焦超群 楊 旭 楊俊峰 魏 斌 吳曉康
基于多目標(biāo)優(yōu)化理論的耦合無關(guān)恒壓輸出型LCC/S補償感應(yīng)電能傳輸系統(tǒng)
焦超群1楊 旭1楊俊峰1魏 斌2吳曉康2
(1. 北京交通大學(xué)電氣工程學(xué)院 北京 100044 2. 中國電力科學(xué)研究院有限公司 北京 100192)
基于傳統(tǒng)完全諧振參數(shù)設(shè)計方法的感應(yīng)電能傳輸(IPT)系統(tǒng)只有在發(fā)射線圈和接收線圈完全耦合時才能表現(xiàn)出最佳性能。實際的IPT系統(tǒng)多為變耦合系統(tǒng),耦合系數(shù)變化可能導(dǎo)致輸出電壓大范圍波動和效率降低等問題。該文提出一種基于多目標(biāo)優(yōu)化理論的補償拓?fù)鋮?shù)設(shè)計方法,在耦合系數(shù)和負(fù)載變化的情況下仍然可以獲得相對恒定的輸出電壓且能夠高效運行。首先,利用基波近似分析法建立LCC/S補償IPT系統(tǒng)的系統(tǒng)方程。其次,以補償參數(shù)為優(yōu)化變量,以減小輸出電壓波動、提升系統(tǒng)效率為優(yōu)化目標(biāo),以電感最大通過電流、電容最大承受電壓和零電壓開關(guān)為約束條件建立多目標(biāo)優(yōu)化模型。然后,利用多目標(biāo)粒子群優(yōu)化(MOPSO)算法求解所建立的多目標(biāo)優(yōu)化模型,并得到Pareto最優(yōu)解集。最后,根據(jù)實際需要,從Pareto最優(yōu)解集中選擇合適的補償方案,并進(jìn)行仿真分析和實驗驗證。實驗結(jié)果表明,優(yōu)化方案的電壓波動率(VFR)約為傳統(tǒng)方案的45%,且優(yōu)化方案的最低傳輸效率(87.5%)仍大于傳統(tǒng)方案的最高傳輸效率(86.3%)。該方法可用于優(yōu)化滿足耦合和負(fù)載無關(guān)恒定輸出、高效率、零電壓開關(guān)等特性的補償拓?fù)洹?/p>
感應(yīng)電能傳輸 多目標(biāo)優(yōu)化 耦合無關(guān)恒壓輸出 多目標(biāo)粒子群優(yōu)化(MOPSO)算法 Pareto解集
感應(yīng)電能傳輸(Inductive Power Transfer, IPT)系統(tǒng)由于具有較高的功率水平和效率特性,已成為無線電能傳輸(Wireless Power Transfer, WPT)領(lǐng)域的主要研究方向[1-2]。IPT系統(tǒng)具有安全、靈活、可靠、美觀等優(yōu)點,可應(yīng)用于電動汽車、消費電子、植入式醫(yī)療設(shè)備、水下電氣設(shè)備等領(lǐng)域,是替代傳統(tǒng)有線充電方式的有效解決方案[3-5]。
基于完全諧振的IPT系統(tǒng)僅在發(fā)射和接收線圈完全耦合時才能表現(xiàn)優(yōu)異的性能[6-7]。然而,線圈之間發(fā)生偏移是不可避免的,可能引起系統(tǒng)輸出波動較大或效率降低等問題[8-11]。為了在耦合系數(shù)變化條件下獲得相對恒定的輸出并高效運行,專家學(xué)者提出了多種解決方案,主要分為控制策略、磁耦合機構(gòu)設(shè)計和補償拓?fù)淙怺12-13]。其中,控制策略能夠得到精確輸出,但是當(dāng)負(fù)載和耦合系數(shù)在較寬范圍內(nèi)變化時,變換器的調(diào)控需求增加,可能會導(dǎo)致控制復(fù)雜、效率降低和不穩(wěn)定等問題[14]。另外,額外增加的變換器也會帶來額外的成本、體積和質(zhì)量。磁耦合機構(gòu)僅在某個方向偏移時,耦合系數(shù)基本保持不變,系統(tǒng)抗偏移范圍有限[15]。
補償拓?fù)淇梢越档虸PT系統(tǒng)控制復(fù)雜度,提升其可靠性和穩(wěn)定性?;趥鹘y(tǒng)完全諧振補償參數(shù)設(shè)計方法的基本補償拓?fù)洌⊿/S、S/P、P/S、P/P)不具有抗偏移能力[16],高階補償拓?fù)涞目蛊颇芰σ灿邢轠17-18]。文獻(xiàn)[19-20]利用混合型補償拓?fù)涮嵘齀PT系統(tǒng)的抗偏移能力,一個拓?fù)涞妮敵鲈鲆媾c耦合系數(shù)成正比;另一個拓?fù)涞妮敵鲈鲆媾c耦合系數(shù)成反比。混合型補償拓?fù)涞脑鲆嬷驮谝欢ǚ秶鷥?nèi)保持相對恒定,但是增加了線圈和補償元件的數(shù)量,系統(tǒng)的成本和復(fù)雜性也相應(yīng)增加。另外,文獻(xiàn)[21]提出了重構(gòu)拓?fù)浞椒?,以提升系統(tǒng)的抗偏移能力。然而,重構(gòu)拓?fù)湫枰~外的檢測電路和控制策略,增加了系統(tǒng)復(fù)雜性,降低了運行可靠性。
除了補償拓?fù)浣Y(jié)構(gòu)設(shè)計,補償參數(shù)優(yōu)化也能夠提升IPT系統(tǒng)的抗偏移能力。文獻(xiàn)[22]提出了一種原邊感性、副邊容性的補償方法,在寬耦合范圍內(nèi)實現(xiàn)了穩(wěn)定的輸出。文獻(xiàn)[23]提出了一種基于枚舉法的S/S補償拓?fù)鋮?shù)設(shè)計方法,以減小偏移條件下輸出電壓的波動。文獻(xiàn)[24]建立了功率波動的偏微分方程,利用解析法優(yōu)化了LCC/S補償參數(shù)。然而,以上方法均未考慮IPT系統(tǒng)的傳輸效率問題。文獻(xiàn)[25]提出了一種基于粒子群優(yōu)化的S/CLC補償參數(shù)設(shè)計方法,實現(xiàn)了較高的抗偏移能力和效率。然而,由于采用了加權(quán)求和法將多個目標(biāo)函數(shù)合并為一個目標(biāo)函數(shù),各目標(biāo)函數(shù)的權(quán)重需要人為選取,無法精準(zhǔn)確定。文獻(xiàn)[26]建立了補償參數(shù)多目標(biāo)優(yōu)化模型,并利用分支減少優(yōu)化導(dǎo)航求解器求解所提出非線性優(yōu)化模型。但該方法仍需建立和求解偏微分方程,建模和求解過程比較復(fù)雜。文獻(xiàn)[27]提出了一種基于非支配排序遺傳算法Ⅲ的拓?fù)浣Y(jié)構(gòu)和參數(shù)同步優(yōu)化方法。然而,該方法沒有進(jìn)一步分析多目標(biāo)優(yōu)化得到的Pareto(帕累托)最優(yōu)解集,缺乏IPT系統(tǒng)輸出電壓波動和效率折中方案的分析。
本文突破了傳統(tǒng)完全諧振參數(shù)設(shè)計方法的局限性,將IPT系統(tǒng)補償參數(shù)設(shè)計問題轉(zhuǎn)化為多目標(biāo)優(yōu)化問題。與單目標(biāo)優(yōu)化只能得到唯一解不同,本文建立了多目標(biāo)優(yōu)化模型并利用多目標(biāo)粒子群優(yōu)化(Multi-Objective Particle Swarm Optimization, MOPSO)算法求解得到了Pareto最優(yōu)解集。決策者根據(jù)實際需要確定各目標(biāo)權(quán)重,從Pareto最優(yōu)解集中篩選出合適的設(shè)計方案,以確保IPT系統(tǒng)在耦合系數(shù)和負(fù)載變化條件下仍然能夠獲得相對恒定的輸出電壓,同時能夠高效運行。
圖1 基于LCC/S補償拓?fù)涞母袘?yīng)電能傳輸系統(tǒng)
利用基波近似分析(Fundamental Harmonic Approximation, FHA)法對圖1所示的IPT系統(tǒng)進(jìn)行分析。設(shè)AB和AB分別為AB和AB的基波有效值,ab和ab分別為ab和ab的基波有效值,P和S分別為發(fā)射線圈和接收線圈的電流的有效值。設(shè)逆變器的輸出電壓的調(diào)制占空比為50%,則逆變器的輸出電壓AB以及整流橋的輸入交流等效電阻eq滿足
根據(jù)式(1),可得到基于LCC/S補償拓?fù)涞腎PT系統(tǒng)等效電路如圖2所示。基于互感理論建立了該系統(tǒng)的阻抗模型,阻抗定義及其關(guān)系可表示為
圖2 基于LCC/S補償拓?fù)涞腎PT系統(tǒng)等效電路
LCC/S補償拓?fù)涞拿總€元件的兩端電壓為
傳統(tǒng)的補償參數(shù)設(shè)計方法采用完全諧振的思想。當(dāng)系統(tǒng)處于完全諧振狀態(tài)時,滿足
式中,為IPT系統(tǒng)的耦合系數(shù)。由式(8)可知,IPT系統(tǒng)的電壓增益不受負(fù)載影響,但與互感成正比。當(dāng)IPT系統(tǒng)工作在完全諧振狀態(tài)時,LCC/S補償拓?fù)涞?個參數(shù)需滿足
為了實現(xiàn)耦合無關(guān)恒壓輸出,同時確保系統(tǒng)高效運行,需要建立IPT系統(tǒng)多目標(biāo)優(yōu)化模型。多目標(biāo)優(yōu)化問題由優(yōu)化變量、目標(biāo)函數(shù)、系統(tǒng)方程和約束條件組成。通用的多目標(biāo)優(yōu)化模型的簡要描述為
2.2.1 目標(biāo)函數(shù)
1)減小輸出電壓波動
2)減小電感電流應(yīng)力
3)減小輸入阻抗角
減小輸入阻抗角的函數(shù)描述為
2.2.2 約束條件
1)電壓約束
每個電容器都有相應(yīng)的最大耐壓值,如果電壓超過了極限,電容器就容易擊穿。電容器兩端的電壓受以下條件的限制
2)電流約束
每個電感都有相應(yīng)的最大允許通過電流值,如果電流超過了這個極限,電感就容易發(fā)生短路。通過電感器的電流受以下條件的限制
3)零電壓開關(guān)約束
為了減少開關(guān)損耗,提高IPT系統(tǒng)效率,系統(tǒng)應(yīng)工作在零電壓軟開關(guān)(Zero Voltage Switching, ZVS)條件下,即IPT系統(tǒng)的輸入阻抗應(yīng)為感性。輸入阻抗角用角度表示,其數(shù)學(xué)表達(dá)式為
有約束優(yōu)化問題可以轉(zhuǎn)化為無約束優(yōu)化問題進(jìn)行求解。無約束優(yōu)化問題的目標(biāo)函數(shù)為有約束優(yōu)化問題的目標(biāo)函數(shù)加上相關(guān)懲罰項。對于可行域外的解,懲罰項為正,即對該粒子進(jìn)行懲罰;對于可行域內(nèi)的解,懲罰項為0,即不做任何懲罰。因此懲罰項促使無約束優(yōu)化問題的解落在可行域內(nèi)。對于電容電壓應(yīng)力約束,罰函數(shù)定義為
同理,對于電感電流應(yīng)力約束,罰函數(shù)定義為
對于零電壓開關(guān)約束,罰函數(shù)定義為
2.3.1 MOPSO算法流程
C. A. C. Coello等在PSO算法中引入Pareto最優(yōu)求解多目標(biāo)優(yōu)化問題,稱為MOPSO算法。MOPSO算法流程如圖3所示,步驟如下:①參數(shù)初始化;②速度和位置更新;③適應(yīng)度計算;④個體最優(yōu)位置更新;⑤檔案更新;⑥全局最優(yōu)向量更新;⑦重復(fù)步驟②~步驟⑥,直到滿足循環(huán)條件結(jié)束[28-29]。其中,步驟⑤檔案更新共包括三輪:首先,根據(jù)支配關(guān)系進(jìn)行第一輪粒子群篩選,可得到Pareto最優(yōu)解集并存入檔案庫;然后,根據(jù)支配關(guān)系對檔案庫的粒子群進(jìn)行篩選,去除劣解;最后,若種群數(shù)量超過存檔閾值,則根據(jù)自適應(yīng)網(wǎng)格法進(jìn)行清除,網(wǎng)格將被重新劃分[28-29]。
2.3.2 求解空間和最大粒子速度
圖3 MOPSO算法流程
根據(jù)式(28)和式(29),可得到多目標(biāo)粒子群優(yōu)化(MOPSO)算法的補償參數(shù)求解空間為
表1 IPT系統(tǒng)相關(guān)參數(shù)
將表1的參數(shù)代入式(9),可得到基于LCC/S補償?shù)腎PT系統(tǒng)在完全諧振下的補償拓?fù)鋮?shù),見表2。根據(jù)式(28)、式(29)和表1的參數(shù)可得到求解空間參考值,見表2。此外,MOPSO算法的相關(guān)參數(shù)設(shè)置值見表3。
表2 傳統(tǒng)的參數(shù)值和解空間的參考值
表3 MOPSO算法的相關(guān)參數(shù)
基于MOPSO算法得到的Pareto前沿收斂過程如圖4所示,隨著迭代次數(shù)的增加,Pareto前沿逐漸“減小”,分布逐漸變得光滑均勻,優(yōu)化結(jié)果逐漸收斂。當(dāng)?shù)螖?shù)為80時,帕累托前沿基本固定,并與迭代次數(shù)為200時的帕累托前沿重疊如圖8所示,表明MOPSO算法求解該多目標(biāo)優(yōu)化模型的收斂速度較快。
圖4 MOPSO算法的收斂性
當(dāng)輸入電壓變化時,IPT系統(tǒng)的Pareto前沿對比如圖5所示。當(dāng)輸入電壓從80 V增大到120 V時,Pareto前沿幾乎重合,三種不同輸入電壓的適應(yīng)度函數(shù)值接近。在不同輸出電壓要求下,IPT系統(tǒng)的Pareto前沿對比如圖6所示。當(dāng)輸出電壓在80~120 V范圍內(nèi)變化時,Pareto前沿變化趨勢一致,均能夠獲得較好的適應(yīng)度函數(shù)值。因此,MOPSO算法對輸入和輸出變量變化不敏感,所建立的多目標(biāo)優(yōu)化模型與MOPSO算法具有較好的兼容性。
圖5 不同輸入電壓下的Pareto解
MOPSO算法經(jīng)過200次迭代,檔案庫中先后生成的所有解如圖7所示(3D圖)。整個算法運行時間約為20 s,最終計算結(jié)果收斂到Pareto前沿,如圖8所示(2D圖)。
圖6 不同輸出電壓下的Pareto解
圖7 200次迭代的所有解
圖8 Pareto最優(yōu)解
從圖8可以看出,電壓波動和電感電流應(yīng)力不能同時達(dá)到最優(yōu),而輸入阻抗角(Input Impedance Angle, IIA)與兩者沒有呈正相關(guān)或負(fù)相關(guān)。因此,以電壓波動最小為最高優(yōu)先級,以電感電流應(yīng)力和輸入阻抗角為主要參考因素,在解A附近選擇三個相鄰解,分別用方案Ⅰ、方案Ⅱ和方案Ⅲ表示,相關(guān)參數(shù)見表4。不同耦合系數(shù)和負(fù)載下的輸出電壓、輸入阻抗角、電感電流應(yīng)力和電容電壓應(yīng)力分別如圖9~圖12所示。選定方案與傳統(tǒng)方案進(jìn)行的比較和分析結(jié)果見表5。
表4 基于權(quán)衡分析法選擇的解決方案
表5 傳統(tǒng)方案和選定方案對比
為了驗證所提方法有效性,搭建了實驗樣機并與傳統(tǒng)方案進(jìn)行比較。雖然方案Ⅱ的電壓波動率VFR小于方案Ⅲ,但方案Ⅱ的4個補償參數(shù)值都大于方案Ⅲ。受補償元件尺寸、體積和成本的限制,補償參數(shù)值不能太大,優(yōu)化方案Ⅲ更加實用。因此,僅對傳統(tǒng)方案和方案Ⅲ進(jìn)行驗證和對比分析。
圖13 IPT系統(tǒng)實驗樣機
圖14 實驗波形和DC-DC效率
圖15 實驗波形和元器件應(yīng)力
Fig.15 Experimental waveforms and component stresses
(a)傳統(tǒng)方案
(b)優(yōu)化方案
圖16 輸出電壓隨耦合系數(shù)和負(fù)載變化曲線
Fig.16 Output voltage versus coupling coefficient and load
(a)傳統(tǒng)方案
(b)優(yōu)化方案
圖17 效率隨耦合系數(shù)和負(fù)載變化曲線
Fig.17 Efficiency versus coupling coefficient and load
綜上所述,優(yōu)化方案的輸出電壓波動、DC-DC效率均優(yōu)于傳統(tǒng)方案。實驗與理論分析基本一致,從而驗證了基于多目標(biāo)優(yōu)化理論的補償拓?fù)鋮?shù)設(shè)計方法的有效性?;趥鹘y(tǒng)補償方法的IPT系統(tǒng)發(fā)射線圈電流與負(fù)載和耦合系數(shù)無關(guān),系統(tǒng)的輸出電壓對耦合系數(shù)非常敏感?;诙嗄繕?biāo)優(yōu)化方法的IPT系統(tǒng)的發(fā)射線圈電流與耦合系數(shù)呈負(fù)相關(guān),可以跟蹤和補償耦合系數(shù)對IPT系統(tǒng)輸出電壓的影響。優(yōu)化方案的補償參數(shù)值均小于傳統(tǒng)方案的補償參數(shù)值,相應(yīng)的寄生電阻也小于傳統(tǒng)方案。優(yōu)化方案的發(fā)射線圈電流與耦合系數(shù)呈負(fù)相關(guān),使得接收線圈電流基本不變。因此,優(yōu)化方案能夠在耦合系數(shù)和負(fù)載變化范圍內(nèi)高效運行。此外,通過合理的開關(guān)選擇方案可以進(jìn)一步降低逆變器、整流器等開關(guān)元件的損耗,不在本文討論范圍之內(nèi)。
[1] Zhang Zhen, Pang Hongliang, Georgiadis A, et al. Wireless power transfer-an overview[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1044-1058.
[2] 薛明, 楊慶新, 章鵬程, 等. 無線電能傳輸技術(shù)應(yīng)用研究現(xiàn)狀與關(guān)鍵問題[J]. 電工技術(shù)學(xué)報, 2021, 36(8): 1547-1568.
Xue Ming, Yang Qingxin, Zhang Pengcheng, et al. Application status and key issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568.
[3] Covic G A, Boys J T. Inductive power transfer[J]. Proceedings of the IEEE, 2013, 101(6): 1276-1289.
[4] Li Zhenjie, Zhu Chunbo, Jiang Jinhai, et al. A 3-kW wireless power transfer system for sightseeing car supercapacitor charge[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3301-3316.
[5] 陳凱楠, 蔣燁, 檀添, 等. 軌道交通350kW大功率無線電能傳輸系統(tǒng)研究[J]. 電工技術(shù)學(xué)報, 2022, 37(10): 2411-2421, 2445.
Chen Kainan, Jiang Ye, Tan Tian, et al. Research on 350kW high power wireless power transfer system for rail transit[J]. Transactions of China Electro- technical Society, 2022, 37(10): 2411-2421, 2445.
[6] 謝文燕, 陳為. 基于組合補償網(wǎng)絡(luò)的抗偏移恒流輸出無線電能傳輸系統(tǒng)研究[J]. 電工技術(shù)學(xué)報, 2022, 37(6): 1495-1512.
Xie Wenyan, Chen Wei. Research on anti-offset constant-current output wireless power transfer system based on combined compensation network[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1495-1512.
[7] 孫淑彬, 張波, 李建國, 等. 多負(fù)載磁耦合無線電能傳輸系統(tǒng)的拓?fù)浒l(fā)展和分析[J]. 電工技術(shù)學(xué)報, 2022, 37(8): 1885-1903.
Sun Shubin, Zhang Bo, Li Jianguo, et al. Analysis and development on topologies of multi-load magnetic- coupling wireless power transfer system[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(8): 1885-1903.
[8] Vu V B, Ramezani A, Trivi?o A, et al. Operation of inductive charging systems under misalignment conditions: a review for electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2022, 9(1): 1857-1887.
[9] 陳陽, 楊斌, 彭云爾, 等. 感應(yīng)式無線電能傳輸系統(tǒng)抗偏移技術(shù)研究綜述[J]. 中國電機工程學(xué)報, 2023, 43(14): 5537-5559.
Chen Yang, Yang Bin, Peng Yuner, et al. Review of anti-misalignment technology in inductive wireless power transfer system[J]. Proceedings of the CSEE, 2023, 43(14): 5537-5559.
[10] 陸遠(yuǎn)方, 黎祎陽, 楊斌, 等. 考慮線圈參數(shù)變化的SS型動態(tài)無線電能傳輸系統(tǒng)參數(shù)優(yōu)化設(shè)計方法[J].電工技術(shù)學(xué)報, 2022, 37(18): 4537-4547.
Lu Yuanfang, Li Yiyang, Yang Bin, et al. Parameter design method for SS compensated dynamic wireless power transfer system considering coils’ parameters variations[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4537-4547.
[11] 張獻(xiàn), 韓大穩(wěn), 沙琳, 等. 一種共享磁通多耦合模式的無線電能傳輸系統(tǒng)抗偏移方法[J]. 電工技術(shù)學(xué)報, 2022, 37(21): 5359-5368.
Zhang Xian, Han Dawen, Sha Lin, et al. An anti- offset method under flux-sharing multi-coupling mode for wireless power transmission system[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5359-5368.
[12] 陳永洪, 黎祎陽, 楊斌, 等. 基于多中繼線圈結(jié)構(gòu)的無線電能傳輸系統(tǒng)恒流/恒壓輸出方法[J]. 電力系統(tǒng)自動化, 2022, 46(20): 147-154.
Chen Yonghong, Li Yiyang, Yang Bin, et al. Constant-current/constant-voltage output method for wireless power transfer system based on multi-relay coil structure[J]. Automation of Electric Power Systems, 2022, 46(20): 147-154.
[13] 胡秀芳, 王躍, 呂雙慶, 等. 基于諧波狀態(tài)空間的無線電能傳輸系統(tǒng)建模和穩(wěn)定性分析[J]. 電力系統(tǒng)自動化, 2022, 46(11): 121-130.
Hu Xiufang, Wang Yue, Lü Shuangqing, et al. Modeling and stability analysis of wireless power transfer system based on harmonic state space[J]. Automation of Electric Power Systems, 2022, 46(11): 121-130.
[14] 王黨樹, 董振, 古東明, 等. 基于雙邊LCL變補償參數(shù)諧振式無線充電系統(tǒng)的研究與分析[J]. 電工技術(shù)學(xué)報, 2022, 37(16): 4019-4028.
Wang Dangshu, Dong Zhen, Gu Dongming, et al. Research and analysis of resonant wireless charging system based on bilateral LCL variable compensation parameters[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4019-4028.
[15] Dai Zhongyu, Wang Junhua, Zhou Haikuo, et al. A review on the recent development in the design and optimization of magnetic coupling mechanism of wireless power transmission[J]. IEEE Systems Journal, 2020, 14(3): 4368-4381.
[16] Li Weihan, Zhao Han, Deng Junjun, et al. Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4429-4439.
[17] Liu Y C, Zhang Jiantao, Tse C K, et al. General pathways to higher order compensation circuits for IPT converters via sensitivity analysis[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 9897-9906.
[18] Borage M, Tiwari S, Kotaiah S. Analysis and design of an LCL-T resonant converter as a constant-current power supply[J]. IEEE Transactions on Industrial Electronics, 2005, 52(6): 1547-1554.
[19] Zhao Lei, Thrimawithana D J, Madawala U K. Hybrid bidirectional wireless EV charging system tolerant to pad misalignment[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7079-7086.
[20] Villa J L, Sallan J, Sanz Osorio J F, et al. High- misalignment tolerant compensation topology for ICPT systems[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 945-951.
[21] Mai Ruikun, Chen Yang, Li Yong, et al. Inductive power transfer for massive electric bicycles charging based on hybrid topology switching with a single inverter[J]. IEEE Transactions on Power Electronics, 2017, 32(8): 5897-5906.
[22] Feng Hao, Cai Tao, Duan Shanxu, et al. A dual-side detuned series-series compensated resonant converter for wide charging region in a wireless power transfer system[J]. IEEE Transactions on Industrial Elec- tronics, 2018, 65(3): 2177-2188.
[23] 任潔, 劉野然, 岳鵬飛, 等. 基于參數(shù)優(yōu)化法的輸出抗偏移感應(yīng)電能傳輸系統(tǒng)研究[J]. 中國電機工程學(xué)報, 2019, 39(5): 1452-1461.
Ren Jie, Liu Yeran, Yue Pengfei, et al. Study on anti-misalignment inductive power transfer system based on parameter optimized method[J]. Proceedings of the CSEE, 2019, 39(5): 1452-1461.
[24] Feng Hao, Cai Tao, Duan Shanxu, et al. An LCC compensated resonant converter optimized for robust reaction to large coupling variation in dynamic wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6591-6601.
[25] Yao Yousu, Wang Yijie, Liu Xiaosheng, et al. Particle swarm optimization-based parameter design method for S/CLC-compensated IPT systems featuring high tolerance to misalignment and load variation[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5268-5282.
[26] Ramezani A, Narimani M. Optimized electric vehicle wireless chargers with reduced output voltage sensitivity to misalignment[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(4): 3569-3581.
[27] Chen Weiming, Lu Weiguo, Iu H H C. Compensation network optimal design based on evolutionary algorithm for inductive power transfer system[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(12): 5664-5674.
[28] Coello C A C, Lechuga M S. MOPSO: a proposal for multiple objective particle swarm optimization[C]// Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, HI, USA, 2002: 1051-1056.
[29] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimi- zation[J]. IEEE Transactions on Evolutionary Com- putation, 2004, 8(3): 256-279.
Coupling-Independent Constant-Voltage Output LCC/S Compensation Inductive Power Transfer System Based on Multi-Objective Optimization Theory
11122
(1. School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China 2. China Electric Power Research Institute Beijing 100192 China)
The inductive power transfer (IPT) system based on the traditional full resonance parameter design method presents the best performance only when the transmitting and receiving coils are fully coupled. Usually, the primary coil is fixed, and the position of the secondary coil is uncertain for human factors, causing lateral and longitudinal misalignment of the magnetic coupling mechanism. This misalignment of the magnetic coupling mechanism directly leads to the variation of the coupling coefficient, which may lead to a wide range of output voltage fluctuation and efficiency reduction. To obtain a relatively constant output voltage and operate efficiently under coupling coefficient and load variations, this paper overcomes the limitations of the traditional full resonance parameter design method, transforming the compensation topology parameter design problem into a multi-objective optimization problem.
Firstly, after analyzing full resonance compensation parameters, the system equations of the IPT system with LCC/S compensation topology are established using the fundamental harmonic approximation (FHA) method. A multi-objective optimization model is established. Herein, compensation topology parameters are used as optimization variables, and output voltage fluctuation reduction and system efficiency improvement are as the optimization objectives. The constraints are maximum inductance passing current, maximum capacitor withstanding voltage, and zero voltage switching (ZVS). Then, a case is designed, and the multi-objective particle swarm optimization (MOPSO) algorithm is used to solve the multi-objective optimization model. Three optimization schemes are selected from the Pareto optimal solution set according to the actual needs, and the simulation analysis is carried out. Finally, based on the multi-objective optimization theory, an experimental platform is built to verify the coupling-independent constant output characteristics and efficient operation characteristics of the compensation parameter design method. The experimental results show that when the coupling coefficient of the IPT system varies in the range of 0.20~0.32, and the equivalent load resistance varies in the range of 50~60W, the output voltage fluctuation rate (VFR) of the optimized scheme is less than 9.0%. In the whole range of coupling coefficient and load variation, the minimum efficiency is 87.5%, and the maximum efficiency is 93.2%. Compared with the efficiency of the traditional scheme (70.0%~86.3%), the efficiency of the optimized scheme is also greatly improved.
Different from single-objective optimization, which provides only a single solution, the multi-objective optimization model established in this paper can get the Pareto optimal solution set through the MOPSO algorithm. The decision maker determines the weight of each object according to the actual needs and selects the appropriate design scheme from the Pareto optimal solution set. Thus, the IPT system can still obtain a relatively constant output voltage and operate efficiently when the coupling coefficient and load change. This method has high flexibility and wide applicability. It is suitable for optimizing compensation topologies that satisfy features like coupling and load-independent constant output, high efficiency, low device stress, zero voltage switching, and more.
Inductive power transfer, multi-objective optimization, coupling-independent constant voltage output, multi-objective particle swarm optimization (MOPSO) algorithm, Pareto solutions
TM724
10.19595/j.cnki.1000-6753.tces.230325
中央高?;究蒲袠I(yè)務(wù)費專項資金資助項目(2023JBZX006)。
2023-03-20
2023-06-02
焦超群 男,1976年生,副教授,博士生導(dǎo)師,研究方向為電磁場理論及其應(yīng)用、大功率IGBT器件、無線電能傳輸技術(shù)等。E-mail: chqjiao@bjtu.edu.cn
楊 旭 男,1987年生,博士研究生,研究方向電力電子變換器、無線電能傳輸技術(shù)等。E-mail: yangxuican@bjtu.edu.cn(通信作者)
(編輯 陳 誠)