亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        睡眠-覺(jué)醒相關(guān)神經(jīng)遞質(zhì)的研究進(jìn)展*

        2023-08-07 06:58:20姜海洲韋姍姍胡金李佳陽(yáng)李貞民李豐源田源馬仕將
        中國(guó)病理生理雜志 2023年7期
        關(guān)鍵詞:神經(jīng)遞質(zhì)拮抗劑激動(dòng)劑

        姜海洲, 韋姍姍, 胡金, 李佳陽(yáng), 李貞民, 李豐源, 田源, 馬仕將

        睡眠-覺(jué)醒相關(guān)神經(jīng)遞質(zhì)的研究進(jìn)展*

        姜海洲, 韋姍姍△, 胡金, 李佳陽(yáng), 李貞民, 李豐源, 田源, 馬仕將

        (云南中醫(yī)藥大學(xué)基礎(chǔ)醫(yī)學(xué)院,云南 昆明 650000)

        失眠;神經(jīng)遞質(zhì);睡眠;覺(jué)醒

        失眠為常見的臨床主訴之一。根據(jù)睡眠障礙國(guó)際標(biāo)準(zhǔn)(第3版),失眠的診斷標(biāo)準(zhǔn)為:患者盡管有充分的機(jī)會(huì)和環(huán)境睡眠,但仍然存在入睡困難或睡眠維持障礙,且影響第2天的日間功能[1]。這種癥狀如每周發(fā)生3次以上并持續(xù)3月,則可診斷為失眠癥。薈萃分析結(jié)果顯示,全球約有10%的成年人口罹患失眠癥,另有20%會(huì)出現(xiàn)失眠癥狀[2]。失眠對(duì)于身心健康危害較大,患者會(huì)伴隨出現(xiàn)認(rèn)知缺陷、記憶減退甚至自殺傾向,且使心腦血管等軀體疾病的風(fēng)險(xiǎn)增加,給人們生活造成嚴(yán)重困擾[3]。

        失眠的治療包括睡眠衛(wèi)生教育、認(rèn)知行為治療、物理治療、藥物治療等方法。我國(guó)以藥物治療為主,常用的為苯二氮?類如艾司唑侖和同樣作用于γ-氨基丁酸(gamma-aminobutyric acid, GABA)受體的非苯二氮?類如唑吡坦,褪黑素(melatonin, MLT)和中草藥也作為保健品被廣泛使用。目前,更多的關(guān)于失眠的機(jī)制被揭示,神經(jīng)遞質(zhì)仍是其中重要的一環(huán),興奮性神經(jīng)遞質(zhì)興奮過(guò)度與抑制性神經(jīng)遞質(zhì)抑制不足,是導(dǎo)致失眠的常見原因,即使神經(jīng)遞質(zhì)水平的微量變化依然對(duì)睡眠質(zhì)量有著重要影響。因此,本文在簡(jiǎn)單介紹睡眠-覺(jué)醒狀態(tài)的神經(jīng)機(jī)制基礎(chǔ)上,重點(diǎn)對(duì)與之關(guān)系密切的神經(jīng)遞質(zhì)逐一討論。

        1 睡眠-覺(jué)醒狀態(tài)

        根據(jù)警覺(jué)狀態(tài)、腦電波以及肌肉活動(dòng)狀態(tài),將睡眠-覺(jué)醒周期分為覺(jué)醒、非快速眼動(dòng)睡眠(non-rapid eye movement sleep, NREM)和快速眼動(dòng)睡眠(rapid eye movement sleep, REM)。這3種狀態(tài),無(wú)一不受神經(jīng)遞質(zhì)的調(diào)節(jié)。

        1.1覺(jué)醒狀態(tài)的神經(jīng)環(huán)路上行網(wǎng)狀激活系統(tǒng)(ascending reticular activating system, ARAS)是實(shí)現(xiàn)清醒狀態(tài)的經(jīng)典通路,由腦干、中腦被核、丘腦底部、下丘腦、腹內(nèi)側(cè)丘腦組成,是重要的促清醒系統(tǒng)[4]。ARAS由單胺能神經(jīng)元和膽堿能神經(jīng)元形成網(wǎng)狀結(jié)構(gòu)向上投射,幾乎作用于全部的腦區(qū)。雖然ARAS一直被認(rèn)為是主要的促清醒通路,但有研究結(jié)果顯示,部分ARAS神經(jīng)元體病變時(shí)并不會(huì)對(duì)睡眠結(jié)構(gòu)產(chǎn)生影響,即使兩到三個(gè)種類神經(jīng)遞質(zhì)受損,睡眠結(jié)構(gòu)也只是產(chǎn)生輕微的變化[5]。也有部分研究顯示由腦干投射到基底前腦的谷氨酸(glutamate, Glu)激活系統(tǒng)才是“覺(jué)醒中心”,其他神經(jīng)遞質(zhì)的變化是在該系統(tǒng)激活大腦皮層之后實(shí)現(xiàn)的。因此,許多麻醉藥物是通過(guò)阻斷谷氨酸能神經(jīng)傳導(dǎo)途徑發(fā)揮效應(yīng)[6]。

        1.2REM和NREM的神經(jīng)環(huán)路REM在大腦的發(fā)育、學(xué)習(xí)和記憶中起到重要作用,并且與夢(mèng)境的產(chǎn)生存在著聯(lián)系[7]。研究顯示,REM可能與海馬、丘腦、腦干、腦橋等腦區(qū)有關(guān)[8]。一種假說(shuō)認(rèn)為REM由髓質(zhì)、中腦、下丘腦神經(jīng)回路相互作用共同調(diào)控[9]。而另一種假說(shuō)則認(rèn)為背側(cè)被蓋核與腳橋被蓋核向網(wǎng)狀腦橋投射膽堿能神經(jīng)元從而誘發(fā)REM[10]。當(dāng)REM失常時(shí),除了表現(xiàn)為失眠之外,還會(huì)引發(fā)睡眠抽動(dòng)等行為。相比于REM,NREM在睡眠狀態(tài)中占比更大。研究顯示,NREM由下丘腦腹外側(cè)視前區(qū)、丘腦內(nèi)側(cè)視前核等腦區(qū)調(diào)節(jié),而腹外側(cè)視前區(qū)富含GABA能神經(jīng)元且是主要的調(diào)控區(qū)域,通過(guò)向單胺能神經(jīng)元和食欲素(orexin, Orx)神經(jīng)元發(fā)送抑制性信號(hào),進(jìn)入NREM狀態(tài)[11]。因此,GABA神經(jīng)元被認(rèn)為是啟動(dòng)NREM睡眠的關(guān)鍵,同時(shí)研究顯示NREM有助于大腦狀態(tài)的恢復(fù)與代謝調(diào)節(jié),并鞏固記憶[12]。當(dāng)NREM存在障礙時(shí),主要表現(xiàn)為喚醒障礙包括夢(mèng)游、睡眠恐懼等睡眠異常[13]。

        2 興奮性神經(jīng)遞質(zhì)

        2.1Glu在睡眠-覺(jué)醒中的作用Glu是主要的興奮性神經(jīng)遞質(zhì),維持著生物體的興奮性。中樞神經(jīng)內(nèi)生成Glu主要包括4種途徑,分別為α-酮戊二酸通路、GABA通路、鳥氨酸通路和谷氨酰胺通路,其中谷氨酰胺通路(谷氨酰胺通過(guò)谷氨酰胺酶水解產(chǎn)生Glu)是神經(jīng)遞質(zhì)的主要來(lái)源[14]。Glu存儲(chǔ)于突觸囊泡中,后被Glu轉(zhuǎn)運(yùn)體和谷氨酰胺合成酶所代謝[15]。Glu受體分為離子型受體和代謝型受體,而代謝型受體是生物體的睡眠關(guān)鍵靶點(diǎn)。采用水平臺(tái)法對(duì)大鼠進(jìn)行剝奪睡眠,隨后采用高效液相色譜法進(jìn)行測(cè)量,結(jié)果顯示全腦中除額葉外各腦區(qū)Glu含量均升高[16]。而通過(guò)更直接的方法,在Wistar大鼠杏仁核微注射代謝型Glu受體激動(dòng)劑LY37,可以明顯延長(zhǎng)覺(jué)醒抑制睡眠,并以REM減少為主要表現(xiàn)[17]。在臨床研究中,采用腦電超慢漲落技術(shù)分析失眠患者腦內(nèi)Glu的含量,結(jié)果顯示失眠患者的Glu含量均有增高[18]。由于Glu分布較為廣泛,直接抑制Glu促進(jìn)睡眠仍然有待研究。

        2.2去甲腎上腺素(norepinephrine, NE)在睡眠-覺(jué)醒中的作用NE既是激素,又是一種神經(jīng)遞質(zhì),是重要的促清醒物質(zhì)。NE以酪氨酸為原料在多種酶的催化下逐步合成。腦內(nèi)神經(jīng)元主要集中在藍(lán)斑(locus ceruleusm, LC),由LC發(fā)出的上行神經(jīng)纖維經(jīng)由前腦、腦干投射至大腦皮質(zhì)促發(fā)覺(jué)醒[19-20]。NE受體分為3型,分別為α1、α2和β,其中α1和β主要位于突觸后起到喚醒作用,而α2主要位于突觸前與突觸后影響著神經(jīng)性疼痛感覺(jué)。研究顯示,LC在覺(jué)醒時(shí)高度活躍放電,在慢波睡眠(slow wave sleep, SWS)時(shí)放電減弱,雖然LC過(guò)度活躍不會(huì)引發(fā)覺(jué)醒,但會(huì)嚴(yán)重影響睡眠質(zhì)量。在控制體溫的前提下,向Wistar大鼠視前神經(jīng)元中微注射α1受體拮抗劑甲氧沙明后,可使大鼠快速進(jìn)入睡眠狀態(tài)[21]。在早期臨床實(shí)驗(yàn)中通過(guò)比對(duì)失眠患者與正常人的血液,結(jié)果顯示失眠患者血液中NE水平整體呈現(xiàn)偏高趨勢(shì)[22]。α1受體拮抗劑哌唑嗪、特拉唑嗪等具有顯著的治療失眠作用,但其作為二線臨床用藥在治療高血壓疾病時(shí)具有明顯的副作用,因此未能用于治療失眠[23]。此外,β受體可能在心臟方面有更高的親和力,未見與睡眠相關(guān)的報(bào)道。

        2.3多巴胺(dopamine, DA)在睡眠-覺(jué)醒中的作用DA是一種只能在中樞神經(jīng)內(nèi)合成的重要神經(jīng)遞質(zhì)。DA由L-酪氨酸在酪氨酸羥化酶的催化下合成左旋多巴,隨后在L-脫羧酶氨基酸的催化下形成DA。在發(fā)揮作用后,由單胺氧化酶、B型單胺氧化酶與兒茶酚--甲基轉(zhuǎn)移酶逐步降解。DA由DA軸突、腹側(cè)被蓋區(qū)釋放,投射到背側(cè)紋狀體、嗅結(jié)節(jié)、伏隔核等腦區(qū)[24-25]。DA受體分為D1(D1和D5受體)與D2(D2、D3和D4受體)兩種家族,而睡眠研究集中于D1、D2和D3受體。使用光遺傳方法刺激小鼠中腦腹側(cè)被蓋區(qū)中DA神經(jīng)元,可使其持續(xù)保持清醒[26]。另外,在對(duì)小鼠進(jìn)行睡眠剝奪后,通過(guò)灌胃的方式給予D1受體正變構(gòu)調(diào)節(jié)劑LY3154207,結(jié)果顯示藥物呈劑量依賴性地表現(xiàn)出促清醒作用,并且將該調(diào)節(jié)劑應(yīng)用于臨床研究,同樣可以延長(zhǎng)睡眠潛伏期[27]。D2和D3受體激動(dòng)劑具有雙向作用,小劑量使用增加睡眠,大劑量則產(chǎn)生相反的效果。采用水平臺(tái)法對(duì)小鼠進(jìn)行睡眠剝奪后,再及時(shí)腹腔注射D2受體激動(dòng)劑同時(shí)結(jié)合腦電進(jìn)行分析,結(jié)果顯示REM受到明顯抑制[28]。在臨床實(shí)驗(yàn)中,帕金森患者在接受D2受體激動(dòng)劑羅匹尼羅緩釋劑的治療時(shí)卻明顯的改善睡眠質(zhì)量,其原因可能為羅匹尼羅緩釋劑在24小時(shí)內(nèi)血藥濃度平穩(wěn),持續(xù)、穩(wěn)定的激動(dòng)D2受體[29]。雖然DA類藥物也具有治療失眠的潛力,但未見其直接應(yīng)用于治療失眠的臨床報(bào)道。

        2.4Orx在睡眠-覺(jué)醒中的作用Orx不僅能夠調(diào)節(jié)食欲,同時(shí)也是調(diào)節(jié)中樞興奮性的重要神經(jīng)遞質(zhì)。Orx神經(jīng)元主要位于下丘腦外側(cè)區(qū)、穹隆旁側(cè),由下丘腦釋放,幾乎作用于除小腦之外的全部腦區(qū)[30]。Orx存在兩種亞型即A型與B型,其中A型Orx結(jié)合Orx受體1(Orx 1 receptor, OX1R)和OX2R,B型僅與OX2R結(jié)合。研究顯示Orx具有強(qiáng)大的調(diào)節(jié)中樞作用,分泌過(guò)少會(huì)導(dǎo)致嗜睡癥,分泌過(guò)多會(huì)導(dǎo)致失眠。Etori等[31]予小鼠灌胃OX2R拮抗劑,結(jié)果顯示NREM時(shí)間有了明顯的增加。且在臨床治療上,將OX2R拮抗劑Seltorexant用于抑郁伴失眠患者的治療時(shí),明顯改善了睡眠狀況[32]。Orx受體拮抗劑優(yōu)點(diǎn)在于,短期服用喚醒系統(tǒng)不會(huì)被抑制,只有長(zhǎng)期服用使受體占有率達(dá)到較高濃度才會(huì)引起嗜睡的癥狀,因此具有較高的安全性。雖然Orx受體拮抗劑應(yīng)用到目前并沒(méi)有顯示影響認(rèn)知功能,但Orx受體拮抗劑依然存在嗜睡、疲憊、夢(mèng)境異常等副作用[33]。在阿爾茲海默病的研究中顯示,β-淀粉樣蛋白會(huì)隨著Orx的增加而增加,由此推斷Orx在調(diào)控睡眠-覺(jué)醒周期的基礎(chǔ)上對(duì)阿爾茲海默病還具有著重要影響[34]。

        2.5組胺(histamine, His)在睡眠-覺(jué)醒中的作用His因其免疫調(diào)節(jié)作用聞名,同時(shí)也作為一種神經(jīng)遞質(zhì)參與睡眠的調(diào)控。中樞內(nèi)His由下丘腦結(jié)節(jié)狀乳頭核的His神經(jīng)元分泌,通過(guò)組胺酸脫羧酶的作用產(chǎn)生His,最終被組胺-甲基轉(zhuǎn)移酶代謝為甲基組胺。中樞神經(jīng)中的His主要作用為微調(diào)Glu和GABA,刺激丘腦釋放Glu促進(jìn)清醒[35]。His存在4種受體,分別為H1R、H2R、H3R和H4R,其中H1R和H2R位于中樞神經(jīng)突觸后膜,與睡眠有著重要聯(lián)系[36]。H1R為中樞神經(jīng)中His的主要受體,向SD大鼠腹腔注射H1R拮抗劑氯苯吡胺,結(jié)果顯示睡眠時(shí)間與SWS的時(shí)間均被延長(zhǎng)[37]。臨床研究顯示,H1R拮抗劑多塞平可達(dá)到與艾司唑侖等效的促進(jìn)睡眠作用,并且沒(méi)有藥物依賴性,在治療失眠時(shí)小劑量使用有著較高的安全性[38]。組胺受體拮抗劑藥用較溫和,副作用較少,包括便秘、口干以及視物模糊等,小劑量使用可以有效避免,因此被期待成為苯二氮卓類藥物的替代品。

        2.6乙酰膽堿(acetylcholine, ACh)在睡眠-覺(jué)醒中的作用ACh廣泛作用于全身細(xì)胞,在中樞內(nèi)與學(xué)習(xí)、記憶、睡眠有關(guān)。ACh由膽堿和乙酰膽堿酯酶在膽堿乙酰移位酶催化下合成,廣泛分布于哺乳動(dòng)物的外周神經(jīng)與中樞神經(jīng)系統(tǒng)中。而參與睡眠調(diào)節(jié)的ACh由ACh神經(jīng)元末梢釋放,廣泛投射到大腦皮層、杏仁核、海馬體、丘腦、腦干和中腦等部位促進(jìn)覺(jué)醒,最終被膽堿酯酶水解成膽堿和乙酸而失去活性[39-40]。ACh有煙堿型和毒蕈堿型兩種受體,而激活任意受體均能促進(jìn)覺(jué)醒。通過(guò)廣泛性激活大鼠抑制性神經(jīng)遞質(zhì),可以明顯的觀察到ACh神經(jīng)元活性降低,相反在激活興奮性神經(jīng)遞質(zhì)又可觀察到ACh神經(jīng)元被激活[41]。研究顯示ACh在學(xué)習(xí)與記憶中扮演著重要角色,如想通過(guò)抑制ACh治療失眠仍需慎重考慮,因此未見關(guān)于ACh治療失眠的臨床報(bào)道。

        3 抑制性神經(jīng)遞質(zhì)

        3.1GABA在睡眠-覺(jué)醒中的作用GABA是中樞神經(jīng)系統(tǒng)最主要的抑制性神經(jīng)遞質(zhì),是臨床鎮(zhèn)靜催眠與麻醉藥物的主要調(diào)控對(duì)象[42]。GABA由Glu脫羧酶脫羧后形成,最后被膠質(zhì)細(xì)胞和線粒體中的GABA轉(zhuǎn)氨酶轉(zhuǎn)化為琥珀酸半醛[43]。研究顯示,GA?BA的促睡眠作用由腹外側(cè)視前核神經(jīng)元發(fā)出,投射到下丘腦與腦干等促清醒神經(jīng)元,廣泛抑制覺(jué)醒系統(tǒng)。GABA存在3種受體,分別為GABAAR、GABABR和GABACR。其中GABAAR是大多鎮(zhèn)靜催眠藥的作用靶點(diǎn),激活時(shí)可以顯著增加REM[44]。在臨床研究中,通過(guò)質(zhì)子磁共振譜檢測(cè)顯示出原發(fā)性失眠患者大腦中的GABA較正常人下降了30%,且睡眠時(shí)間隨著GABA的含量增加而延長(zhǎng)[45]。雖然失眠通常認(rèn)為是體內(nèi)GABA分泌不足,但也有GABA含量增高產(chǎn)生失眠的現(xiàn)象,其原因可能為Glu含量過(guò)高向GABA轉(zhuǎn)換增多所導(dǎo)致[46]。臨床使用GABA正變構(gòu)調(diào)節(jié)劑brexanolone用于治療產(chǎn)后抑郁癥時(shí),brexanolone展現(xiàn)出了良好的催眠療效[47-48]。此外,GABAAR含有5個(gè)亞基,苯二氮?類藥物同時(shí)結(jié)合多個(gè)亞基,可能為是苯二氮?類副作用的主要原因,而非苯二氮?類藥物則對(duì)單個(gè)亞基具有較高的親和力,因此表現(xiàn)出更好的鎮(zhèn)靜催眠作用和較低的副作用[49]。

        3.2MLT在睡眠-覺(jué)醒中的作用MLT作為一種短期調(diào)控睡眠的保健品被人們熟知。MLT前體為-乙酰血清素(-acetyl serotonin, NAS),隨后在松果體中被羥吲哚--甲基轉(zhuǎn)移酶甲基化合成MLT,最后由肝臟中代謝排出體外[50]。研究顯示MLT含有3種受體,分別為MT1R、MT2R和MT3R。其中MT1R和MT2R主要分布于視交叉上核,對(duì)睡眠有調(diào)節(jié)作用,而MT3R與NAS結(jié)合,作用尚不明確。視交叉上核中含有重要的光感神經(jīng),在光線變暗時(shí)MLT水平升高促進(jìn)睡眠,光線變亮?xí)rMLT水平下降促進(jìn)清醒。研究顯示,向SD大鼠腹腔注射劑雷美替胺(MT1R和MT2R激動(dòng)劑)后,可明顯縮短睡眠潛伏期,發(fā)揮急性促睡眠作用[51]。在進(jìn)一步的研究中,將小鼠MTR基因敲除后,MREM略有增加,REM顯著減少,將MTR敲除后小鼠NREM則會(huì)減少,結(jié)果表明:MT1R與REM有關(guān),而MT2R與NREM有關(guān),且Gobbi等[52]認(rèn)為MT2R主要參與睡眠調(diào)節(jié),而MT1R則主要參與晝夜節(jié)律的變化。此外,臨床調(diào)查顯示,隨著年齡的增長(zhǎng),MLT的含量會(huì)下降,主要原因?yàn)槟挲g增加引起松果體萎縮,導(dǎo)致分泌下降,并且通過(guò)補(bǔ)充MLT對(duì)可以明顯地改善老年失眠患者的睡眠狀況[53]。目前使用MLT主要用來(lái)治療老年人失眠和調(diào)整時(shí)差等睡眠障礙,相比于苯二氮卓類藥物無(wú)法改善的嗜睡等副作用,MLT可有效的彌補(bǔ)這一空缺。但MLT因?yàn)楦弊饔媚壳吧胁幻鞔_,不作為臨床首選用藥。

        3.3腺苷(adenosine, AD)在睡眠-覺(jué)醒中的作用AD作為生物體能量代謝的主要物質(zhì),廣泛存在于中樞內(nèi)。AD前體為腺嘌呤核糖核苷酸或同型半胱氨酸,位于中樞的AD主要由ATP通過(guò)Pannexin2通道降解產(chǎn)生,最后被肝臟代謝[54-55]。AD存在4種受體,分別為A1R、A2AR、A2BR和A3R。眾多實(shí)驗(yàn)證據(jù)提示,A1R和A2AR與睡眠調(diào)節(jié)關(guān)系最為密切[56]。Rosenbaum首先提出睡眠是由睡眠物質(zhì)積累足夠時(shí)所誘發(fā),而在中樞神經(jīng)系統(tǒng)中,隨著神經(jīng)元活動(dòng)的增加,基底前腦內(nèi)的AD會(huì)隨著清醒時(shí)間的增加而逐步增加,且隨著睡眠的增加而減少[57]。同時(shí)研究顯示SWS的強(qiáng)度隨著睡眠時(shí)長(zhǎng)的增加而減少,與AD在體內(nèi)變化節(jié)律相同[58]。嗅結(jié)節(jié)中含有豐富的A2AR,激活小鼠嗅結(jié)節(jié)中的A2AR可以明顯延長(zhǎng)小鼠的NREM,減少覺(jué)醒時(shí)間[59]。另外,向小鼠基底前腦吻側(cè)腹面區(qū)注射具有高度選擇性的A2AR激活劑CGS21680,動(dòng)物的NREM(24%→60%)和REM(2.4%→11%)睡眠時(shí)間有顯著增加[60-62]。這種作用可能是由CGS21680促進(jìn)GABA釋放、抑制組胺能神經(jīng)系統(tǒng)而實(shí)現(xiàn)的[63]。此外,在臨床實(shí)驗(yàn)中,通過(guò)采取失眠患者的血液,結(jié)果顯示慢性失眠患者血漿中AD水平較低,而AD脫氨酶水平較高,與上述研究一致[64]。雖然廣泛性的AD激動(dòng)劑已被證實(shí)具有促眠的功效,但其對(duì)心血管的副作用成為廣泛使用的阻礙,A2AR激動(dòng)劑可以在不影響體溫、心率的情況下增加SWS,有望作為治療失眠的新靶點(diǎn)[65]。

        4 5-羥色胺(5-hydroxytryptamine, 5-HT)在睡眠-覺(jué)醒中的作用

        5-HT又被稱為血清素,它對(duì)睡眠的作用在過(guò)去的50年間一直有爭(zhēng)議。5-HT能神經(jīng)元主要集中在中縫背核,大部分研究都圍繞該區(qū)域進(jìn)行。一部分研究顯示,損毀該區(qū)域或藥物抑制色氨酸羥化酶(5-HT合成的限速酶)均減少睡眠,提示了5-HT的促睡眠作用。但也有部分研究顯示大多數(shù)5-HT中縫核神經(jīng)元在清醒時(shí)是活躍的,在NREM睡眠時(shí)相反不太活躍,提示5-HT的促覺(jué)醒作用。隨后Oikonomou等[66]采用基因編輯和光遺傳技術(shù),在晝行性的斑馬魚和夜行性的小鼠兩種模式動(dòng)物上都證實(shí)了5-HT的促睡眠作用。并且,采用微注射方式將5-HT注射于SD大鼠中縫背核,也顯著增加了NREM與REM時(shí)間[67]。目前發(fā)現(xiàn)存在7類5-HT受體,其中第1、2、3、6、7類受體都與睡眠有著重要聯(lián)系。即使同類受體的不同亞型對(duì)睡眠的影響也不盡相同,第1類受體分為A、B亞型,A型受體激活會(huì)增加REM,而B型受體激活則會(huì)減少REM。第2、3類受體同屬興奮性受體,實(shí)驗(yàn)顯示5-HT2受體拮抗劑對(duì)人和大鼠中都有促進(jìn)睡眠效果,而激動(dòng)5-HT3受體又可增加Glu的釋放進(jìn)而延長(zhǎng)清醒時(shí)間[68]。第6、7類受體表現(xiàn)為抑制作用,5-HT6和5-HT7受體拮抗劑微注射于大鼠腦內(nèi)時(shí),增加了睡眠潛伏期,減少睡眠時(shí)間[69-70]。因此要研究5-HT對(duì)睡眠的作用,不能脫離其作用受體的亞型和分布的區(qū)域。

        興奮性神經(jīng)遞質(zhì)在睡眠-覺(jué)醒周期中起到啟動(dòng)和維持清醒的作用,而抑制性神經(jīng)遞質(zhì)則直接參與到睡眠的調(diào)節(jié)中。盡管對(duì)單一神經(jīng)遞質(zhì)的研究已經(jīng)越來(lái)越明確,但睡眠并不是單一的神經(jīng)遞質(zhì)可以獨(dú)立影響的,而是多種物質(zhì)聯(lián)合作用的結(jié)果。隨著對(duì)睡眠機(jī)制的研究越來(lái)越深入,睡眠相關(guān)神經(jīng)遞質(zhì)之間的關(guān)系正在逐步顯現(xiàn)。如給予GABA受體激動(dòng)劑可減緩5-HT1B受體激動(dòng)劑的作用,在大鼠下丘腦結(jié)節(jié)乳頭體核(tuberomammillary nucleus, TMN)的組胺能神經(jīng)元中微注Glu再攝取抑制劑,可使大鼠的覺(jué)醒程度呈劑量依賴性增加[71]。同時(shí),神經(jīng)遞質(zhì)也不僅僅來(lái)源于中樞,部分神經(jīng)遞質(zhì)可由腸道菌群產(chǎn)生,如DA、NE、5-HT、GABA、ACh、His等[72]。予小鼠灌胃短乳桿菌(一種高產(chǎn)GABA的菌株)發(fā)酵的牛奶,依然可以改善小鼠的睡眠[73]。在后續(xù)的研究中,單純關(guān)注某一種單一的神經(jīng)遞質(zhì)或只將視野聚焦于中樞是不夠的,我們還需要明確神經(jīng)遞質(zhì)之間的關(guān)系,進(jìn)一步探索神經(jīng)遞質(zhì)在機(jī)體的交互作用。

        睡眠相關(guān)神經(jīng)遞質(zhì)的總結(jié)見表1。

        表1 睡眠相關(guān)神經(jīng)遞質(zhì)

        Glu: glutamate; REM: rapid eye movement sleep; NE: norepinephrine; DA: dopamine; D1R: dopamine receptor 1; D2R: dopamine receptor 2; D3R: dopamine receptor 3; D4R: dopamine receptor 4; Orx: orexin; OX1R: orexin 1 receptor; OX2R: orexin 2 receptor; His: histamine; H1R: histamine 1 receptor; H2R: histamine 2 receptor; H3R: histamine 3 receptor; H4R: histamine 4 receptor; NREM: non-rapid eye movement sleep; ACh: acetylcholine; nAChRs: nicotinic ACh receptors; mAChRs: muscarinic ACh receptors; GABA: gamma-aminobutyric acid; GABAAR: GAGAAreceptor; GABABR: GAGABreceptor; GABACR: GAGACreceptor; MLT: melatonin; MT1R: melatonin 1 receptor; MT2R: melatonin 2 receptor; AD: adenosine; A1R: adenosine 1 receptor; A2AR: adenosine 2A receptor; A2BR: adenosine 2B receptor; A3R: adenosine 3 receptor; 5-HT: 5-hydroxytryptamine; 5-HT1AR: 5-HT 1A receptor; 5-HT1BR: 5-HT 1B receptor; 5-HT2R: 5-HT 2 receptor; 5-HT3R: 5-HT 3 receptor; 5-HT4R: 5-HT 4 receptor; 5-HT5R: 5-HT 5 receptor; 5-HT6R: 5-HT 6 receptor; 5-HT7R: 5-HT 7 receptor.

        [1] Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications[J]. Chest, 2014, 146(5):1387-1394.

        [2] Morin CM, Jarrin DC. Epidemiology of insomnia: prevalence, course, risk factors, and public health burden[J]. Sleep Med Clin, 2022, 17(2):173-191.

        [3]王文霞, 錢勝, 朱程, 等. 失眠與自殺關(guān)系的研究進(jìn)展[J]. 臨床精神醫(yī)學(xué)雜志, 2021, 31(3):244-247.

        Wang WX, Qian C, Zhu C, et al. Reach progress on relationship between insomnia and suicide[J]. J Clin Psychiatry, 2021, 31(3):244-247.

        [4] Wijdicks EFM. The ascending reticularactivating system[J]. Neurocrit Care, 2019, 31(2):419-422.

        [5] Blanco-Centurion C, Gerashchenko D, Shiromani PJ. Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake[J]. J Neurosci, 2007, 27(51):14041-14048.

        [6] Kovalzon VM. Ascending reticular activating system of the brain[J]. Brain Sci Adv, 2016, 2(4):275-285.

        [7] Li W, Ma L, Yang G, et al. REM sleep selectively prunes and maintains new synapses in development and learning[J]. Nat Neurosci, 2017, 20(3):427-437.

        [8] Shin J, Kim D, Bianchi R, et al. Genetic dissection of theta rhythm heterogeneity in mice[J]. Proc Natl Acad Sci U S A, 2005, 102(50):18165-18170.

        [9] Blumberg MS, Lesku JA, Libourel PA, et al. What is REM sleep?[J]. Curr Biol, 2020, 30(1):R38-R49.

        [10] Mccarley RW. Neurobiology of REM and NREM sleep[J]. Sleep Med, 2007, 8(4):302-330.

        [11] Gompf HS, Anaclet C. The neuroanatomy and neurochemistry of sleep-wake control[J]. Curr Opin Physiol, 2020, 15:143-151.

        [12] Stickgold RJN. Sleep-dependent memory consolidation[J].Nature, 2005, 437(7063):1272-1278.

        [13] Castelnovo A, Lopez R, Proserpio P, et al. NREM sleep parasomnias as disorders of sleep-state dissociation[J]. Nat Rev Neurol, 2018, 14(8):470-481.

        [14]馬捷, 李峰, 郭思媛, 等. 谷氨酸遞質(zhì)調(diào)節(jié)機(jī)制與神經(jīng)系統(tǒng)疾?。跩]. 現(xiàn)代生物醫(yī)學(xué)進(jìn)展, 2012, 12(27):5390-5392, 5384.

        Ma J, Li F, Guo SY, et al. The relationship of the glutamate neurotransmitter regulating mechanisms and nervoussystem diseases[J]. Prog Mod Biomed, 2012, 12(27):5390-5392, 5384.

        [15] Hackett JT, Ueda T. Glutamate release[J]. Neurochem Res, 2015, 40(12):2443-2460.

        [16] 王升旭, 李求實(shí). 睡眠剝奪對(duì)大鼠腦組織氨基酸類神經(jīng)遞質(zhì)含量的影響[J]. 南方醫(yī)科大學(xué)學(xué)報(bào), 2002, 22(10):888-890.

        Wang SX, Li QS. Effects of sleep deprivation on γ-amino-butyric acid and glutamate contents in rat brain[J]. J South Med Univ, 2002, 22(10):888-890.

        [17] Sweeten BLW, Adkins AM, Wellman LL, et al. Group II metabotropic glutamate receptor activation in the basolateral amygdala mediates individual differences in stress-induced changes in rapid eye movement sleep[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 104:110014.

        [18] 蔣曉江, 許志強(qiáng), 劉娟. 內(nèi)因性失眠癥患者中樞抑制源GABA震蕩的腦電漲落變化[J]. 中國(guó)臨床神經(jīng)科學(xué), 2005, 13(3):236-238.

        Jiang XJ, Xu ZQ, LIU J. The GABA changes of encephalofluetuograph in intrinsic insomniacs[J]. J Clin Neurosci, 2005, 13(3):236-238.

        [19] Poe GR, Foote S, Eschenko O, et al. Locus coeruleus: a new look at the blue spot[J]. Nat Rev Neurosci, 2020, 21(11):644-659.

        [20] Schwarz LA, Miyamichi K, Gao XJ, et al. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit[J]. Nature, 2015, 524(7563):88-92.

        [21] Vetrivelan R, Mallick HN, Kumar VM. Unmasking of α1 adrenoceptor induced hypnogenic response from medial preoptic area[J]. Physiol Behav, 2005, 84(4):641-650.

        [22]黃煉紅, 季曉林, 鄭玉聰, 等. 失眠癥患者血漿去甲腎上腺素與腎上腺素水平觀察[J]. 福建醫(yī)藥雜志, 1995, 17(6):177-178.

        Huang LH, Ji XL, Zheng YC, et al. Plasma norepinephrine and epinephrine levels in patients with insomnia[J]. Fujian Med J, 1995, 17(6):177-178.

        [23] Berridge CW, Schmeichel BE, Espaa RA. Noradrenergic modulation of wakefulness/arousal[J]. Sleep Med Rev, 2012, 16(2):187-197.

        [24] Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting[J]. Neuron, 2010, 68(5):815-834.

        [25] Moore RY, Bloom FE. Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems[J]. Annu Rev Neurosci, 1979, 2:113-168.

        [26] Eban RA, Rothschild G, Giardino WJ, et al. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors[J]. Nat Neurosci, 2016, 19(10):1356-1366.

        [27] Mccarthy AP, Svensson KA, Shanks E, et al. The dopamine D1 receptor positive allosteric modulator mevidalen (LY3154207) enhances wakefulness in the humanized D1 mouse and in sleep-deprived healthy male volunteers[J]. J Pharmacol Exp Ther, 2022, 380(3):143-152.

        [28] Jefferson F, Ehlen JC, Williams NS, et al. A dopamine receptor d2-type agonist attenuates the ability of stress to alter sleep in mice[J]. Endocrinology, 2014, 155(11):4411-4421.

        [29] Ray CK, Martinez-Martin P, Rolfe KA, et al. Improvements in nocturnal symptoms with ropinirole prolonged release in patients with advanced Parkinson's disease[J]. Eur J Neurol, 2012, 19(1):105-113.

        [30] Gotter AL, Webber AL, Coleman PJ, et al. International union of basic and clinical pharmacology. LXXXVI. Orexin receptor function, nomenclature and pharmacology[J]. Pharmacol Rev, 2012, 64(3):389-420.

        [31] Etori K, Saito YC, Tsujino N, et al. Effects of a newly developed potent orexin-2 receptor-selective antagonist, compound 1 m, on sleep/wakefulness states in mice[J]. Front Neurosci, 2014, 8:8.

        [32] Recourt K, de Boer P, Zuiker R, et al. The selective orexin-2 antagonist seltorexant (JNJ-42847922/MIN-202) shows antidepressant and sleep-promoting effects in patients with major depressive disorder[J]. Transl Psychiatry, 2019, 9(1):216.

        [33] Kuriyama A, Tabata H. Suvorexant for the treatment of primary insomnia: a systematic review and meta-analysis[J]. Sleep Med Rev, 2017, 35:1-7.

        [34] Kang JE, Lim MM, Bateman RJ, et al. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle[J]. Science, 2009, 326(5955):1005-1007.

        [35] Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system[J]. Nat Rev Neurosci, 2003, 4(2):121-130.

        [36] Krystal AD, Richelson E, Roth T. Review of the histamine system and the clinical effects of H1 antagonists: basis for a new model for understanding the effects of insomnia medications[J]. Sleep Med Rev, 2013, 17(4):263-272.

        [37] Ikeda-Sagara M, Ozaki T, Shahid M, et al. Induction of prolonged, continuous slow-wave sleep by blocking cerebral H1histamine receptors in rats[J]. Br J Pharmacol, 2012, 165(1):167-182.

        [38] 滑宏巨, 孫維紅, 張華, 等. 多塞平3 mg治療單純末段失眠臨床觀察[J]. 世界睡眠醫(yī)學(xué)雜志, 2017, 4(3):157-160.

        Hua HJ, Sun WH, Zhang H, et al. To observe effects of low-dose doxepin 3 mg for terminal[J].World J Sleep Med, 2017, 4(3):157-160.

        [39] Kohlmeier KA. Off the beaten path: drug addiction and the pontine laterodorsal tegmentum[J]. ISRN Neurosci, 2013, 2013:604847.

        [40] Mark GP, Shabani S, Dobbs LK, et al. Cholinergic modulation of mesolimbic dopamine function and reward[J]. Physiol Behav, 2011, 104(1):76-81.

        [41] Jones BE. Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex[J]. Prog Brain Res, 2004, 145:157-169.

        [42] Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal[J]. Nat Rev Neurosci, 2008, 9(5):370-386.

        [43] Yoon BE, Lee CJ. GABA as a rising gliotransmitter[J]. Front Neural Circuits, 2014, 8:141.

        [44] Kim S, Jo K, Hong KB, et al. GABA and l-theanine mixture decreases sleep latency and improves NREM sleep[J]. Pharm Biol, 2019, 57(1):65-73.

        [45] Winkelman JW, Buxton OM, Jensen JE, et al. Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS)[J]. Sleep, 2008, 31(11):1499-1506.

        [46] 林炳岐, 李峰, 馬捷, 等. 基于GABA能系統(tǒng)通路探討失眠的機(jī)制[J]. 現(xiàn)代生物醫(yī)學(xué)進(jìn)展, 2018, 18(3):565-568.

        Lin BQ, LI F, Ma J, et al. Based on GABA acid system access to explore the mechanism of insomnia[J]. Prog Mod Biomed, 2018, 18(3):565-568.

        [47] Naguy A. Brexanolone and postpartum depression: what does it have to do with GABA?[J]. Arch Womens Ment Health, 2019, 22(6):833-834.

        [48] Kanes S, Colquhoun H, Gunduz-Bruce H, et al. Brexanolone (SAGE-547 injection) in post-partum depression: a randomised controlled trial[J]. Lancet, 2017, 390(10093):480-489.

        [49] Atkin T, Comai S, Gobbi G. Drugs for insomnia beyond benzodiazepines: pharmacology, clinical applications, and discovery[J]. Pharmacol Rev, 2018, 70(2):197-245.

        [50] Jang SW, Liu X, Pradoldej S, et al.-acetylserotonin activates TrkB receptor in a circadian rhythm[J]. Proc Natl Acad Sci U S A, 2010, 107(8):3876-3881.

        [51] Fisher SP, Davidson K, Kulla A, et al. Acute sleep-promoting action of the melatonin agonist, ramelteon, in the rat[J]. J Pineal Res, 2008, 45(2):125-132.

        [52] Gobbi G, Comai S. Differential function of melatonin MT1and MT2receptors in REM and NREM sleep[J]. Front Endocrinol (Lausanne), 2019, 10:87.

        [53] Wade A, Downie S. Prolonged-release melatonin for the treatment of insomnia in patients over 55 years[J]. Expert Opin Investig Drugs, 2008, 17(10):1567-1572.

        [54] Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair[J]. Cell Death Differ, 2007, 14(7):1315-1323.

        [55] Lohman AW, Isakson BE. Differentiating connexin hemichannels and pannexin channels in cellular ATP release[J]. FEBS Lett, 2014, 588(8):1379-1388.

        [56] Reichert CF, Deboer T, Landolt HP. Adenosine, caffeine, and sleep-wake regulation: state of the science and perspectives[J]. J Sleep Res, 2022, 31(4):e13597.

        [57] Lazarus M, Chen JF, Huang ZL, et al. Adenosine and sleep[J]. Handb Exp Pharmacol, 2019, 253:359-381.

        [58] Greene RW, Bjorness TE, Suzuki A. The adenosine-mediated, neuronal-glial, homeostatic sleep response[J]. Curr Opin Neurobiol, 2017, 44:236-242.

        [59] Li R, Wang YQ, Liu WY, et al. Activation of adenosine A2Areceptors in the olfactory tubercle promotes sleep in rodents[J]. Neuropharmacology, 2020, 168:107923.

        [60] Satoh S, Matsumura H, Suzuki F, et al. Promotion of sleep mediated by the A2a-adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats[J]. Proc Natl Acad Sci U S A, 1996, 93(12):5980-5984.

        [61] Urade Y, Eguchi N, Qu WM, et al. Sleep regulation in adenosine A2Areceptor-deficient mice[J]. Neurology, 2003, 61(11 Suppl 6):S94-S96.

        [62] Satoh S, Matsumura H, Kanbayashi T, et al. Expression pattern of fos in orexin neurons during sleep induced by an adenosine A2Areceptor agonist[J]. Behav Brain Res, 2006, 170(2):277-286.

        [63] Hong ZY, Huang ZL, Qu WM, et al. An adenosine A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats[J]. J Neurochem, 2005, 92(6):1542-1549.

        [64] Ren CY, Rao JX, Zhang XX, et al. Changed signals of blood adenosine and cytokines are associated with parameters of sleep and/or cognition in the patients with chronic insomnia disorder[J]. Sleep Med, 2021, 81:42-51.

        [65] Korkutata M, Saitoh T, Cherasse Y, et al. Enhancing endogenous adenosine A2Areceptor signaling induces slow-wave sleep without affecting body temperature and cardiovascular function[J]. Neuropharmacology, 2019, 144:122-132.

        [66] Oikonomou G, Altermatt M, Zhang RW, et al. The serotonergic raphe promote sleep in zebrafish and mice[J]. Neuron, 2019, 103(4):686-701.e8.

        [67] 魏硯君, 全睿, 王慧, 等. 中縫核NG2細(xì)胞及5-HT的共同作用對(duì)大鼠睡眠-覺(jué)醒功能的調(diào)節(jié)[J]. 中國(guó)病理生理雜志, 2021, 37(10):1764-1773.

        Wei YJ,Quan R,Wang H, et al. NG2 cells and 5-HT in raphe nuclei have combined effect on regulation of sleep-wake function in rats[J]. Chin J Pathophysiol, 2021, 37(10):1764-1773.

        [68] Funahashi M, Mitoh Y, Matsuo R. Activation of presynaptic 5-HT3 receptors facilitates glutamatergic synaptic inputs to area postrema neurons in rat brain slices[J]. Methods Find Exp Clin Pharmacol, 2004, 26(8):615-622.

        [69] Dawson LA, Nguyen HQ, Li P.effects of the 5-HT6antagonist SB-271046 on striatal and frontal cortex extracellular concentrations of noradrenaline, dopamine, 5-HT, glutamate and aspartate[J]. Br J Pharmacol, 2000, 130(1):23-26.

        [70] Monti JM, Jantos H. Effects of the 5-HT7receptor antagonist SB-269970 microinjected into the dorsal raphe nucleus on REM sleep in the rat[J]. Behav Brain Res, 2006, 167(2):245-250.

        [71] Yin D, Dong H, Wang TX, et al. Glutamate activates the histaminergic tuberomammillary nucleus and increases wakefulness in rats[J]. Neuroscience, 2019, 413:86-98.

        [72] Strandwitz P. Neurotransmitter modulation by the gut microbiota[J]. Brain Res, 2018, 1693(Pt B):128-133.

        [73] Yu L, Han X, Cen S, et al. Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota[J]. Microbiol Res, 2020, 233:126409.

        [74] Sherin JE, Shiromani PJ, Mccarley RW, et al. Activation of ventrolateral preoptic neurons during sleep[J]. Science, 1996, 271(5246):216-219.

        [75] Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal[J]. Nat Rev Neurosci, 2008, 9(5):370-386.

        [76] Dixon AK, Gubitz AK, Sirinathsinghji DJ, et al. Tissue distribution of adenosine receptor mRNAs in the rat[J]. Br J Pharmacol, 1996, 118(6):1461-1468.

        [77] Monti JM. Serotonin control of sleep-wake behavior[J]. Sleep Med Rev, 2011, 15(4):269-281.

        Progress in neurotransmitters related to sleep-wakefulness

        JIANG Haizhou, WEI Shanshan△, HU Jin, LI Jiayang, LI Zhenmin,LI Fengyuan, TIAN Yuan, MA Shijiang

        (,,650000,)

        Insomnia is one of the most common clinical complaints, and it significantly lowers the quality of life. Since neurotransmitters play a crucial role in the physiological process of sleep-wakefulness and the pathological mechanism of insomnia, they are the primary targets for the development of hypnotic and sedative drugs. From the perspective of how they affect alertness and sleep, neurotransmitters can be divided into two categories: excitatory neurotransmitters including glutamate, norepinephrine, dopamine, orexin, histamine, acetylcholine, etc, and inhibitory neurotransmitters consisting of γ-aminobutyric acid, 5-hydroxytryptamine, melatonin, adenosine, etc. Depending on the receptor and distribution, the effect of 5-hydroxytryptamine is debatable. The brain mechanisms behind the sleep-weakness state were first described in this paper, followed by an explanation of each neurotransmitter's production, distribution, metabolism, and receptors using both animal studies and clinical practice as supporting evidence. The interaction of the aforementioned neurotransmitters can regulate the sleep-wakefulness state.

        insomnia; neurotransmitter; sleep; wakefulness

        1000-4718(2023)07-1310-08

        2022-12-08

        2023-06-18

        13187815315; E-mail: weiss814@163.com

        R363; R742

        A

        10.3969/j.issn.1000-4718.2023.07.019

        [基金項(xiàng)目]云南省“高層次人才引進(jìn)計(jì)劃”入選人才專項(xiàng)項(xiàng)目(No. 30171101900);朱兆云院士工作站(No. 30170105888);云南省可持續(xù)利用研究重點(diǎn)實(shí)驗(yàn)室2023年度開放課題(No. 202105AG070012XS23066)

        (責(zé)任編輯:林白霜,羅森)

        猜你喜歡
        神經(jīng)遞質(zhì)拮抗劑激動(dòng)劑
        槐黃丸對(duì)慢傳輸型便秘大鼠結(jié)腸神經(jīng)遞質(zhì)及SCF/c-kit通路的影響
        快樂(lè)不快樂(lè)神經(jīng)遞質(zhì)說(shuō)了算
        大眾健康(2021年2期)2021-03-09 13:32:23
        綠蘿花中抗2型糖尿病PPARs激動(dòng)劑的篩選
        中成藥(2018年10期)2018-10-26 03:41:22
        GPR35受體香豆素類激動(dòng)劑三維定量構(gòu)效關(guān)系研究
        GPⅡb/Ⅲa受體拮抗劑在急性冠脈綜合征中的應(yīng)用
        怡神助眠湯治療失眠癥的療效及對(duì)腦內(nèi)神經(jīng)遞質(zhì)的影響
        合理選擇降壓藥物對(duì)改善透析患者預(yù)后的意義
        AMPK激動(dòng)劑AICAR通過(guò)阻滯細(xì)胞周期于G0/G1期抑制肺動(dòng)脈平滑肌細(xì)胞增殖
        IVF-ET拮抗劑方案中促性腺激素釋放激素激動(dòng)劑扳機(jī)后的黃體支持
        腫瘤壞死因子拮抗劑治療重癥三氯乙烯藥疹樣皮炎
        91情侣在线精品国产免费| 国产成人精品人人做人人爽97 | 精品无码久久久久成人漫画| 日韩av东京社区男人的天堂| 2021国产精品国产精华| 国产乱xxⅹxx国语对白| 精精国产xxxx视频在线| 国产激情在观看| 日韩一区二区超清视频| 精品久久久久久蜜臂a∨| 免费一级a毛片在线播出| 国产人禽杂交18禁网站| av永久天堂一区二区三区蜜桃 | 夜夜欢性恔免费视频| 亚洲色偷偷综合亚洲av伊人| 夜色阁亚洲一区二区三区| 无码精品一区二区三区免费16| 久久久噜噜噜噜久久熟女m| 精品亚洲一区二区三洲| 美丽小蜜桃1一3在线观看| 蜜桃av噜噜一区二区三区策驰| 日本无遮挡真人祼交视频| 中文字幕亚洲无线码一区女同| 18黑白丝水手服自慰喷水网站| 欧美精品人人做人人爱视频| 日本高清aⅴ毛片免费| 亚洲AV无码精品呻吟| 国产真实乱XXXⅩ视频| 青青青伊人色综合久久| 内射中出后入内射极品女神视频| 毛茸茸的女性外淫小视频| 亚洲色图在线免费视频| 国产超碰人人做人人爽av大片| 欧美俄罗斯40老熟妇| 少妇寂寞难耐被黑人中出| 亚洲人妻无缓冲av不卡| 久久精品视频按摩| 日本妇女高清一区二区三区| 无套内内射视频网站| 精品少妇无码av无码专区| 9lporm自拍视频区|