亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        兩類蝶式期權(quán)方差和協(xié)方差的半?yún)?shù)界

        2023-11-04 13:37:45艾曉輝劉宗昊白瑞杰王茹雪

        艾曉輝 劉宗昊 白瑞杰 王茹雪

        摘要:本文的目的是在已知隨機(jī)變量某些矩信息的條件下,給出隨機(jī)變量函數(shù)的方差和相應(yīng)協(xié)方差的半?yún)?shù)界。本文應(yīng)用對(duì)偶原理,給出了美式蝶式期權(quán)和歐式蝶式期權(quán)的方差的上界估計(jì)。運(yùn)用等價(jià)公式,測(cè)度變換,找到控制函數(shù),分別給出了單峰分布下歐式看漲期權(quán)與美式蝶式期權(quán)的協(xié)方差的下界估計(jì)以及歐式看漲期權(quán)與歐式蝶式期權(quán)的協(xié)方差的上界估計(jì)。

        關(guān)鍵詞:對(duì)偶原理;測(cè)度變換;單峰分布;半?yún)?shù)界

        中圖分類號(hào):O211.5文獻(xiàn)標(biāo)志碼:A文獻(xiàn)標(biāo)識(shí)碼

        Semiparametric bounds of variance and covariance for two kinds of butterfly options

        AI? Xiaohui,LIU? Zonghao,BAI? Ruijie,WANG? Ruxue

        (School of Science, Northeast Forestry University,Harbin,Heilongjiang 150040, China)

        Abstract: The purpose of the research is to give the semiparametric bounds of the variance and the corresponding covariance of the function of the random variable, when some moment information of the random variable is given. Through the principle of duality the upper bound estimates of the variance of American butterfly options and European butterfly options are given. Using the equivalent formula and measure transformation, we find the control function, and give the lower bound estimation of the covariance of European call option and American butterfly option under unimodal distribution and the upper bound estimation of the covariance of European call option and European butterfly option.

        Key words: duality principle;measure transformation;unimodal distribution;semiparametric bounds

        近年來(lái)期權(quán)交易這種經(jīng)濟(jì)手段被廣泛應(yīng)用[1],由于在期權(quán)市場(chǎng)中期權(quán)價(jià)格的穩(wěn)定性是影響交易的一大重要因素,從而研究期權(quán)價(jià)格的方差的界對(duì)于期權(quán)交易來(lái)說(shuō)有著很大的參考價(jià)值[2-17]。本文將在給定矩條件下研究美式對(duì)稱蝶式期權(quán)及歐式對(duì)稱蝶式期權(quán)方差的界。

        隨機(jī)變量函數(shù)方差矩界的研究歷史尚短,其中Chernoff(1981)[18]利用Hermite多項(xiàng)式得到了標(biāo)準(zhǔn)正態(tài)分布的1個(gè)隨機(jī)變量函數(shù)方差的上界,See等[19]在已知期望不等式的基礎(chǔ)上得出了數(shù)個(gè)近來(lái)常見(jiàn)的方差不等式,Cacoulos[20]用類似的方法得出了幾個(gè)不同分布的上界。

        2005年Dokov等[21]給出了在底層隨機(jī)變量前兩階矩給定條件下凸函數(shù)期望的一類下界。2006年Asprmont等[22]通過(guò)簡(jiǎn)單的閉式表達(dá)式與線性規(guī)劃計(jì)算了歐式籃子看漲期權(quán)定價(jià)函數(shù)的上、下界。2007年Natarajan等[25]在給定隨機(jī)變量的均值與方差的條件下得到了1個(gè)三段線性凸函數(shù)的期望值的1個(gè)緊的閉式上界。2009年張銀龍[23]在已知一階矩及二階矩的條件下利用對(duì)偶原理得到了任意分布下截尾隨機(jī)變量小值概率的界。

        2010年Sharma等[24]得出了有限宇宙方差的界。2010年劉國(guó)慶[4]將對(duì)稱化與對(duì)偶思想結(jié)合得出了估計(jì)隨機(jī)變量函數(shù)方差界的1種全新的方法,在此基礎(chǔ)上羅希[5]給出了歐式看漲期權(quán)與歐式缺口期權(quán)協(xié)方差的半?yún)?shù)界。2011年P(guān)feiffer等[25]運(yùn)用1種基于影響函數(shù)的方法來(lái)計(jì)算絕對(duì)風(fēng)險(xiǎn)估計(jì)值與絕對(duì)風(fēng)險(xiǎn)函數(shù)的方差。2019年李宗秀[26]對(duì)三段線性函數(shù)的均值上界進(jìn)行了探討。本文主要研究美式對(duì)稱蝶式期權(quán)以及歐式對(duì)稱蝶式期權(quán)的方差界問(wèn)題,同時(shí)我們選取了1類特殊的歐式看漲期權(quán) ,分別研究其與美式對(duì)稱蝶式期權(quán)以及歐式對(duì)稱蝶式期權(quán)之間的協(xié)方差的界問(wèn)題,對(duì)2種期權(quán)協(xié)方差的研究有助于幫助投資者們進(jìn)行決策。

        本文將美式蝶式期權(quán)以及歐式蝶式期權(quán)分為兩部分討論,但對(duì)它們所用的方法是類似的。研究的結(jié)果可以應(yīng)用到經(jīng)濟(jì)、金融領(lǐng)域,比較2個(gè)隨機(jī)變量函數(shù)的矩,進(jìn)而比較期權(quán)價(jià)格的穩(wěn)定性,有助于投資者清晰化投資方向,優(yōu)化投資組合,幫助投資者減小風(fēng)險(xiǎn)的同時(shí)獲得最優(yōu)化利益。

        1 美式蝶式期權(quán)方差的半?yún)?shù)界

        本節(jié)我們將研究美式蝶式期權(quán)的方差,在所給出引理1的基礎(chǔ)上,通過(guò)適當(dāng)?shù)姆趴s結(jié)合對(duì)偶原理,得出了美式蝶式期權(quán)方差的估計(jì)。首先介紹美式碟式期權(quán)的方差。

        5 結(jié)論

        針對(duì)美式蝶式期權(quán)及歐式蝶式期權(quán),我們借助對(duì)偶原理研究了其在給定矩條件下方差的半?yún)?shù)界。同時(shí),結(jié)合測(cè)度變換研究了單峰條件下2種期權(quán)協(xié)方差的上、下界問(wèn)題,最終給出了美式蝶式期權(quán)與max(S-K2,0)協(xié)方差的下界以及歐式蝶式期權(quán)與max(S-K2,0)協(xié)方差的上界。研究的結(jié)果對(duì)經(jīng)濟(jì)、金融領(lǐng)域有實(shí)際意義,幫助投資者進(jìn)行決策分析。

        參考文獻(xiàn)(References)

        [1]王中城. 兩類截尾奇異期權(quán)均值與方差的矩界問(wèn)題[D]. 哈爾濱:哈爾濱工業(yè)大學(xué), 2012.

        [2]WEI Z Y, ZHANG X S. A matrix version of Chernoff inequality[J]. Statistics & Probability Letters, 2008, 78(13): 1823-1825.

        [3]PROKHOROV Y V, VISKOV O V, KHOKHLOV V I. Binomial analogues of the Chernoff inequality[J]. Theory of Probability & Its Applications, 2002, 46(3): 544-547.

        [4]劉國(guó)慶. 截尾隨機(jī)變量均值與方差的半?yún)?shù)界[D]. 哈爾濱:哈爾濱工業(yè)大學(xué), 2010.

        [5]羅希. 單峰變量函數(shù)方差和協(xié)方差的半?yún)?shù)界[D]. 哈爾濱:哈爾濱工業(yè)大學(xué), 2012.

        [6]EDDY A , RIVER C. On Dyukarev′s resolvent matrix for a truncated Stieltjes matrix moment problem under the view of orthogonal matrix polynomials[J]. Linear Algebra and its Applications, 2015, 474: 44-109.

        [7]AZOUZI Y, RAMDANE K. Burkholder inequalities in Riesz spaces[J]. Indagationes Mathematicae, 2017, 28(5): 1076-1094.

        [8]SHEN A, WU C. Complete q-th moment convergence and its statistical applications[J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemticas, 2020, 114(1): 1-25.

        [8]OLTEANU O. Polynomial approximation on unbounded subsets, Markov moment problem and other applications[J]. Mathematics, 2020, 8(10): 1654.

        [9]AGAHI H, MESIAR R. Probability inequalities for decomposition integrals[J]. Journal of Computational and Applied Mathematics, 2017, 315: 240-248.

        [10]YANG W Z, WANG Y W, HU S H. Some probability inequalities of least-squares estimator in non linear regression model with strong mixing errors[J]. Communications in Statistics:Theory and Methods, 2017, 46(1): 165-175.

        [12]GUO Q, YE P. Convergence rate for the moving least-squares learning with dependent sampling[J]. Journal of Inequalities and Applications, 2018, 2018(1): 1-13.

        [11]FENG Y Q, WANG M, ZHANG Y Q. CVA for Cliquet options under Heston model[J]. The North American Journal of Economics and Finance, 2019, 48: 272-282.

        [12]OGASAWARA H. The multivariate Markov and multiple Chebyshev inequalities[J]. Communications in Statistics:Theory and Methods, 2020, 49(2): 441-453.

        [13]CHEN X, HE S M, JIANG B, et al. The discrete moment problem with nonconvex shape constraints[J]. Operations Research, 2021, 69(1): 279-296.

        [14]INFUSINO M, KUNA T. The full moment problem on subsets of probabilities and point configurations[J]. Journal of Mathematical Analysis and Applications, 2020, 483(1): 123551.

        [15]DIDIO P J, SCHMDGEN K. The multidimensional truncated moment problem: Carathodory numbers[J]. Journal of Mathematical Analysis and Applications, 2018, 461(2): 1606-1638.

        [16]LAI S Y, QIU J, TAO Y C. Option-based portfolio risk hedging strategy for gas generator based on mean-variance utility model[J]. Energy Conversion and Economics, 2022, 3(1): 20-30.

        [17]HE X J, CHEN W T. A closed-form pricing formula for European options under a new stochastic volatility model with a stochastic long-term mean[J]. Mathematics and Financial Economics, 2021, 15: 381-396.

        [18]CHERNOFF H. A note on an inequality involving the normal distribution[J]. The Annals of Probability, 1981,9: 533-535.

        [19]SEE C T, CHEN J. Inequalities on the variances of convex functions of random variables[J]. Journal of inequalities in pure and applied mathematics, 2008, 9(3): 1-5.

        [20]CACOULLOS T. On upper and lower bounds for the variance of a function of a random variable[J]. The Annals of Probability, 1982, 10(3): 799-809.

        [21]DOKOV S P, MORTON D P. Second-order lower bounds on the expectation of a convex function[J]. Mathematics of Operations Research, 2005, 30(3): 662-677.

        [22]D′ASPREMONT A, GHAOUI L E. Static arbitrage bounds on basket option prices[J]. Mathematical programming, 2006, 106(3): 467-489.

        [25]NATARAJAN K, ZHOU L Y. A mean-variance bound for a three-piece linear function[J]. Probability in the Engineering and Informational Sciences, 2007, 21(4): 611-621.

        [23]張銀龍. 截尾變量小偏差概率的矩界[D].哈爾濱:哈爾濱工業(yè)大學(xué),2009.

        ZHANG Y L. Moment bounds of small deviation for truncated random variabies[D]. Harbin Institute of Technology, 2012.

        [24]SHARMA R, GUPTA M, KAPOOR G. Some better bounds on the variance with applications[J]. Journal of Mathematical Inequalities, 2010, 4(3): 355-363.

        [25]PFEIFFER R M, PETRACCI E. Variance computations for functionals of absolute risk estimates[J]. Statistics & probability letters, 2011, 81(7): 807-812.

        [26]李宗秀. 截尾三段線性函數(shù)均值上界的估計(jì)[J]. 哈爾濱商業(yè)大學(xué)學(xué)報(bào) (自然科學(xué)版), 2019, 35(4):499-502.

        LI Z X. Estimates on upper bounds of mean for truncated three-piece linear function[J]. Journal of Harbin University of Commerce(Natural Sciences Edition), 2019, 35(4):499-502.

        (責(zé)任編輯:編輯郭蕓婕)

        收稿日期:2022-06-20

        基金項(xiàng)目:黑龍江省博士后資助項(xiàng)目(LBH-Q21059),東北林業(yè)大學(xué)2021年度大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(202110225124)

        作者簡(jiǎn)介:艾曉輝(1979—), 女,副教授,從事隨機(jī)過(guò)程、隨機(jī)微分方程、矩問(wèn)題的研究,e-mail:axh_826@163.com。

        亚洲激情一区二区三区视频| 少妇无码一区二区三区免费| 国产日产精品_国产精品毛片| 国产女人高潮叫床免费视频| 午夜大片又黄又爽大片app| 亚洲色欲在线播放一区| 偷拍熟女亚洲另类| 精品久久日产国产一区| 日本高清一区二区三区在线| 一本之道久久一区二区三区| 日本边添边摸边做边爱喷水| 狠狠躁夜夜躁人人爽天天古典| 国精产品一区二区三区| 伊人久久中文大香线蕉综合| 激情视频在线观看国产中文| 亚洲成a人一区二区三区久久| 一区二区三区高清在线观看视频| 色综合久久久无码中文字幕| www国产精品内射熟女| 亚洲熟妇大图综合色区| 亚洲啊啊啊一区二区三区| 在线观看高清视频一区二区三区| 在线观看午夜视频国产| 东京热无码av一区二区| 亚洲国产无套无码av电影| 亚洲天堂手机在线| 亚洲av一二三又爽又爽又色 | 潮喷大喷水系列无码久久精品| 厨房玩丰满人妻hd完整版视频| 日韩人妻无码精品系列专区无遮 | 18分钟处破好疼哭视频在线观看 | 欧美中文在线观看| 国产精品一区二区三区黄片视频 | 亚洲精品国产第一综合色吧| 无遮挡18禁啪啪羞羞漫画| 国产偷国产偷亚洲清高| 精品人妻av一区二区三区不卡| 中文字幕av长濑麻美| 国产办公室沙发系列高清| 无码之国产精品网址蜜芽| 日本一区二区三区激视频|