于婧文, 郭敏芳, 李夢迪, 李娜, 孟濤, 張海飛,宋麗娟,3, 馬存根,△, 尉杰忠,,4△
黃芪甲苷通過影響NogoA/NgR和cAMP/PKA通路改善/轉(zhuǎn)基因小鼠認知功能*
于婧文1, 郭敏芳1, 李夢迪2, 李娜2, 孟濤1, 張海飛1,宋麗娟2,3, 馬存根1,2△, 尉杰忠1,2,4△
(1山西大同大學(xué)腦科學(xué)研究所/附屬第一醫(yī)院神經(jīng)科,山西 大同 037009;2山西中醫(yī)藥大學(xué)國家中醫(yī)藥管理局多發(fā)性硬化益氣活血重點研究室/神經(jīng)生物學(xué)研究中心,山西 晉中 030619;3山西醫(yī)科大學(xué)生理學(xué)系,山西 太原 030001;4山西大同市第四人民醫(yī)院,山西 大同 037009)
觀察黃芪甲苷(astragaloside IV, AST IV)對阿爾茨海默?。ˋlzheimer disease, AD)模型小鼠認知功能障礙和病理改變的影響,并探討可能的調(diào)控機制。將/轉(zhuǎn)基因(/)小鼠隨機分為AD+AST IV組和AD組,并以C57BL/6野生型(wild-type, WT)小鼠作為對照組(WT組),灌胃治療兩個月(=8)。應(yīng)用Morris水迷宮和Y迷宮實驗評價小鼠空間認知功能(=8),尼氏染色檢測神經(jīng)元數(shù)量與形態(tài),免疫熒光染色觀察神經(jīng)元核抗原(neuronal nuclear antigen, NeuN)和β-淀粉樣蛋白(amyloid β-protein, Aβ)水平(=4),Western blot法檢測全腦組織中神經(jīng)突生長抑制因子A(neurite outgrowth inhibitor A, NogoA)、Nogo-66受體(Nogo-66 receptor, NgR)、p75神經(jīng)營養(yǎng)因子受體(p75 neurotrophin receptor, p75NTR)、含富亮氨酸重復(fù)序列和免疫球蛋白樣結(jié)構(gòu)域蛋白1(leucine rich repeat and immunoglobin-like domain-containing protein-1, LINGO-1)、環(huán)磷酸腺苷(cyclic adenosine monophosphate, cAMP)和蛋白激酶A(protein kinase A, PKA)的表達(=4)。AST IV能夠顯著緩解/小鼠的認知功能障礙,提高其學(xué)習(xí)、記憶和探索功能。與WT組相比,/小鼠大腦皮質(zhì)區(qū)和海馬區(qū)Aβ沉積增加(<0.01),尼氏小體丟失嚴重(<0.05或<0.01),神經(jīng)元數(shù)量減少(<0.05);而AST IV可以顯著減少Aβ沉積(<0.05),減少尼氏小體丟失(<0.05),增加神經(jīng)元數(shù)量(<0.05)。與WT組相比,/小鼠腦組織NogoA、NgR、p75NTR和LINGO-1表達顯著增加(<0.05或<0.01),cAMP和PKA表達顯著減少(<0.05或<0.01);而AST IV可以顯著抑制NogoA、NgR、p75NTR和LINGO-1表達(<0.05或<0.01),增加cAMP和PKA表達(<0.05)。AST IV通過抑制NogoA及NgR/p75NTR/LINGO-1受體復(fù)合物的表達,并上調(diào)cAMP/PKA通路,減少/小鼠腦組織中Aβ沉積,減輕神經(jīng)元損傷,從而改善認知功能和緩解學(xué)習(xí)障礙。
黃芪甲苷;阿爾茨海默??;NogoA/NgR信號通路;cAMP/PKA信號通路
雖然理論上中樞神經(jīng)系統(tǒng)(central nervous system, CNS)的神經(jīng)元在損傷后具有再生軸突的能力,但實際情況并非如此,部分原因是受到髓鞘中生長抑制蛋白的限制[1]。神經(jīng)突生長抑制因子A(neurite outgrowth inhibitor A, NogoA)是最早被發(fā)現(xiàn)的一種抑制軸突再生的髓磷脂相關(guān)蛋白,對神經(jīng)發(fā)育和突觸可塑性有負調(diào)控功能[2]。研究表明,NogoA在阿爾茨海默?。ˋlzheimer disease, AD)患者的海馬神經(jīng)元過度表達,且證實與β-淀粉樣蛋白(amyloid β-protein, Aβ)沉積有關(guān),通過影響Aβ的代謝限制突觸可塑性來觸發(fā)AD的發(fā)生和發(fā)展,引起認知功能障礙[3]。NogoA不僅影響突觸的可塑性,而且影響神經(jīng)細胞的凋亡,通過抑制NogoA/Nogo-66受體(Nogo-66 receptor, NgR)/RhoA (Ras homolog family member A)信號軸,降低/轉(zhuǎn)基因小鼠Aβ水平和神經(jīng)元凋亡[4]。NogoA還是運動皮層中熟練運動學(xué)習(xí)的調(diào)節(jié)劑,抗NogoA抗體可以改善成年嚙齒動物運動皮層控制的精確運動學(xué)習(xí),鞘內(nèi)應(yīng)用NogoA阻斷抗體可以增加皮質(zhì)錐體神經(jīng)元的樹突棘密度[5]。NogoA結(jié)合NgR、p75神經(jīng)營養(yǎng)因子受體(p75 neurotrophin receptor, p75NTR)、含富亮氨酸重復(fù)序列和免疫球蛋白樣結(jié)構(gòu)域蛋白1(leucine rich repeat and immunoglobin-like domain-containing protein-1, LINGO-1)[6]形成復(fù)合物,激活RhoA及其效應(yīng)物Rho相關(guān)激酶(Rho-associated kinase, ROCK)[7],抑制軸突再生和髓鞘再生[8]。因此,NogoA可能是減輕神經(jīng)損傷和改善認知功能的有效靶點。
環(huán)磷酸腺苷(cyclic adenosine monophosphate, cAMP)是神經(jīng)自發(fā)再生期間活躍的細胞內(nèi)信號通路,在調(diào)節(jié)神經(jīng)元和生長錐的存活、增強神經(jīng)突起生長中發(fā)揮重要作用[9]。cAMP通過激活蛋白激酶A(protein kinase A, PKA)啟動信號級聯(lián),改善軸突再生,修復(fù)損傷后的神經(jīng)元[9-10]。因此,減少抑制軸突再生的髓磷脂相關(guān)蛋白及其受體表達,促進cAMP/PKA通路的激活,是改善軸突再生、修復(fù)受損神經(jīng)元的有效途徑。
黃芪甲苷(astragaloside IV, AST IV)是中藥黃芪具有生物活性的單體成分,是天然的過氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptor γ, PPARγ)激動劑。研究表明,它可以促進軸突成熟和預(yù)防記憶喪失[11],通過多靶點協(xié)同機制發(fā)揮治療AD的作用,AST IV可以改善AD小鼠的記憶障礙[12],抑制了神經(jīng)元丟失和Aβ的沉積[13],改善突觸功能,誘導(dǎo)PPARγ和腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor, BDNF)增加,抑制神經(jīng)炎癥和焦亡[14]。我們前期研究也證實,AST IV能夠抑制脂多糖誘導(dǎo)的小膠質(zhì)細胞和星形膠質(zhì)細胞炎癥反應(yīng)[15-16],還可以改善氧化應(yīng)激損傷的SY5Y細胞線粒體功能和抑制細胞凋亡[17]。本文通過研究AST IV對/轉(zhuǎn)基因小鼠神經(jīng)元和認知功能的作用,進一步探討AST IV對軸突生長和神經(jīng)再生的作用機制。
8月齡雄性/轉(zhuǎn)基因小鼠和C57BL/6小鼠,SPF級,體質(zhì)量(30±1) g,購自北京華阜康生物科技股份有限公司,動物許可證號為SCXK(京)2014-0001。本研究所有動物程序均經(jīng)山西大同大學(xué)倫理委員會批準(zhǔn)(No. 2021024)。所有的動物實驗都按照國際實驗動物科學(xué)理事會的指導(dǎo)方針進行。
尼氏染色試劑盒(批號:G1430)購自北京索萊寶科技有限公司;兔抗Aβ單克隆抗體(8243)、兔抗神經(jīng)元核抗原(neuronal nuclear antigen, NeuN)單克隆抗體(24307)、兔抗p75NTR單克隆抗體(8238)、兔抗LINGO-1單克隆抗體(49389)、兔抗PKA單克隆抗體(4781)和兔抗GAPDH單克隆抗體(8884)均購自Cell Signaling Technology;兔抗NogoA單克隆抗體(ab62024)、兔抗NgR單克隆抗體(ab184556)、兔抗cAMP單克隆抗體(ab26322)和Alex Flour?594標(biāo)記的山羊抗兔IgG Ⅱ抗(ab150080)均購自Abcam;辣根過氧化物酶(horseradish peroxidase, HRP)標(biāo)記的山羊抗兔IgG Ⅱ抗(E030120-01)購自Earthox;AST IV購自上海阿拉丁生化公司。
SMART 3.0水迷宮軟件(中國深圳瑞沃德生命科技有限公司);CM1950冰凍切片機(Leica);電泳儀和凝膠成像分析儀(Bio-Rad);FV1000激光共聚焦顯微鏡(Olympus)。
3.1動物分組將/雙轉(zhuǎn)基因小鼠隨機分為2組:/轉(zhuǎn)基因小鼠組(AD組,=8)和黃芪甲苷處理的/轉(zhuǎn)基因小鼠組(AD+AST IV組,=8)。野生型(wild-type, WT)同月齡雄性C57BL/6小鼠為對照組(WT組,=8)。在小鼠8個月時開始給予AD+AST IV組治療,AST IV(40 mg·kg-1·d-1)[18-19]連續(xù)2個月灌胃。AD組和WT組小鼠給予相同體積的0.9% NaCl溶液灌胃。
3.2Morris水迷宮實驗Morris水迷宮具體實驗參照文獻,測試小鼠空間位置感和方向感(空間定位)的學(xué)習(xí)記憶能力[18-19]。具體操作如下:水迷宮是一個直徑為90 cm的水池,分為四個象限,水池中有一個透明的平臺(5 cm×5 cm)位于西南象限(southwest, SW)。將水池充滿了不透明的水,保持在19 ℃左右。在測試前,這些動物分別在泳池里接受了5 d的連續(xù)訓(xùn)練,每天4次。若小鼠未能在60 s內(nèi)到達透明的平臺,則需要被引導(dǎo)到平臺休息10秒,熟悉平臺和位置。小鼠的運動軌跡會被自動記錄儀記錄下來。24 h后進行正式測試,將平臺移走,小鼠放入泳池內(nèi)自由游泳60 s,并對60 s內(nèi)的游泳軌跡進行錄像記錄和分析。測量每只小鼠到目標(biāo)的平均距離和首次進入西南區(qū)的潛伏期,以評估記憶鞏固程度。
3.3Y迷宮實驗Y迷宮實驗方法具體參照文獻,測試小鼠短期記憶功能和探索能力[18-20]。Y迷宮由三個對稱的不透明的臂組成,三個臂分別是長30 cm,寬8 cm,高15 cm,隨機指定為新異臂、起始臂和其他臂。在訓(xùn)練期間,新異臂被隔板阻斷,小鼠從起始臂放入,在迷宮中自由探索10 min后拿出,在迷宮中噴灑乙醇以消除前一只小鼠的氣味線索。正式測試時去除新異臂隔板,起始臂放入小鼠,自由探索5 min后,開始錄像記錄并分析,小鼠依次進入三個不同的臂為一次正確的交替次數(shù),使用以下方法計算:自發(fā)交替率(%)=正確交替次數(shù)/(進臂總次數(shù)-2)×100%。
3.4免疫熒光染色法檢測腦組織Aβ水平和NeuN表達完成行為學(xué)實驗后,將各組小鼠麻醉后,每組隨機一半的小鼠(4)分別用生理鹽水和4%多聚甲醛心臟灌流,冰上分離腦組織,蔗糖梯度脫水,用OCT包埋劑包埋,并在液氮中冷凍,后用低溫切片機行冠狀切片(10 μm)。切片進行免疫熒光染色,用1%牛血清白蛋白(含0.3% Triton X-100)封閉1 h,分別孵育兔抗Aβ單克隆抗體(1∶1 000)和兔抗NeuN單克隆抗體(1∶1 000),4 ℃ 濕盒過夜。次日使用熒光標(biāo)記的Ⅱ抗(1∶1 000),室溫避光孵育2 h,PBS浸洗3次,用含Hoechst 33342染料的抗熒光淬滅封片液封片。切片于激光共聚焦顯微鏡下進行觀察,并使用Image-Pro Plus軟件進行熒光強度分析。
3.5Western blot法檢測蛋白表達完成行為學(xué)實驗后,將各組小鼠麻醉,心臟灌流,每組隨機一半的小鼠(=4)只灌注生理鹽水,冰上分離小鼠腦組織,4 ℃下用含蛋白酶抑制劑的RIPA裂解液,超聲勻漿,25 000離心10 min,收集上清液,用NanoDrop測定蛋白含量,并調(diào)整蛋白濃度。配制聚丙烯酰胺凝膠,上樣蛋白量為30 μg,電泳分離蛋白后,濕式轉(zhuǎn)移法轉(zhuǎn)移到PVDF膜。5%脫脂奶粉封閉2 h,分別加兔抗NogoA單克隆抗體(1∶1 000)、兔抗NgR單克隆抗體(1∶1 000)、兔抗P75NTR單克隆抗體(1∶1 000)、兔抗LINGO-1單克隆抗體(1∶1 000)、兔抗GAPDH單克隆抗體(1∶5 000)、兔抗cAMP單克隆抗體(1∶500)和兔抗PKA單克隆抗體(1∶1 000),4 ℃孵育過夜。次日洗滌后,加HRP標(biāo)記的山羊抗兔IgG(1∶10 000),室溫孵育2 h后,進行化學(xué)發(fā)光,使用凝膠成像分析儀檢測,Image Lab軟件分析,用條帶灰度值與內(nèi)參照GAPDH灰度值的比值表示蛋白的相對表達量。
采用GraphPad Prism 5.0統(tǒng)計軟件對實驗數(shù)據(jù)進行分析處理。計量資料以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。多組比較采用單因素方差分析,組間兩兩比較用LSD-檢驗。以<0.05為差異有統(tǒng)計學(xué)意義。
首先進行水迷宮實驗。訓(xùn)練期內(nèi),與WT組相比,AD組小鼠的潛伏期和到目標(biāo)的平均距離有增加的趨勢;與AD組相比,AD+AST IV組小鼠的潛伏期和到目標(biāo)的平均距離有降低的趨勢,但差異均無統(tǒng)計學(xué)意義(圖1A)。測試時,平臺被移走,小鼠被放入泳池,自由游泳60 s。圖1B為各組小鼠在水迷宮中的代表性游泳軌跡,WT組小鼠經(jīng)過訓(xùn)練后可以快速從入水點達到平臺,游泳軌跡短;AD組小鼠入水后,游泳軌跡雜亂,搜索平臺效率顯著低于WT組;而AD+AST IV組小鼠運動軌跡與AD組相比顯著縮短,且活動范圍主要集中在目標(biāo)平臺所在象限,即SW區(qū)。與WT組相比,AD組小鼠潛伏期、第一次進入目標(biāo)象限時間和目標(biāo)象限距離均顯著延長(<0.05或<0.01);與AD組相比,AD+AST IV組小鼠潛伏期、第一次進入目標(biāo)象限時間和目標(biāo)象限距離均顯著縮短(<0.05或<0.01);而3組動物運動的平均速度無顯著差異(>0.05),見圖1C。
接著是Y迷宮實驗。各組小鼠代表性的運動軌跡圖顯示,WT組小鼠在新異臂中穿梭的次數(shù)明顯多于AD組和AST IV組,見圖1D。AD組小鼠在新異臂中花費的時間顯著少于WT組和,自發(fā)交替率均顯著低于WT組(<0.05);而AD+AST IV組小鼠在新異臂中花費的時間顯著少于WT組,自發(fā)交替率顯著高于AD組(<0.05),見圖1E。
Figure 1. AST IV improved spatial memory and exploratory learning in APP/PS1 mice. A: Morris water maze test, latency to reach the target, and mean distance to reach the target during 5 days of continuous training; B: the typical trace diagram for each group; C: latency to the target, latency of the first entrance in the target quadrant, percentage of distance to the southwest (SW) area in the target quadrant, and swimming speed during the formal test; D: schematic diagram of the Y-maze and typical motion trajectory of each group; E: percentage of retention time and spontaneous alternation rate of each group in the new alien arm in the Y-maze test. Mean±SD. n=8. *P<0.05, **P<0.01 vs WT group; #P<0.05, ##P<0.01 vs AD group.
用免疫熒光染色標(biāo)記腦組織中Aβ的沉積,綠色熒光為Aβ陽性細胞。結(jié)果顯示,與WT組相比,AD組小鼠皮質(zhì)區(qū)和海馬區(qū)Aβ熒光強度較強且表達顯著增加(<0.01);與AD組相比,AD+AST IV組小鼠皮質(zhì)區(qū)和海馬區(qū)Aβ熒光強度變?nèi)跚冶磉_量顯著減少(<0.05),見圖2。
Figure 2. AST IV reduced Aβ deposition in both cortex (A) and hippocampus (B) of APP/PS1 mice. Immunofluorescence images of Aβ (green) and quantitative analysis of the area of Aβ+ cells were shown. Mean±SD. n=4. *P<0.05, **P<0.01 vs WT group; #P<0.05 vs AD group.
尼氏染色結(jié)果顯示,WT組小鼠皮質(zhì)區(qū)和海馬區(qū)尼氏小體排列整齊,形態(tài)飽滿,呈藍紫色顆粒狀;與WT組相比,AD組小鼠皮質(zhì)區(qū)和海馬區(qū)尼氏小體著色變淺,排列松散,數(shù)量顯著減少(<0.05或<0.01);而與AD組相比,AD+AST IV組小鼠皮質(zhì)區(qū)和海馬區(qū)尼氏小體著色加深排列整齊且數(shù)量增加(<0.05),見圖3。
Figure 3. AST IV reduced Nissl body loss in APP/PS1 mice. Nissl staining was used to detect the survival of neurons and the loss of Nissl bodies in the cortex and hippocampus of the mice. Quantitative analysis of the number of Nissl bodies was performed. Mean±SD. n=4. *P<0.05, **P<0.01 vs WT group; #P<0.05 vs AD group.
使用免疫熒光染色標(biāo)記腦組織中成熟神經(jīng)元標(biāo)志物NeuN,紅色熒光為NeuN陽性細胞。結(jié)果顯示,WT組小鼠皮質(zhì)區(qū)和海馬區(qū)NeuN表達水平較高,神經(jīng)元排列整齊,數(shù)量較多;而AD組小鼠皮質(zhì)區(qū)和海馬區(qū)NeuN表達均較少,神經(jīng)元排列紊亂,形態(tài)不完整,數(shù)量減少,神經(jīng)元丟失嚴重(<0.05);AD+AST IV組小鼠皮質(zhì)區(qū)和海馬區(qū)NeuN表達較AD組顯著增加(<0.05)。
Figure 4. AST IV protected neurons in the cortex (A) and hippocampus (B) of APP/PS1 mice. Immunofluorescence images of neurons (NeuN+, red) and quantitative analysis of the area of NeuN+ cells were shown. Mean±SD. n=4. *P<0.05 vs WT group; #P<0.05 vs AD group.
Western blot結(jié)果顯示,與WT組相比,AD組小鼠腦組織NogoA表達顯著增加(<0.01);與AD組相比,AD+AST IV組小鼠腦組織NogoA表達則顯著降低(<0.01)。進一步檢測了NgR/p75NTR/LINGO-1受體復(fù)合體表達,結(jié)果顯示,與WT組相比,AD組小鼠腦組織NgR、p75N7和LINGO-1表達均顯著增加(<0.05或<0.01),而AD+AST IV組與AD組相比則顯著減少(<0.05或<0.01)。見圖5。
Figure 5. AST IV inhibited the expression of NogoA and its receptor complex p75NTR, LINGO-1 and NgR in the whole brain. The protein levels of NogoA, p75NTR, LINGO-1 and NgR were detected by Western blot. Mean±SD. n=4. *P<0.05, **P<0.01 vs WT group; #P<0.05, ##P<0.01 vs AD group.
Western blot結(jié)果顯示,與WT組相比,AD組小鼠腦組織中cAMP水平顯著降低(<0.01),而AST IV處理后其表達基本恢復(fù)(<0.05);進一步檢測PKA表達,與WT組相比,AD組小鼠腦組織PKA表達顯著減少(<0.05),而AD+AST IV組與AD組相比顯著增加(<0.05),見圖6。
Figure 6. AST IV increased the expression of cAMP/PKA in the whole brain. The cAMP and PKA protein levels were detected by Western blot. Mean±SD. n=4. *P<0.05, **P<0.01 vs WT group; #P<0.05 vs AD group.
AD是一種以進行性認知功能障礙為特征的神經(jīng)系統(tǒng)疾病,Aβ和磷酸化tau蛋白是其發(fā)病的觸發(fā)器,介導(dǎo)記憶和認知突觸的損傷和破壞[21]。研究表明,AST IV可通過Nrf2核轉(zhuǎn)位緩解鉛誘導(dǎo)的小鼠認知障礙[22],減輕Aβ1-42誘導(dǎo)的大鼠氧化應(yīng)激和認知障礙[23]。AST IV還可以通過抑制小膠質(zhì)細胞活化和NADPH氧化酶表達減輕Aβ誘導(dǎo)的AD小鼠模型的認知障礙和神經(jīng)炎癥[24]。目前,AST IV對軸突生長和神經(jīng)再生的影響和作用機制尚不清楚。/雙轉(zhuǎn)基因小鼠是常用的AD動物模型,具有AD樣病理改變[25]。本研究利用/轉(zhuǎn)基因小鼠模型,進一步探討AST IV對小鼠軸突生長影響因子和神經(jīng)再生的影響及作用機制。
本研究中水迷宮和Y迷宮實驗結(jié)果顯示,AD組小鼠認知功能發(fā)生損傷,探索能力和空間記憶功能下降,而AST IV治療對/小鼠損傷的認知功能,探索和空間記憶能力具有一定的改善作用。髓磷脂來源的抑制蛋白是軸突損傷不可逆的原因之一,NogoA是表達于少突膠質(zhì)細胞的髓鞘相關(guān)抑制因子[1]。NogoA/NgR的過表達激活ROCK信號通路,抑制神經(jīng)軸突生長、改變神經(jīng)元代謝,并促進Aβ的過量產(chǎn)生[26]。本研究結(jié)果表明/小鼠腦組織中NogoA及其相關(guān)受體復(fù)合物NgR、p75NTR和LINGO-1在大腦中的表達顯著增加,出現(xiàn)認知功能障礙、神經(jīng)元凋亡及Aβ沉積。研究表明,敲除基因可減輕/轉(zhuǎn)基因小鼠的學(xué)習(xí)記憶障礙和AD相關(guān)的病變[27]。NgR是大腦突觸可塑性和樹突復(fù)雜性的負調(diào)節(jié)因子,會影響學(xué)習(xí)記憶功能,NgR的缺乏可以顯著減少/轉(zhuǎn)基因小鼠海馬中可溶性Aβ和淀粉樣蛋白斑塊的水平,改善認知功能和突觸的可塑性[25]。p75NTR是NgR的共受體,若基因缺失,則轉(zhuǎn)基因小鼠的皮質(zhì)神經(jīng)元產(chǎn)生的Aβ減少,結(jié)果是促進神經(jīng)突生長[28-29]。LINGO-1在AD小鼠海馬神經(jīng)元丟失過程中起重要作用,拮抗LINGO-1可有效防止海馬神經(jīng)元丟失并促進成人海馬神經(jīng)的發(fā)生[30]。這些結(jié)果均表明,抑制NogoA/NgR通路可能有助于AD小鼠腦損傷的恢復(fù)。本研究結(jié)果顯示,與AD組相比,AST IV干預(yù)后NogoA、NgR、p75NTR和LINGO-1的表達均顯著減少,觀察到AST IV使/小鼠的認知功能障礙得到改善、神經(jīng)元凋亡及Aβ沉積出現(xiàn)逆轉(zhuǎn),表明AST IV可能通過抑制NogoA/NgR通路發(fā)揮神經(jīng)保護作用。
cAMP/PKA信號通路是神經(jīng)元軸突生長能力和改善外在和內(nèi)在再生障礙環(huán)境的關(guān)鍵通路,是神經(jīng)元再生、神經(jīng)可塑性、學(xué)習(xí)和記憶的關(guān)鍵調(diào)節(jié)因子[31]。cAMP激活PKA在胞內(nèi)促進調(diào)節(jié)子和催化亞基的解離,并允許PKA催化亞基磷酸化下游靶點,來阻斷軸突生長抑制劑的作用[9]。因此,靶向抑制NogoA及其相關(guān)受體,阻斷下游Rho/ROCK信號通路,增加cAMP/PKA通路表達,可以促進髓鞘形成、軸突生長,以及神經(jīng)元存活和功能的恢復(fù)[8, 31]。
在中樞神經(jīng)自發(fā)再生過程中,可以觀察到細胞內(nèi)cAMP水平的升高[10]。cAMP/PKA通路對學(xué)習(xí)和記憶能力很重要,影響突觸可塑性和空間記憶功能,研究表明,cAMP/PKA信號在AD中被破壞,磷酸二酯酶抑制劑則可以通過增加cAMP來改善AD疾?。?2],胰高血糖素樣肽1通過cAMP/PKA通路調(diào)節(jié)線粒體功能障礙,提高星形膠質(zhì)細胞在AD中的神經(jīng)元支持能力[33]。抑制海馬神經(jīng)元cAMP/PKA-CREB-BDNF信號通路,可以加重環(huán)加氧酶2誘導(dǎo)的學(xué)習(xí)記憶障礙[34]。
本研究結(jié)果顯示,/小鼠腦組織中cAMP蛋白表達減少,同時PKA活性降低,cAMP/PKA通路受到抑制,Aβ沉積增加,神經(jīng)元形態(tài)和功能受損,引起認知功能障礙和學(xué)習(xí)記憶障礙。有研究表明,川芎嗪可以有效恢復(fù)PKA活性、cAMP水平和CREB磷酸化,從而減輕東莨菪堿誘導(dǎo)的大鼠記憶缺陷,維持突觸蛋白水平[35];黃芪多糖通過促進突觸可塑性相關(guān)蛋白PKA、p-CREB和BDNF等的表達,顯著改善了學(xué)習(xí)和記憶功能[36]。本研究結(jié)果顯示,AST IV可促進/小鼠腦組織中cAMP增加和PKA活性增強,上調(diào)cAMP/PKA通路,從而改善神經(jīng)元形態(tài)和功能,促進神經(jīng)修復(fù)和再生。
綜上所述,AST IV通過抑制NogoA及NgR/p75NTR/LINGO-1受體復(fù)合物的表達,并上調(diào)cAMP/PKA通路,減少/小鼠腦組織中Aβ沉積和神經(jīng)元損傷,從而改善認知功能和緩解學(xué)習(xí)障礙。
[1] McKerracher L, Rosen KM. MAG,?myelin?and overcoming growth inhibition in the CNS[J]. Front Mol Neurosci, 2015, 8:51.
[2] Sekine Y, Lindborg JA, Strittmatter SM. A proteolytic C-terminal fragment of Nogo-A (reticulon-4A) is released in exosomes and potently inhibits axon regeneration[J]. J Biol Chem, 2020, 295(8):2175-2183.
[3] Gil V, Nicolas O, Mingorance A, et al. Nogo-A expression in the human hippocampus in normal aging and in Alzheimer disease[J]. J Neuropathol Exp Neurol, 2006, 65(5):433-444.
[4] Guo MF, Zhang HY, Zhang PJ, et al. Fasudil reduces β- amyloid levels and?neuronal?apoptosis?in/transgenic mice via inhibition of the?Nogo-A/NgR/RhoA signaling axis[J]. J Integr Neurosci, 2020, 19(4):651-662.
[5] Zemmar A, Weinmann O, Kellner Y, et al. Neutralization of Nogo-A enhances synaptic plasticity in the rodent motor cortex and improves motor learning[J]. J Neurosci, 2014, 34(26):8685-8698.
[6] Venkatesh K, Chivatakarn O, Sheu SS, et al. Molecular dissection of the myelin-associated glycoprotein receptor complex reveals cell type-specific mechanisms for neurite outgrowth inhibition[J]. J Cell Biol, 2007, 177(3):393-399.
[7] Yamashita T, Fujitani M, Yamagishi S, et al. Multiple signals regulate axon regeneration through the Nogo receptor complex[J]. Mol Neurobiol, 2005, 32(2)105-111.
[8] Schwab ME. Functions of Nogo proteins and their receptors in the nervous system[J]. Nat Rev Neurosci, 2010, 11(12):799-811.
[9] Spencer T, Filbin MT. A role for?cAMP?in regeneration of the adult mammalian?CNS[J]. J Anat, 2004, 204(1):49-55.
[10] DerMardirossian C, Rocklin G, Seo JY, et al. Phosphorylation of RhoGDI by Src regulates Rho GTPase binding and cytosol-membrane cycling[J]. Mol Biol Cell, 2006, 17(11):4760-4768.
[11] Tohda C, Tamura T, Matsuyama S, et al. Promotion of axonal maturation and prevention of memory loss in mice by extracts of[J]. Br J Pharmacol, 2006, 149(5):532-541.
[12] Denner L, Rodriguez-Rivera J, Haidacher SJ, et al. Cognitive enhancement with rosiglitazone links the hippocampal PPARγ and ERK MAPK signaling pathways[J]. J Neurosci, 2012, 32(47):16725-16735.
[13] Wang X, Xu W, Chen H, et al. Astragaloside IV prevents Aβ1-42oligomers-induced memory impairment and hippocampal cell apoptosis by promoting PPARγ/BDNF signaling pathway[J]. Brain Res, 2020, 1747:147041.
[14] Wang X, Gao F, Xu W, et al. Depichering the effects of?astragaloside?IV on?AD-like phenotypes: a systematic and experimental investigation[J]. Oxid Med Cell Longev, 2021, 2021:1020614.
[15] Yu J, Guo M, Li Y, et al. Astragaloside IV protects neurons from microglia-mediated cell damage through promoting microglia polarization[J]. Folia Neuropathol, 2019, 57(2):170-181.
[16] 于婧文, 郭敏芳, 張婧, 等. 黃芪甲苷對體外由脂多糖誘導(dǎo)的星形膠質(zhì)細胞炎性反應(yīng)及其作用機制的研究[J]. 中華微生物學(xué)和免疫學(xué)雜志, 2018, 38(11):829-834.
Yu JW, Guo MF, Zhang J, et al. Effects of astragaloside IV on inflammatory responses in astrocytes induced by lipopolysaccharideand its mechanism[J]. Chin J Microbiol Immunol, 2018, 38(11):829-834.
[17] 于婧文, 郭敏芳, 李蘇垚, 等. 黃芪甲苷通過調(diào)控線粒體功能抑制H2O2誘導(dǎo)的SH-SY5Y細胞凋亡[J]. 中國病理生理雜志, 2022, 38(9):1553-1560.
Yu JW, Guo MF, Li SY, et al. Astragaloside IV inhibits H2O2-induced apoptosis of SH-SY5Y cells by regulating mitochondrial function[J]. Chin J Pathophysiol, 2022, 38(9):1553-1560.
[18] Kloszewska I. Incidence and relationship between behavioural and psychological symptoms in Alzheimer's disease[J]. Int J Geriatr Psychiatry, 1998, 13(11):785-792.
[19] Bromley-Brits K, Deng Y, Song W. Morris water maze test for learning and memory deficits in Alzheimer's disease model mice[J]. J Vis Exp, 2011, 20(53):2920.
[20] Kraeuter AK, Guest PC, Sarnyai Z. The?Y-maze?for assessment of spatial working and reference memory in mice[J]. Methods Mol Biol, 2019, 1916:105-111.
[21] Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis[J]. JAMA Neurol, 2014, 71(4):505-508.
[22] Yu C, Zhang J, Li X, et al. Astragaloside IV-induced Nrf2 nuclear translocation ameliorates lead-related cognitive impairments in mice[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(1):118853.
[23] Pan YF, Jia XT, Song EF, et al. Astragaloside IV protects against Aβ1-42-induced oxidative stress, neuroinflammation and cognitive?impairment in rats[J]. Chin Med Sci J, 2018, 33(1):29-37.
[24] Chen F, Yang D, Cheng XY, et al. Astragaloside?IV ameliorates cognitive impairment and neuroinflammation in an oligomeric Aβ induced Alzheimer's disease mouse model via inhibition of microglial activation and NADPH oxidase expression[J]. Biol Pharm Bull, 2021, 44(11):1688-1696.
[25] Yu N, Huang Y, Jiang, Y, et al. Ganoderma lucidum triterpenoids (GLTs) reduce neuronal apoptosis via inhibition of ROCK signal pathway in APP/PS1 transgenic Alzheimer's disease mice[J]. Oxid Med Cell Longev, 2020, 2020:9894037.
[26] Xiao F, Lin LF, Cheng X, et al. Nogo-66 receptor activation inhibits neurite outgrowth and increases β-amyloid protein secretion of cortical neurons[J]. Mol Med Rep, 2012, 5(3):619-624.
[27] Masliah E, Xie F, Dayan S, et al. Genetic deletion of/ameliorates behavioral and neuropathological outcomes in amyloid precursor protein transgenic mice[J]. Neuroscience, 2010, 169(1):488-494.
[28] Karlsson TE, Smedfors G, Brodin AT, et al. NgR1: a tunable sensor regulating memory formation, synaptic, and dendritic plasticity[J]. Cereb Cortex, 2016, 26(4):1804-1817.
[29] Wang YJ, Wang X, Lu JJ, et al. p75NTR?regulates Aβ deposition by increasing Aβ production but inhibiting Aβ aggregation with its extracellular domain[J]. J Neurosci, 2011, 31(6):2292-2304.
[30] He Q, Jiang L, Zhang Y, et al. Anti-LINGO-1?antibody ameliorates cognitive impairment, promotes adult hippocampal neurogenesis, and increases the abundance of CB1R-rich CCK-GABAergic interneurons in?AD?mice[J]. Neurobiol Dis, 2021, 156:105406.
[31] Li L, Fan X, Zhang XT, et al. The effects of Chinese medicines on?cAMP/PKA?signaling?in?central?nervous?system dysfunction[J]. Brain Res Bull, 2017, 132:109-117.
[32] Sanders O, Rajagopal L. Phosphodiesterase inhibitors for Alzheimer's disease: a systematic review of clinical trials and epidemiology with a mechanistic rationale[J]. J Alzheimers Dis Rep, 2020, 4(1):185-215.
[33] Xie Y, Zheng J, Li S, et al. GLP-1 improves the neuronal supportive ability of astrocytes in Alzheimer's disease by regulating mitochondrial dysfunction via the cAMP/PKA pathway[J]. Biochem Pharmacol, 2021, 188:114578.
[34] Luo Y, Kuang S, Li H, et al. cAMP/PKA-CREB-BDNF?signaling?pathway in hippocampus mediates cyclooxygenase 2-induced learning/memory deficits of rats subjected to chronic unpredictable mild stress[J]. Oncotarget, 2017, 8(22):35558-35572.
[35] Wu W, Yu X, Luo XP, et al. Tetramethylpyrazine protects against scopolamine-induced memory impairments in rats by reversing the cAMP/PKA/CREB pathway[J]. Behav Brain Res, 2013, 253:212-216.
[36] 姚惠, 顧麗佳, 郭建友. 黃芪多糖改善老年大鼠的學(xué)習(xí)記憶水平及其機制研究[J]. 中國中藥雜志, 2014, 39(11):2071-2075.
Yao H, Gu LJ, Guo JY. Study on effect of Astragali Radix polysaccharides in improving learning and memory functions in aged rats and its mechanism[J]. China J Chin Mater Med, 2014, 39(11):2071-2075.
Astragaloside IV improves cognitive function in/transgenic mice by affecting NogoA/NgR and cAMP/PKA pathways
YU Jingwen1, GUO Minfang1, LI Mengdi2, LI Na2, MENG Tao1, ZHANG Haifei1, SONG Lijuan2,3, MA Cungen1,2△, YU Jiezhong1,2,4△
(1,,037009,;2,,030619,;3,,030001,;4,037009,)
To investigate the effect of astragaloside IV (AST IV) on cognition and pathology in Alzheimer disease (AD) mouse model, and to explore its underlying possible mechanism.The/transgenic mice were randomly classified into AD+AST IV and AD groups, and C57BL/6 wild-type (WT) mice were used as control group (WT group). The mice were treated by intragastric administration for 2 months. Morris water maze and Y-maze tests were performed to evaluate the spatial cognitive function of the mice. Nissl staining was used to detect the number and morphology of neurons, while immunofluorescence staining was used to detect neuronal nuclear antigen (NeuN) and amyloid β-protein (Aβ) levels. The expression levels of neurite outgrowth inhibitor A (NogoA), Nogo-66 receptor (NgR), p75 neurotrophin receptor (p75NTR), leucine rich repeat and immunoglobin-like domain-containing protein-1 (LINGO-1), cyclic adenosine monophosphate (cAMP), and protein kinase A (PKA) in the whole brain were detected by Western blot.Treatment with AST IV significantly improved cognitive function in/mice, and enhanced learning, memory and exploration abilities. Compared with WT mice,/mice exhibited increased Aβ deposition in the cerebral cortex and hippocampus (<0.01), significant loss of Nissl bodies (<0.05 or<0.01), and decreased number of neurons (<0.05). However, AST IV treatment significantly reduced Aβ deposition (<0.05) and the loss of Nissl bodies (<0.05), and increased the number of neurons (<0.05). Compared with WT mice, the expression levels of NogoA, NgR, p75NTR and LINGO-1 in the whole brain tissue of/mice were significantly increased (0.05 or0.01), whereas those of cAMP and PKA were significantly decreased (0.05 or0.01). However, AST IV treatment significantly inhibited the expression of NogoA, NgR, p75NTR and LINGO-1 (0.05 or0.01), and increased the expression of cAMP and PKA (0.05).Treatment with AST IV reduced Aβ deposition and neuronal damage in the brains of/mice by inhibiting the expression of NogoA and NgR/p75NTR/LINGO-1 receptor complex and up-regulating the cAMP/PKA signaling pathway.
astragaloside IV; Alzheimer disease; NogoA/NgR signaling pathway; cAMP/PKA signaling pathway
1000-4718(2023)07-1188-11
2022-08-22
2023-04-21
馬存根 Tel: 18203515288; E-mail: macungen@sxtcm.edu.cn; 尉杰忠 Tel: 13834129435; E-mail: sxdtyjz@qq.com
R338.2; R741.02
A
10.3969/j.issn.1000-4718.2023.07.005
[基金項目]山西省基礎(chǔ)研究計劃(No. 20210302123337; No. 20210302123478);國家中醫(yī)藥管理局多發(fā)性硬化益氣活血重點研究室開放課題(No. 2021-KF-08T);大同市應(yīng)用基礎(chǔ)研究計劃項目(No. 2020145; No. 2020149);大同大學(xué)??蒲许椖浚∟o. 2022K17)
(責(zé)任編輯:宋延君,李淑媛)