。近年來出現(xiàn)的定子無鐵心設(shè)計(jì)具有以下優(yōu)點(diǎn):①消除了定子鐵心損耗和渦流損耗[7],意味著在一定程度上提升了電機(jī)的功率密度;②由于定子受力繞組的支撐部件使用非導(dǎo)磁復(fù)合材料制成,采用無齒槽設(shè)計(jì)進(jìn)一步消除了定子槽引起的磁鏈諧波[8]及由永磁體和定子鐵心作用引起的齒槽轉(zhuǎn)矩[9];③定子繞組不再受到定子齒槽的約束,繞組的設(shè)計(jì)和安裝更加靈活,無鐵心電機(jī)氣隙較大,定子繞組反電動(dòng)勢(shì)分布引起的諧波可忽略不計(jì)[10],同時(shí)大氣隙意味著在大的電樞電流激勵(lì)下難以產(chǎn)生磁飽和情況,在定子繞組散熱允許的條件下,電機(jī)具有強(qiáng)過載能力;④定子無鐵心設(shè)計(jì)在尺寸和質(zhì)量上具有優(yōu)勢(shì)。因此無鐵心電機(jī)適用于小功率空載模式的空間應(yīng)用。
但是,無鐵心電機(jī)電感值極小,僅有幾個(gè)到幾十個(gè)mH。小功率的無鐵心電機(jī)會(huì)產(chǎn)生很大的電流脈動(dòng),給電機(jī)繞組的相電流帶來高次諧波,電機(jī)驅(qū)動(dòng)在開關(guān)頻率較低、輸出電流較小的時(shí)候會(huì)存在電流斷續(xù)的問題,嚴(yán)重時(shí)會(huì)導(dǎo)致電機(jī)無法正常運(yùn)行,甚至在起動(dòng)過程中,電樞繞組發(fā)生直通短路,損毀控制器或燒毀電機(jī)定子繞組[7]。
根據(jù)文獻(xiàn)[7],為解決無法正常運(yùn)行的問題,小電感電機(jī)的控制通常有以下四種改進(jìn)思路:①高開關(guān)頻率寬禁帶功率器件逆變器控制;②電壓源型逆變器串聯(lián)諧波濾波器控制;③電流源型逆變器控制;④多電平逆變器控制。
高開關(guān)頻率寬禁帶功率器件逆變器是指不改變?nèi)嗳珮蝌?qū)動(dòng)拓?fù)?,僅通過大幅提升開關(guān)頻率來維持電流的連續(xù)。文獻(xiàn)[11]為將電機(jī)電流峰峰值限制在額定電流的10%,將開關(guān)頻率選取為100 kHz。文獻(xiàn)[12]為抑制小電感電機(jī)在換相區(qū)的轉(zhuǎn)矩脈動(dòng),重疊換向控制的開關(guān)頻率為200 kHz。為保證電樞繞組電流連續(xù),使用的開關(guān)頻率會(huì)大幅增加[13],這導(dǎo)致開關(guān)損耗急劇上升,進(jìn)而減少半導(dǎo)體器件壽命,降低了可靠性[14]。
電壓源型逆變器串聯(lián)諧波濾波器控制是指在三相全橋逆變器的基礎(chǔ)上,額外增加一組濾波器,增大系統(tǒng)的電氣時(shí)間常數(shù)。這種方式通常像文獻(xiàn)[15-16]一樣,使用由電感、電容構(gòu)成的濾波器對(duì)脈沖寬度調(diào)制(Pulse Width Modulation, PWM)斬波輸出進(jìn)行濾波。但是,增加一組濾波器后,需要經(jīng)過計(jì)算,以防止造成系統(tǒng)的不穩(wěn)定。等效相電感增大又會(huì)導(dǎo)致?lián)Q相區(qū)續(xù)流時(shí)間延長(zhǎng),當(dāng)電機(jī)轉(zhuǎn)速提高時(shí),換相區(qū)對(duì)一拍工作區(qū)間占比增大,若不加以控制,電機(jī)內(nèi)部長(zhǎng)時(shí)間存在不控環(huán)流。大電感降低了電流控制響應(yīng),傳統(tǒng)大電感電機(jī)在高速時(shí)電流滯后導(dǎo)致的轉(zhuǎn)矩性能下降等問題又將浮現(xiàn)。另外,額外三個(gè)功率電感增加了體積和成本。
電流源型逆變器是在三相逆變直流母線側(cè)增加前級(jí)DC-DC變換器。前級(jí)電流型變換器做電流閉環(huán)控制,輸出穩(wěn)定電流,根據(jù)電機(jī)轉(zhuǎn)速調(diào)壓,實(shí)現(xiàn)后級(jí)逆變器的脈沖幅度調(diào)制(Pulse Amplitude Modulation, PAM)控制,同時(shí)極大地削弱了單級(jí)式全橋拓?fù)銹WM斬波引起的轉(zhuǎn)矩脈動(dòng)。后級(jí)電流型逆變器僅起換相的作用。因此,可使用三相全橋或三相半橋等多種拓?fù)洹,F(xiàn)如今很多文獻(xiàn)都采用雙級(jí)式驅(qū)動(dòng)拓?fù)浞桨竵眚?qū)動(dòng)無鐵心無刷直流電機(jī)。文獻(xiàn)[17-19]皆使用Buck變換器作為前級(jí)電路,Buck變換器功率電感兼具濾波作用,因此是小電感電機(jī)雙級(jí)式驅(qū)動(dòng)拓?fù)渲凶畛S玫那凹?jí)電路。文獻(xiàn)[20]中使用Boost作為前級(jí)電路,用作對(duì)直流母線電壓進(jìn)行升壓,主要實(shí)現(xiàn)高速應(yīng)用。文獻(xiàn)[21]提出使用Sepic變換器作為前級(jí)電路,用來調(diào)節(jié)直流母線電壓以解決換相區(qū)的脈動(dòng)問題。文獻(xiàn)[22]使用Cuk變換器作為前級(jí)電路,并進(jìn)一步使用三電平中點(diǎn)鉗位逆變器來代替兩電平逆變器。文獻(xiàn)[23-24]針對(duì)大功率盤式無鐵心電機(jī)設(shè)計(jì)了前級(jí)斬波電路,可有效削弱轉(zhuǎn)矩脈動(dòng)。
多電平逆變器通常適用于大功率電機(jī),多級(jí)階梯電壓輸出方式可以針對(duì)電機(jī)轉(zhuǎn)速,給定合適的電壓幅值,文獻(xiàn)[11]使用二極管鉗位三電平逆變器電路拓?fù)潋?qū)動(dòng)小電感電機(jī)。但針對(duì)小功率電機(jī),尤其是電壓等級(jí)低的電機(jī)應(yīng)用較少。
除上述針對(duì)基本驅(qū)動(dòng)拓?fù)涞难芯客猓晕墨I(xiàn)[25]開始,現(xiàn)有文獻(xiàn)對(duì)無刷直流電機(jī)的研究[22, 25-30]大多針對(duì)大電感直流無刷電機(jī)換相區(qū)的轉(zhuǎn)矩脈動(dòng),且出于標(biāo)準(zhǔn)梯形波反電動(dòng)勢(shì)的假設(shè)。但無鐵心電機(jī)換相區(qū)很短,與普通無刷直流電機(jī)性能的優(yōu)化方法存在一定差別。本文針對(duì)使用Halbach[31]方案設(shè)計(jì)的非理想反電動(dòng)勢(shì)無鐵心電機(jī)電流脈動(dòng)大的特點(diǎn),驅(qū)動(dòng)拓?fù)涞母倪M(jìn)思路就是增加整個(gè)系統(tǒng)的電機(jī)時(shí)間常數(shù)。其中雙級(jí)式驅(qū)動(dòng)拓?fù)溥x擇Buck變換器作為前級(jí)電路,利用其輸出濾波電感為后級(jí)逆變器提供穩(wěn)定電流并根據(jù)轉(zhuǎn)速調(diào)壓,后級(jí)電流型逆變器分別選擇三相半橋和三相全橋拓?fù)溆靡詫?duì)比。同時(shí)研究單級(jí)三相全橋級(jí)聯(lián)電感器的拓?fù)涞目尚行浴?/p>
分析三種驅(qū)動(dòng)拓?fù)涞奶攸c(diǎn)。首先,從理論上分析單級(jí)全橋拓?fù)潆娏鲾嗬m(xù)的問題;然后,根據(jù)增加電樞回路等效時(shí)間常數(shù)的思路,提出不同拓?fù)涞母倪M(jìn)方法,并進(jìn)一步分析三種拓?fù)涞臄?shù)學(xué)模型;最后,使用平均電流控制,分析三種拓?fù)潋?qū)動(dòng)同一臺(tái)無鐵心直流無刷電機(jī),在穩(wěn)定工作時(shí)的性能并加以對(duì)比。
根據(jù)開關(guān)管數(shù)量的不同,在后文中用“B3”表示三相半橋拓?fù)洌谩癇6”表示三相全橋拓?fù)洹?/p>
與傳統(tǒng)單級(jí)B6拓?fù)湎啾?,Buck變換器級(jí)聯(lián)B3拓?fù)涔?jié)省了逆變器的三個(gè)上橋臂功率開關(guān)管及其驅(qū)動(dòng),但多增加了Buck變換器的一對(duì)上下開關(guān)管及其驅(qū)動(dòng)。Buck變換器級(jí)聯(lián)B6拓?fù)鋭t在傳統(tǒng)的單級(jí)B6拓?fù)浠A(chǔ)上增加前級(jí)變換器的兩個(gè)開關(guān)管,體積和成本最高。
(a)Buck+三相半橋拓?fù)?/p>
(b)B6串聯(lián)電感拓?fù)?/p>
(c)Buck+三相全橋拓?fù)?/p>
圖1 三種驅(qū)動(dòng)拓?fù)潆娐?/p>
Fig.1 Circuits of three drive topologies
1.2.1 H_PWM-L_PWM控制B6拓?fù)?/p>
無鐵心電機(jī)的電樞時(shí)間常數(shù)小,具備優(yōu)異的瞬態(tài)響應(yīng)性能,更適用于高速應(yīng)用場(chǎng)合,但是,電樞電感值很小導(dǎo)致電樞電流變化率很大。因此,與有鐵心電機(jī)相比,無鐵心電機(jī)電樞電流脈動(dòng)大,甚至在條件惡劣如開關(guān)頻率較低、輸出電流較小的同時(shí),母線電壓較大的情況下,電機(jī)電樞電流斷續(xù),電機(jī)無法正常運(yùn)行。
為繼續(xù)使用傳統(tǒng)B6拓?fù)鋪眚?qū)動(dòng)無鐵心電機(jī),且保證電樞電流處于電流連續(xù)模式,這里分析在使用上下管同一斬波驅(qū)動(dòng)信號(hào),即H_PWM-L_PWM控制方式時(shí),一個(gè)開關(guān)周期內(nèi)的電流變化情況。以a、b相導(dǎo)通為例,其等效電路如圖2所示。電流通路a、b分別代表開關(guān)管導(dǎo)通和關(guān)斷時(shí)期的等效電路。在一個(gè)開關(guān)周期內(nèi),電壓方程為
圖2 H_PWM-L_PWM控制B6拓?fù)涞刃щ娐?/p>
根據(jù)式(2)可知,不等式左側(cè)對(duì)反電動(dòng)勢(shì)的導(dǎo)數(shù)小于零,則其最大值在反電動(dòng)勢(shì)為零,即轉(zhuǎn)速為零時(shí)取到。式(2)在反電動(dòng)勢(shì)極值點(diǎn)可化簡(jiǎn)為
圖3 不同母線電壓和輸出電流下,保證電流連續(xù)的最小開關(guān)頻率
電流連續(xù)條件曲面僅僅保證了電機(jī)正常運(yùn)行,當(dāng)電機(jī)運(yùn)行點(diǎn)取在曲面上而不留有較大裕量時(shí),斬波引起的電流紋波極大,在電流臨界連續(xù)時(shí)電流紋波等于2倍的輸出電流,進(jìn)一步導(dǎo)致電機(jī)性能的惡化。
1.2.2 H_PWM-L_ON控制B6拓?fù)浼半p級(jí)式驅(qū)動(dòng)拓?fù)?/p>
在方波控制中,還有H_PWM-L_ON、H_ON-L_ PWM、PWM-ON、ON-PWM、PWM-ON-PWM等諸多控制方式,后幾種控制方式與H_PWM-L_PWM的不同之處在于開關(guān)管關(guān)斷時(shí),沒有母線電壓反壓加在電樞兩端。H_PWM-L_ON控制方式也稱為全橋的Buck斬波方式,這里分析使用H_PWM-L_ON控制方式時(shí),在一個(gè)開關(guān)周期內(nèi)的電流變化情況。與1.2.1節(jié)分析方式一致,電感電流連續(xù)條件為
1.3.1 H_PWM-L_PWM控制B6拓?fù)浯?lián)電感
根據(jù)式(2)可反推B6拓?fù)湓贖_PWM-L_PWM控制方式下,維持電樞回路處于CCM,所需的總的回路電感滿足
1.3.2 H_PWM-L_ON控制B6拓?fù)浯?lián)電感與前級(jí)Buck變換器電感
同理,根據(jù)式(4)可反推得H_PWM-L_ON控制方式下,維持電樞回路處于CCM,所需的總的回路電感滿足
B6的H_PWM-L_ON控制也稱作Buck斬波方式,其在一個(gè)開關(guān)周期內(nèi)等效電路與Buck變換器一致,因此H_PWM-L_ON控制方式計(jì)算得到的串聯(lián)電感值與雙級(jí)B6拓?fù)淝凹?jí)Buck變換器的輸出電感值是一致的。
(a)H_PWM-L_PWM控制B6拓?fù)?/p>
(b)H_PWM-L_ON控制B6拓?fù)?/p>
圖4 不同反電動(dòng)勢(shì)和輸出電流下,保證CCM的最小回路電感值
Fig.4 Minimum inductance value to maintain CCM under different circumstances of line electromotive force and output current
圖5 不同驅(qū)動(dòng)拓?fù)溟_環(huán)傳遞函數(shù)伯德圖
驅(qū)動(dòng)拓?fù)涠季哂蓄愃频屯V波器的性質(zhì),但從伯德圖上看,單級(jí)B6拓?fù)涞慕刂诡l率要高于雙級(jí)式拓?fù)洌蚁辔辉6纫群笳吒?。若采用PI控制等同屬于低通性質(zhì)的控制方式,閉環(huán)傳遞函數(shù)的截止頻率將進(jìn)一步降低。在實(shí)驗(yàn)中發(fā)現(xiàn),若只為追求雙級(jí)拓?fù)涞膭?dòng)態(tài)性能,根據(jù)系統(tǒng)模型配置最優(yōu)的控制參數(shù),隨著轉(zhuǎn)速等狀態(tài)發(fā)生改變,系統(tǒng)很容易不穩(wěn)定。因此,在實(shí)際應(yīng)用中,對(duì)雙級(jí)式驅(qū)動(dòng)拓?fù)湓O(shè)計(jì)PI控制參數(shù)時(shí),為保證系統(tǒng)的穩(wěn)定性,系統(tǒng)截止頻率應(yīng)設(shè)計(jì)的比較低。此時(shí)系統(tǒng)也無法對(duì)瞬時(shí)電流進(jìn)行跟蹤,只能實(shí)現(xiàn)對(duì)平均電流的控制。
不考慮前級(jí)電路,假設(shè)每一拍內(nèi)逆變器的輸入電壓保持o穩(wěn)定不變,電機(jī)相反電動(dòng)勢(shì)為標(biāo)準(zhǔn)的正弦波基波。根據(jù)每一拍內(nèi)電樞等效電路的電壓方程及電流初始條件,可得導(dǎo)通區(qū)電流的時(shí)域方程為
根據(jù)式(11)可知,無論是雙級(jí)式驅(qū)動(dòng)拓?fù)漭敵鲭娏鞑ㄐ?,還是單級(jí)B6驅(qū)動(dòng)輸出的電流波形包絡(luò)線,在每一拍內(nèi)為馬鞍形波形,具體形狀與電機(jī)電樞的時(shí)間常數(shù)有關(guān)。單級(jí)B6拓?fù)涞碾娏鞑ㄐ卧诖嘶A(chǔ)上疊加斬波的脈動(dòng),且斬波脈動(dòng)會(huì)隨著轉(zhuǎn)速的上升而減小。
B6拓?fù)溆捎诶m(xù)流通路的存在,工作區(qū)間分為導(dǎo)通區(qū)和換相區(qū)。無論是單級(jí)還是雙級(jí)拓?fù)?,B6換相區(qū)持續(xù)時(shí)間與電流脈動(dòng)和斬波、控制性能、換相角誤差等多因素有關(guān),因此這里不做詳細(xì)理論分析。
本文使用由TI生產(chǎn)的MCU TMS320F28335和ALTERA生產(chǎn)的CPLD EPM1270F256組成的數(shù)字控制板來對(duì)電機(jī)進(jìn)行控制,采樣控制頻率設(shè)定為20 kHz。對(duì)三種驅(qū)動(dòng)拓?fù)湓O(shè)計(jì)環(huán)路響應(yīng)性能相近的PI參數(shù),以平均電流控制方式對(duì)無鐵心電機(jī)進(jìn)行控制。本文不考慮換相角誤差導(dǎo)致非理想二極管續(xù)流引起的脈動(dòng),且在拓?fù)鋵?duì)比時(shí)使用同一臺(tái)電機(jī)和同一套采樣檢測(cè)軟、硬件。圖6為5NMS飛輪驅(qū)動(dòng)系統(tǒng)實(shí)驗(yàn)平臺(tái)。驅(qū)動(dòng)硬件采用模塊化設(shè)計(jì),不同種驅(qū)動(dòng)拓?fù)淇杀A粝嗤K,僅對(duì)不同硬件電路替換即可。5NMS飛輪驅(qū)動(dòng)系統(tǒng)的具體參數(shù)見表1。
圖6 5NMS飛輪驅(qū)動(dòng)系統(tǒng)實(shí)驗(yàn)平臺(tái)
表1 5NMS飛輪驅(qū)動(dòng)系統(tǒng)參數(shù)
圖7為三種驅(qū)動(dòng)拓?fù)湓? 000 r/min時(shí),以400 ns的采樣周期獲取10 000個(gè)采樣點(diǎn)的三相電流波形。為保證B3拓?fù)渑c全橋拓?fù)漭敵隽卮笮∫恢?,Buck+B3拓?fù)漭敵銎骄娏骺刂茷?.7 A,后兩種拓?fù)漭敵銎骄娏骺刂茷? A。
三種拓?fù)鋵?dǎo)通區(qū)電流脈動(dòng)和電流紋波率在不同轉(zhuǎn)速下的變化如圖8所示,前者用柱狀圖表示,后者用折線圖表示。導(dǎo)通區(qū)電流脈動(dòng)及電流紋波率隨轉(zhuǎn)速上升而不斷增加,但Buck+B3拓?fù)涞碾娏髅}動(dòng)上升幅度最大,而Buck+B6拓?fù)涞碾娏髅}動(dòng)最小。
(a)Buck+B3拓?fù)?/p>
(b)B6級(jí)聯(lián)電感拓?fù)?/p>
(c)Buck+B6拓?fù)?/p>
圖7 不同驅(qū)動(dòng)拓?fù)湓? 000 r/min的電流波形
Fig.7 Current waveforms of different drive topologies when operating at 4 000 r/min
圖8 不同驅(qū)動(dòng)拓?fù)湓诓煌D(zhuǎn)速下的導(dǎo)通區(qū)電流脈動(dòng)
針對(duì)三種驅(qū)動(dòng)拓?fù)洌诓煌D(zhuǎn)速下的電流進(jìn)行傅里葉分析。圖9給出了不同拓?fù)湓? 000 r/min和4 000 r/min工作點(diǎn),以0 Hz為基頻率對(duì)電流進(jìn)行分析,并將直流量認(rèn)為100%,得出的諧波含量。從圖9中可以看出,諧波主要集中在轉(zhuǎn)子電角頻率的基波頻率和高次倍頻。Buck+B3拓?fù)潋?qū)動(dòng)拓?fù)漭敵鲭娏髦C波隨轉(zhuǎn)速上升幅度較大,總諧波畸變率(Total Harmonic Distortion, THD)在2 000 r/min為16.30%,到了4 000 r/min增加至51.17%,而單級(jí)B6拓?fù)浠駼uck+B6拓?fù)潆娏髦C波隨轉(zhuǎn)速增加較少,由于其斬波分量隨轉(zhuǎn)速降低,從2 000 r/min到4 000 r/min,其THD甚至略有下降,從32.91%降低至31.71%,其高次諧波甚至可以忽略不計(jì),但應(yīng)當(dāng)注意的是,單級(jí)B6拓?fù)涑宿D(zhuǎn)子電角頻率諧波外,還存在大量開關(guān)頻率基頻及其倍頻的諧波,其在4 000 r/min時(shí)開關(guān)頻率處的諧波分量占14.79%。
(a)Buck+B3拓?fù)涔ぷ髟? 000 r/min
(b)Buck+B3拓?fù)涔ぷ髟? 000 r/min
(c)B6級(jí)聯(lián)電感拓?fù)涔ぷ髟? 000 r/min
(d)B6級(jí)聯(lián)電感拓?fù)涔ぷ髟? 000 r/min
(e)Buck+B6拓?fù)涔ぷ髟? 000 r/min
(f)Buck+B6拓?fù)涔ぷ髟? 000 r/min
圖9 三種拓?fù)湓? 000 r/min和4 000 r/min時(shí)電流傅里葉分析結(jié)果
Fig.9 Current Fourier analysis results at 2 000 r/min and 4 000 r/min for three drive topologies
B6拓?fù)浯嬖诶m(xù)流通路,與B3拓?fù)湎啾榷嗔藫Q相區(qū)。這里比較兩種B6拓?fù)涞膿Q相區(qū)與B3拓?fù)鋼Q相后電流恢復(fù)時(shí)間。
由于雙級(jí)式驅(qū)動(dòng)拓?fù)涮嵘娐窌r(shí)間常數(shù)的思路是在前級(jí)預(yù)穩(wěn)壓電路中增加電感,而單級(jí)B6拓?fù)鋵㈦姼写?lián)在每一相電樞回路中,將小電感電機(jī)等效為大電感電機(jī)。因此,單級(jí)B6串聯(lián)電感的拓?fù)鋼Q相時(shí)間要遠(yuǎn)遠(yuǎn)高于Buck+B6驅(qū)動(dòng)拓?fù)洹R慌_(tái)8對(duì)極的電機(jī)使用B6驅(qū)動(dòng)拓?fù)涔ぷ髟诹氖椒绞?,? 000 r/min時(shí),其一拍的電頻率為4.8 kHz,以圖10中實(shí)驗(yàn)數(shù)據(jù)為例,其換相區(qū)對(duì)一拍工作區(qū)間總時(shí)間的占比為54.72%。換相區(qū)關(guān)斷相通過反并聯(lián)二極管續(xù)流的狀態(tài)是不可控的。這說明單級(jí)B6串聯(lián)電感的方式雖能保證電機(jī)的運(yùn)行,但換相區(qū)的延長(zhǎng)卻會(huì)極大惡化電機(jī)高速運(yùn)行的性能。時(shí)間常數(shù)過大的電機(jī)不適合高速運(yùn)行。
雙級(jí)式驅(qū)動(dòng)拓?fù)鋼Q相后的穩(wěn)定時(shí)間隨轉(zhuǎn)速增加而降低。Buck+B6拓?fù)潋?qū)動(dòng)下的電機(jī)換相時(shí)間在全速度范圍內(nèi)只有幾個(gè)ms,若想在此拓?fù)浠A(chǔ)上,進(jìn)一步使用重疊換相控制等算法對(duì)換相區(qū)脈動(dòng)進(jìn)行控制,開關(guān)頻率則至少要達(dá)到幾百kHz以上。
圖10 不同驅(qū)動(dòng)拓?fù)湓诓煌D(zhuǎn)速下的換相時(shí)間
由于單級(jí)B6拓?fù)錈o法從電機(jī)電能輸入端測(cè)量功率,本文比較兩種雙級(jí)式驅(qū)動(dòng)拓?fù)涞男?。? 000 r/min到6 000 r/min,Buck+B3拓?fù)渑cBuck+ B6拓?fù)湓谀妇€分別為30 V和60 V,并分別輸出1.7 A和1 A平均電流的條件下,輸出效率如圖11所示。隨著轉(zhuǎn)速上升,Buck輸出電壓的增加,其效率也越來越高。但B6拓?fù)湓趯?dǎo)通區(qū)上下橋臂共兩個(gè)開關(guān)管的損耗必然大于B3拓?fù)湓趯?dǎo)通區(qū)僅有一個(gè)開關(guān)管的損耗。三種驅(qū)動(dòng)拓?fù)鋵?duì)比總結(jié)見表2。
本文針對(duì)定子無鐵心永磁無刷直流電機(jī)電樞電感較小導(dǎo)致電流脈動(dòng)較大,無法使用傳統(tǒng)三相全橋直接驅(qū)動(dòng)的問題,根據(jù)不同提升時(shí)間常數(shù)的思路設(shè)計(jì)并制造了三種驅(qū)動(dòng)拓?fù)?,并使用平均電流控制方法?qū)動(dòng)同一臺(tái)電機(jī),實(shí)驗(yàn)結(jié)果表明,三種拓?fù)渚鼙WC無鐵心小電感電機(jī)在最惡劣情況時(shí)的電流連續(xù)。但在實(shí)際應(yīng)用中,三種驅(qū)動(dòng)拓?fù)涓饔袃?yōu)缺點(diǎn),結(jié)論如下:
圖11 雙級(jí)式拓?fù)湓诤蠹?jí)分別為B3和B6時(shí),在不同轉(zhuǎn)速下的效率
表2 三種驅(qū)動(dòng)拓?fù)鋵?duì)比總結(jié)
1)Buck+半橋拓?fù)渌璧墓β书_關(guān)管數(shù)量最少、驅(qū)動(dòng)難度最小。體積、質(zhì)量和成本最少。對(duì)于同一臺(tái)電機(jī),升至同一最高轉(zhuǎn)速所需母線電壓等級(jí)是全橋拓?fù)涞囊话搿R韵嗤钚‰娏髌饎?dòng)所需的Buck變換器的電感值更小。同時(shí),半橋拓?fù)鋯蜗鄬?dǎo)通開關(guān)管損耗相對(duì)更低。但是電流性能較差,無續(xù)流通路導(dǎo)致開關(guān)管硬關(guān)斷,母線有較大的電壓尖峰,EMC性能較差。電流脈動(dòng)和諧波會(huì)隨轉(zhuǎn)速的上升而大幅度地升高。
2)單級(jí)半橋串聯(lián)三電感拓?fù)涞碾娏髦C波成分隨轉(zhuǎn)速上升變化不大。等效成大電感電機(jī)使其能夠使用矢量控制的控制算法。但是將電感增加在電樞回路內(nèi)的思路使得電機(jī)換相時(shí)間增加,導(dǎo)致高速可控性能變差。此外,電流脈動(dòng)成分最多,低速時(shí)斬波引起的脈動(dòng)和諧波成分很高。
3)Buck+全橋拓?fù)潆娏髅}動(dòng)及電流諧波最小,換相時(shí)間和脈動(dòng)較少。且導(dǎo)通區(qū)和換相區(qū)的性能可以進(jìn)一步優(yōu)化。但其硬件成本和體積更大,效率較低。
4)普通的單級(jí)全橋驅(qū)動(dòng)不能保證無鐵心小電感電機(jī)在母線輸入電壓受限情況下,四象限正??煽窟\(yùn)行。Buck+全橋拓?fù)淇梢垣@得最好的電流及轉(zhuǎn)矩性能,在此基礎(chǔ)上可通過拓?fù)浼翱刂扑惴ǚ矫娴难芯縼磉M(jìn)一步提升性能,但是在實(shí)際工程應(yīng)用中,由于母線輸入電壓、體積、質(zhì)量、成本的限制,可考慮Buck+半橋拓?fù)鋪韺?shí)現(xiàn)無鐵心小電感電機(jī)四象限正常運(yùn)行。全橋串聯(lián)電感拓?fù)浞桨竷H適合使用在電機(jī)中低速區(qū)間。
[1] Li Haoyan, Xu Haiping, Chen Xi, et al. Comparison of two drive topologies for ironless-stator permanent magnet motor driven by square wave[M]. Singapore: Springer Singapore, 2022.
[2] 李珍國(guó), 王鵬磊, 孫啟航, 等. 基于逐相旋轉(zhuǎn)坐標(biāo)變換的無刷直流電機(jī)轉(zhuǎn)子磁場(chǎng)定向瞬時(shí)轉(zhuǎn)矩控制技術(shù)[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(22): 5788-5798.
Li Zhenguo, Wang Penglei, Sun Qihang, et al. Instantaneous torque control technology of rotor magnetic field orientation of brushless DC motor based on phase-by-phase rotation coordinate trans- formation[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5788-5798.
[3] 張慶湖, 賈喆武, 王東. 環(huán)形繞組無刷直流電機(jī)的混合換向方法[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(17): 4346-4354.
Zhang Qinghu, Jia Zhewu, Wang Dong. Hybrid commutation method of brushless DC motor with ring winding[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4346-4354.
[4] 武潔, 王文磊, 張恒毅, 等. 一種帶抽頭線圈的無刷直流電機(jī)無線驅(qū)動(dòng)與控制方法[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(23): 6116-6125.
Wu Jie, Wang Wenlei, Zhang Hengyi, et al. Wireless driving and control method of brushless DC motor with tapped coil[J]. Transactions of China Electro- technical Society, 2022, 37(23): 6116-6125.
[5] 邊春元, 邢海洋, 李曉霞, 等. 基于速度變化率的無位置傳感器無刷直流電機(jī)風(fēng)力發(fā)電系統(tǒng)換相誤差補(bǔ)償策略[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(11): 2374- 2382.
Bian Chunyuan, Xing Haiyang, Li Xiaoxia, et al. Compensation strategy for commutation error of sensorless brushless DC motor wind power generation system based on speed change rate[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2374- 2382.
[6] 李珍國(guó), 孫啟航, 王鵬磊, 等. 基于轉(zhuǎn)子永磁體磁場(chǎng)定向的無刷直流電機(jī)轉(zhuǎn)矩脈動(dòng)抑制[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(14): 2987-2996.
Li Zhenguo, Sun Qihang, Wang Penglei, et al. Torque ripple suppression of brushless DC motor based on rotor permanent magnet magnetic field orientation[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 2987-2996.
[7] 張卓然, 耿偉偉, 陸嘉偉. 定子無鐵心永磁電機(jī)技術(shù)研究現(xiàn)狀與發(fā)展[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2018, 38(2): 582-600, 689.
Zhang Zhuoran, Geng Weiwei, Lu Jiawei. Overview of permanent magnet machines with ironless stator[J]. Proceedings of the CSEE, 2018, 38(2): 582-600, 689.
[8] Ooshima M, Kitazawa S, Chiba A, et al. Design and analyses of a coreless-stator type bearingless motor/ generator for clean energy generation and storage systems[C]//2006 IEEE International Magnetics Conference (INTERMAG), San Diego, CA, USA, 2007: 969.
[9] Liu Xiangdong, Hu Hengzai, Zhao Jing, et al. Analytical solution of the magnetic field and EMF calculation in ironless BLDC motor[J]. IEEE Transa- ctions on Magnetics, 2016, 52(2): 1-10.
[10] Fang Jiancheng, Zhou Xinxiu, Liu Gang. Instan- taneous torque control of small inductance brushless DC motor[J]. IEEE Transactions on Power Elec- tronics, 2012, 27(12): 4952-4964.
[11] De S, Rajne M, Poosapati S, et al. Low-inductance axial flux BLDC motor drive for more electric aircraft[J]. IET Power Electronics, 2012, 5(1): 124.
[12] Fang Jiancheng, Zhou Xinxiu, Liu Gang. Precise accelerated torque control for small inductance brushless DC motor[J]. IEEE Transactions on Power Electronics, 2013, 28(3): 1400-1412.
[13] Valle R L, Almeida P M, Ferreira A A, et al. Unipolar PWM predictive current-mode control of a variable- speed low inductance BLDC motor drive[J]. IET Electric Power Applications, 2017, 11(5): 688-696.
[14] Liu Yue, Hu Jianhui, Dong Shili. A torque ripple reduction method of small inductance brushless DC motor based on three-level DC converter[C]//2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi'an, China, 2019: 1669-1674.
[15] Sozer Y, Torrey D A, Reva S. New inverter output filter topology for PWM motor drives[C]//Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition, New Orleans, LA, USA, 2002: 911- 917.
[16] Dzhankhotov V, Pyrh?nen J. Passive LC filter design considerations for motor applications[J]. IEEE Transactions on Industrial Electronics, 2013, 60(10): 4253-4259.
[17] Samitha Ransara H K, Madawala U K, Liu Tianhua. Buck converter based model for a brushless DC motor drive without a DC link capacitor[J]. IET Power Electronics, 2015, 8(4): 628-635.
[18] Li Haitao, Zheng Shiqiang, Ren Hongliang. Self- correction of commutation point for high-speed sensorless BLDC motor with low inductance and nonideal back EMF[J]. IEEE Transactions on Power Electronics, 2017, 32(1): 642-651.
[19] 周闖, 秦國(guó)輝, 王玉鵬, 等. 基于Buck變換器的無刷直流電機(jī)無位置傳感器控制[J]. 電工技術(shù)學(xué)報(bào), 2017, 32(12): 197-204.
Zhou Chuang, Qin Guohui, Wang Yupeng, et al. Sensorless control of brushless DC motor based on Buck converter[J]. Transactions of China Electro- technical Society, 2017, 32(12): 197-204.
[20] Wang Wei, Wang Jingwen. Dynamic response enhan- cement and fault protection of Boost converter-fed brushless DC motor in aerospace applications[J]. Applied Sciences, 2019, 9(10): 2113.
[21] Shi Tingna, Guo Yuntao, Song Peng, et al. A new approach of minimizing commutation torque ripple for brushless DC motor based on DC-DC converter[J]. IEEE Transactions on Industrial Electronics, 2010, 57(10): 3483-3490.
[22] 朱俊杰, 劉浩然, 蔣峰, 等. 無刷直流電機(jī)轉(zhuǎn)矩脈動(dòng)抑制系統(tǒng)的新型拓?fù)溲芯縖J]. 電工技術(shù)學(xué)報(bào), 2018, 33(17): 4060-4068.
Zhu Junjie, Liu Haoran, Jiang Feng, et al. A new topology research on torque ripple suppression system of brushless motor[J]. Transactions of China Elec- trotechnical Society, 2018, 33(17): 4060-4068.
[23] 王曉光, 王曉遠(yuǎn), 傅濤. 基于電流型斬波控制器的盤式無鐵心永磁同步電機(jī)控制方法[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2015, 35(9): 2310-2317.
Wang Xiaoguang, Wang Xiaoyuan, Fu Tao. The control strategy of disc coreless permanent magnet synchronous motor based on the current chopper control[J]. Proceedings of the CSEE, 2015, 35(9): 2310-2317.
[24] 王曉遠(yuǎn), 王曉光, 傅濤. 基于電流矢量的盤式無鐵心永磁同步電機(jī)瞬時(shí)轉(zhuǎn)矩控制[J]. 電工技術(shù)學(xué)報(bào), 2016, 31(16): 43-49.
Wang Xiaoyuan, Wang Xiaoguang, Fu Tao. Instan- taneous torque control for disc coreless permanent magnetic synchronous motor drives based on the current vector[J]. Transactions of China Electro- technical Society, 2016, 31(16): 43-49.
[25] Carlson R, Lajoie-Mazenc M, Fagundes J C D S. Analysis of torque ripple due to phase commutation in brushless DC machines[J]. IEEE Transactions on Industry Applications, 1992, 28(3): 632-638.
[26] Jiang Guokai, Xia Changliang, Chen Wei, et al. Commutation torque ripple suppression strategy for brushless DC motors with a novel noninductive Boost front end[J]. IEEE Transactions on Power Electronics, 2018, 33(5): 4274-4284.
[27] Li Xinmin, Jiang Guokai, Chen Wei, et al. Com- mutation torque ripple suppression strategy of brushless DC motor considering back electromotive force variation[J]. Energies, 2019, 12(10): 1932.
[28] 姚緒梁, 趙繼成, 王景芳, 等. 一種基于輔助升壓前端的無刷直流電機(jī)換相轉(zhuǎn)矩脈動(dòng)抑制方法研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2020, 40(9): 3021-3031.
Yao Xuliang, Zhao Jicheng, Wang Jingfang, et al. Research on suppressing commutation torque ripple of brushless DC motor based on an auxiliary step-up front end[J]. Proceedings of the CSEE, 2020, 40(9): 3021-3031.
[29] 曹彥飛, 陸海天, 李新旻, 等. 基于無電感升壓拓?fù)涞臒o刷直流電機(jī)電流控制策略[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(6): 1249-1258.
Cao Yanfei, Lu Haitian, Li Xinmin, et al. Current control strategy of brushless DC motor based on non-inductive Boost topology[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1249- 1258.
[30] 李珍國(guó), 孫啟航, 王鵬磊, 等. 無刷直流電機(jī)無直軸電樞反應(yīng)的非正弦轉(zhuǎn)子磁場(chǎng)定向矢量控制技術(shù)[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(16): 4094-4103.
Li Zhenguo, Sun Qihang, Wang Penglei, et al. Non- sinusoidal rotor field oriented vector control tech- nology without d-axis armature reaction in brushless DC motor[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4094-4103.
[31] Zhang Shuangshuang, Zhang Wei, Wang Rui, et al. Optimization design of Halbach permanent magnet motor based on multi-objective sensitivity[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(1): 20-26.
Design and Comparison of Drive Topologies for Stator-Ironless Permanent Magnet Brushless DC Motor
1,21,2,31,2,3
(1. Key Laboratory of Power Electronics and Electric Drive Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China 2. University of Chinese Academy of Sciences Beijing 100049 China 3. Qilu Zhongke Electric Advanced Electromagnetic Drive Technology Research Institute Jinan 250100 China)
The ironless permanent magnet brushless DC motor has a very short electrical time constant, and the inductance value of the armature winding is just a few tens of microhenries. When a single-stage, three-phase full-bridge drive topology is used directly to drive an ironless motor in torque control mode, the armature current may be intermittent if the bus input voltage is limited and the average phase current is minimal. The motor may not start correctly in more severe cases. Moreover, the low inductance causes abrupt fluctuations in armature current and torque. The driving characteristics must be examined to improve the motor's performance. Three drive topologies are investigated: Buck cascaded with half-bridge, single-stage full-bridge with inductors in series, and Buck cascaded with full-bridge to ensure normal operation of the ironless motor. Then, the properties of various drive topologies are discussed and contrasted.
Initially, the fundamental distinctions between the three types of drive topologies are discussed. Secondly, while operating an ironless brushless DC motor in current continuous mode, the switching frequency conditions of H_PWM-L_PWM chopping mode for a single-stage full-bridge topology circuit are computed. The calculations show that when the bus voltage rises and the average armature current falls, the needed switching frequency rises to the order of GHz. The switching frequency is half when the H_PWM-L_ON chopping mode is used with all other settings maintained constant. The inductance conditions necessary for the three drives to operate in the current continuous mode can be deduced. The single-stage full-bridge topology requires an additional inductor of at least 3.75 mH per phase if the H_PWM-L_PWM control method is used, or at least 1.88 mH per phase if the H PWM-L ON control method is used when the motor is operated at 0.1 A. The power inductors needed for the Buck converters in dual-stage drives are 1.88 mH and 3.75 mH when the rear stage is a half-bridge and a full-bridge, respectively. Thirdly, the bode diagram is provided together with the transfer functions. Compared with the two-stage design, single-stage topology has a higher cutoff frequency, a bigger phase angle margin, and excellent dynamic performance. Fourthly, the same motor is driven subsequently to evaluate the design and functionality of the three drive topologies based on digital controllers. The experimental results show that all three topologies guarantee the motor's dependable running. The highest current fluctuation and current harmonics content are found in the Buck cascaded with half-bridge topology, exhibiting the quickest rate of change with rotational speed. The current fluctuation is lowest when the Buck is cascaded with a full-bridge topology. While the rate of change with rotational speed is the smallest, the fluctuation brought on by the chopping of the full-bridge cascaded with an extra-inductor is noticeable. The single-stage full-bridge's commutation time is the longest among these three topologies since it uses inductors in series in the armature circuit. At 6 000 r/min in the experiment, the proportion of the commutation region to each operational section is up to 54.72%, indicating that this topology is unsuitable for high-speed operation. Due to the absence of a channel for the energy of the outgoing phase to discharge, the Buck cascaded with half-bridge topology experiences a voltage spike of 54.4 V.
The conclusions are as follows. After the suitable inductor design, all three drive topologies can ensure the normal functioning of the ironless permanent magnet brushless DC motor. Buck cascaded with the three-phase half-bridge topology offers inexpensive cost, simple construction, and control, making it more appropriate for engineering applications of low drive performance. The dynamic response performance of a single-stage full-bridge with inductors in series is superior but unsuitable for high-speed applications.
Ironless-stator, permanent magnet brushless direct current motor (PMBLDC), Buck+ half-bridge, full-bridge with inductances cascaded, Buck+ full-bridge
TM345; TM359.6; TM921.5
10.19595/j.cnki.1000-6753.tces.221742
山東省重點(diǎn)研發(fā)計(jì)劃(重大科技創(chuàng)新工程)(2021CXGC010208)和齊魯中科電工先進(jìn)電磁驅(qū)動(dòng)技術(shù)研究院科研基金資助項(xiàng)目。
2022-09-14
2022-11-07
李昊巖 男,1994年生,博士研究生,研究方向?yàn)殡娏﹄娮优c電力傳動(dòng)。E-mail: lihaoyan19@mail.iee.ac.cn
許海平 男,1967年生,教授,博士生導(dǎo)師,研究方向?yàn)殡娏﹄娮优c電力傳動(dòng)。E-mail: hpxu@mail.iee.ac.cn(通信作者)
(編輯 崔文靜)