亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        脂肪因子chemerin在飲食和運(yùn)動調(diào)控小鼠骨骼肌脂質(zhì)沉積中的作用*

        2023-08-07 06:57:54王雯靖張榮榮曲靜尹利軍王曉慧
        中國病理生理雜志 2023年7期
        關(guān)鍵詞:糖脂骨骼肌脂質(zhì)

        王雯靖, 張榮榮, 曲靜, 尹利軍, 王曉慧

        脂肪因子chemerin在飲食和運(yùn)動調(diào)控小鼠骨骼肌脂質(zhì)沉積中的作用*

        王雯靖, 張榮榮, 曲靜, 尹利軍, 王曉慧△

        (上海體育學(xué)院運(yùn)動健康學(xué)院,上海 200438)

        探討維甲酸受體應(yīng)答基因2(retinoic acid receptor responder 2,)編碼的脂肪因子chemerin在飲食和運(yùn)動調(diào)控小鼠骨骼肌脂質(zhì)沉積中的作用。將8周齡野生型(wild-type, WT)小鼠、脂肪特異性基因敲除(adipose-specificgene knockout, adipo--/-)小鼠和全身性基因敲除(globalgene knockout,-/-)小鼠隨機(jī)分為普通飲食(normal diet, ND)組和高脂飲食(high-fat diet, HFD)組,即ND+WT組、ND+adipo--/-組、ND+-/-組、HFD+WT組、HFD+adipo--/-組和HFD+-/-組,共6組,每組6只。此外,讓HFD組的3種小鼠完成6周的中等強(qiáng)度跑臺運(yùn)動,即WT+運(yùn)動(exercise, Exe)組、adipo--/-+Exe組和-/-+Exe組,每組6只。油紅O染色及骨骼肌內(nèi)甘油三酯(triglyceride, TG)和游離脂肪酸(free fatty acid, FFA)定量檢測小鼠骨骼肌脂質(zhì)沉積;胰島素耐量實(shí)驗(yàn)和葡萄糖耐量實(shí)驗(yàn)檢測胰島素敏感性;Western blot檢測骨骼肌脂肪酸轉(zhuǎn)位酶(fatty acid translocase, FAT/CD36)、肉堿棕櫚?;D(zhuǎn)移酶1(carnitine palmitoyltransferase 1, CPT1)、過氧化物酶體增殖物激活受體α(peroxisome proliferator-activated receptor α, PPARα)、硬脂酰輔酶A去飽和酶1(stearoyl-coenzyme A desaturase 1, SCD1)和葡萄糖轉(zhuǎn)運(yùn)蛋白4(glucose transporter 4, GLUT4)的蛋白水平。(1)ND+-/-組和HFD+-/-組小鼠骨骼肌脂質(zhì)沉積均加重(<0.01),胰島素敏感性均下降(<0.05);但HFD+adipo--/-組小鼠骨骼肌脂質(zhì)沉積卻顯著減輕(<0.01)。(2)ND+-/-組和HFD+-/-組小鼠骨骼肌CPT1和GLUT4蛋白水平均下調(diào)(<0.05),SCD1水平上調(diào)(僅HFD+-/-組,<0.01);但HFD+adipo--/-組小鼠骨骼肌CPT1和GLUT4蛋白水平上調(diào)(<0.01),CD36蛋白水平下調(diào)(<0.01)。(3)HFD下,與WT+Exe組相比,adipo--/-+Exe組和-/-+Exe組小鼠中運(yùn)動對骨骼肌脂質(zhì)沉積的抑制作用減弱,以-/-+Exe組減弱得更顯著。編碼chemerin的基因敲除不僅影響HFD小鼠骨骼肌脂質(zhì)沉積,而且還減弱運(yùn)動對HFD小鼠骨骼肌脂質(zhì)沉積的抑制作用;該作用與基因敲除改變骨骼肌糖脂代謝相關(guān)蛋白水平有關(guān)。

        chemerin;高脂飲食;運(yùn)動;骨骼?。恢|(zhì);胰島素抵抗

        肥胖導(dǎo)致糖脂代謝紊亂的同時(shí),還可使多余的脂質(zhì)在脂肪組織以外的器官組織(肝臟、骨骼肌、腎臟等)中過度沉積,影響組織器官正常生理功能,產(chǎn)生脂毒性[1-3]。骨骼肌是最大的代謝器官,也是胰島素刺激下對糖耐量進(jìn)行調(diào)節(jié)的主要器官[4]。國內(nèi)外多項(xiàng)研究證實(shí)了骨骼肌脂質(zhì)沉積與胰島素抵抗(insulin resistance, IR)的密切關(guān)系,一方面高脂飲食(high-fat diet, HFD)導(dǎo)致IR時(shí)骨骼肌細(xì)胞內(nèi)脂質(zhì)沉積增加[5-6],另一方面骨骼肌脂質(zhì)沉積會抑制葡萄糖的攝取和利用,導(dǎo)致骨骼肌IR[7-8]。骨骼肌IR已被證實(shí)是2型糖尿病發(fā)生發(fā)展的先兆,減少骨骼肌異位脂質(zhì)沉積是改善機(jī)體胰島素敏感性的重要途徑。

        由維甲酸受體應(yīng)答基因2(retinoic acid receptor responder 2,)編碼的chemerin作為一種脂肪因子,參與炎癥反應(yīng)、并調(diào)節(jié)糖脂代謝,在肥胖與肥胖相關(guān)疾?。ㄈ?型糖尿病、代謝綜合征等)的發(fā)生發(fā)展中發(fā)揮重要作用[9-10]。肥胖及肥胖相關(guān)疾病的人和小鼠的血清和脂肪組織chemerin水平顯著上升[11-12],且血清chemerin水平和糖脂代謝紊亂的嚴(yán)重程度以及胰島素敏感性具有顯著相關(guān)性[13]。本課題組的前期研究顯示,外源補(bǔ)充chemerin會降低外周組織對葡萄糖的攝取和利用,而脂肪特異性基因敲除可改善HFD小鼠的體脂率和葡萄糖耐量[14]。運(yùn)動改善肥胖、糖尿病等小鼠糖脂代謝的作用與其降低血清、肝、骨骼肌和脂肪組織的chemerin水平有關(guān)[14-15]。不僅如此,本課題組前期研究結(jié)果還顯示chemerin影響HFD肥胖小鼠的肝臟脂質(zhì)沉積等,但chemerin對骨骼肌脂質(zhì)沉積的作用還不明確。因此,本項(xiàng)工作用脂肪特異性基因敲除(adipose-specificgene knockout, adipo--/-)和全身性基因敲除(globalgene knockout,-/-)小鼠研究基因敲除對飲食和運(yùn)動影響骨骼肌脂質(zhì)沉積的作用,并進(jìn)一步探討可能的分子機(jī)制。本研究有利于深入理解chemerin調(diào)控糖脂代謝和骨骼肌脂質(zhì)沉積的作用機(jī)制,并為糖尿病的預(yù)防提供參考資料。

        材料和方法

        1 實(shí)驗(yàn)動物

        采用Cre-LoxP系統(tǒng)構(gòu)建adipo--/-小鼠和-/-小鼠,品系為C57BL,由集萃藥康生物科技有限公司提供。小鼠于上海體育學(xué)院SPF級實(shí)驗(yàn)室飼養(yǎng)至干預(yù)完成,期間自由飲水?dāng)z食,燈照明暗周期為12 h/12 h,室溫(22±2) ℃,濕度(55±5)%。本研究所涉及的動物實(shí)驗(yàn)均獲得動物倫理委員會授權(quán)(倫理號:102772021DW009)。

        2 主要試劑及儀器

        脂肪酸轉(zhuǎn)位酶(fatty acid translocase, FAT/CD36)抗體(貨號:ab133625)、肉堿棕櫚?;D(zhuǎn)移酶1(carnitine palmitoyltransferase 1, CPT1)抗體(貨號:ab128568)、過氧化物酶體增殖物激活受體α(peroxisome proliferator-activated receptor α, PPARα)抗體(貨號:ab3484)購自Abcam;硬脂酰輔酶A去飽和酶1(stearoyl-coenzyme A desaturase 1, SCD1)抗體(貨號:sc-515844)購自Santa Cruz;葡萄糖轉(zhuǎn)運(yùn)體4(glucose transporter 4, GLUT4)抗體購自南京諾唯贊生物公司;β-actin抗體購自Cell Signaling Technology;BCA蛋白定量檢測試劑盒(貨號:P0010)、油紅O染色試劑盒(貨號:C0157M)和ECL發(fā)光液(貨號:P10010)購自上海碧云天生物技術(shù)有限公司;甘油三酯(triglyceride, TG)試劑盒(貨號:A110-1-1)和游離脂肪酸(free fatty acid, FFA)試劑盒(貨號:A042-2-1)購自南京建成生物工程研究所。

        動物跑臺(杭州錢江科工貿(mào)公司);電泳儀和轉(zhuǎn)膜槽(BIO-RAD);BX53F光學(xué)生物顯微鏡(OLYMPUS);冰凍切片機(jī)(LEICA)。

        3 方法

        3.1小鼠基因型的鑒定取鼠尾0.5 cm,加入鼠尾裂解液和蛋白酶K,提取基因組DNA,用PCR擴(kuò)增后進(jìn)行瓊脂糖凝膠電泳,以篩選出上述兩種基因敲除的純合子小鼠和野生型小鼠。其中flox的上游引物序列為5'-GGGTCCTCCTAAAGAAACTT-3',下游引物序列為5'-TCACCAGTATAATCCAGTCT-3';adiponectin-Cre的上游引物序列為5'-TCGATGCAACGAGTGATGAG-3',下游引物序列為5'-TCCATGAGTGAACGAACCTG-3';DDx4-Cre的上游引物序列為5'-TCACTTAGGATGCGGACCTC-3',下游引物序列為5'-GTGCCTGCGTTAATGTGCAA-3'。

        3.2實(shí)驗(yàn)分組為研究基因敲除對不同飲食[普通飲食(normal diet, ND)和HFD]小鼠骨骼肌脂質(zhì)沉積的影響,將8周齡的野生型(wild-type, WT)小鼠、adipo--/-小鼠和-/-小鼠分為ND組和HFD組,即ND+WT組、ND+adipo--/-組、ND+-/-組、HFD+WT組、HFD+adipo--/-組和HFD+-/-組,每組6只,共6組。為研究基因敲除在運(yùn)動調(diào)控HFD小鼠骨骼肌脂質(zhì)沉積中的作用,讓HFD組的3種小鼠完成6周的中等強(qiáng)度跑臺運(yùn)動,即WT+運(yùn)動(Exe)組、adipo--/-+Exe組和-/-+Exe組,每組6只。

        3.3飲食和運(yùn)動方案ND組小鼠喂以普通飼料(含10%脂肪和20%蛋白質(zhì),3.85 kcal/g),HFD組小鼠喂以高脂飼料(含60%脂肪和20%蛋白質(zhì),5.24 kcal/g),各自喂養(yǎng)12周;HFD運(yùn)動組從第6周起開始逐漸遞增的中等強(qiáng)度有氧運(yùn)動干預(yù)[15],運(yùn)動頻率為每周6次,持續(xù)6周,具體運(yùn)動方案見表1。

        表1 運(yùn)動方案

        3.4取材和樣本處理腹腔注射10%的水合氯醛麻醉小鼠后處死,收集脛骨前肌標(biāo)本兩份,一份置于-80 ℃冰箱保存,一份置于4%的多聚甲醛中固定,分別用于Western blot實(shí)驗(yàn)和油紅O染色。

        3.5口服葡萄糖耐量實(shí)驗(yàn)(oral glucose tolerance test, OGTT)(1)小鼠禁食16 h,測0 min時(shí)的空腹血糖;(2)用25%的葡萄糖,根據(jù)體重按照2 g/kg的劑量給小鼠灌胃;(3)用小鼠尾尖血檢測15、30、60、90和120 min時(shí)的血糖值。

        3.6胰島素耐量實(shí)驗(yàn)(insulin tolerance test, ITT)(1)小鼠禁食6 h,注射胰島素前,測0 min時(shí)的空腹血糖;(2)用人胰島素,根據(jù)體重按照1 U/kg的劑量給小鼠腹腔注射;(3)用小鼠尾尖血檢測15、30、60、90和120 min時(shí)的血糖值。

        3.7油紅O染色4%多聚甲醛固定后的脛骨前肌用冰凍切片機(jī)制備厚度為10 μm的冰凍切片,按照油紅O染色試劑盒說明書滴加油紅O染料,10 min后自來水洗片,滴加蘇木素染料20 s,洗片后用中性樹膠封片。

        3.8骨骼肌TG和FFA測定按照重量(g)∶體積(mL)=1∶9的比例,剪取30 mg骨骼肌組織,加入9×的勻漿介質(zhì);剪碎組織進(jìn)行組織勻漿后取上清液;按照TG試劑盒和FFA試劑盒說明書檢測骨骼肌中TG和FFA含量。

        3.9Western blot實(shí)驗(yàn)取40 mg脛骨前肌加入200 μL裂解液,用高通量研磨器進(jìn)行組織勻漿;取其上清根據(jù)BCA試劑盒說明書進(jìn)行蛋白濃度測定。電泳時(shí)電壓為先恒壓70 V、40 min,然后恒壓110 V、60 min;轉(zhuǎn)膜條件為恒流250 mA、60 min;轉(zhuǎn)膜結(jié)束后用5%脫脂牛奶封閉1 h;后將PVDF膜放入盛有Ⅰ抗試劑的抗體孵育盒中,4 ℃搖床過夜;Ⅱ抗室溫孵育1 h;用ECL化學(xué)顯色發(fā)光液進(jìn)行顯影,使用ImageJ軟件對條帶進(jìn)行灰度值分析。

        4 統(tǒng)計(jì)學(xué)處理

        實(shí)驗(yàn)數(shù)據(jù)用SPSS 26.0軟件進(jìn)行統(tǒng)計(jì)分析,結(jié)果均采用均值±標(biāo)準(zhǔn)差(mean±SD)表示?;蚯贸龑D或HFD小鼠各實(shí)驗(yàn)指標(biāo)的影響,采用單因素方差分析;基因敲除對運(yùn)動的HFD小鼠各實(shí)驗(yàn)指標(biāo)的影響,采用雙因素方差分析。以<0.05為差異有統(tǒng)計(jì)學(xué)顯著性。

        結(jié)果

        1 Rarres2基因敲除小鼠的構(gòu)建

        采用Cre-LoxP系統(tǒng)構(gòu)建adipo--/-小鼠和-/-小鼠,先在基因第1~3外顯子兩端插入LoxP序列以構(gòu)建基因敲除的flox(flanked by LoxP)小鼠,然后與脂肪特異性敲除和全身性敲除的Cre工具鼠(分別是adiponectin-Cre和DDx4-Cre)雜交得到adipo--/-小鼠和-/-小鼠,見圖1A。瓊脂糖凝膠電泳結(jié)果顯示,adipo--/-小鼠在386 bp和403 bp處各有一條帶,-/-小鼠僅在858 bp處有一條帶,而WT小鼠僅在244 bp處有一條帶,見圖1B、C。

        Figure 1. Construction of Rarres2 knockout mice. WT: wild-type. A: schematic diagram of the construction of Rarres2 knockout mice; B: genotyping of adipose-specific Rarres2 knockout mice (WT mice have one band at 244 bp, and adipose-specific Rarres2 knockout mice have two bands at 386 and 403 bp); C: genotyping of global Rarres2 knockout mice (WT mice have one band at 244 bp, and global Rarres2 knockout mice have one band at 858 bp).

        2 Rarres2基因敲除對不同飲食小鼠骨骼肌脂質(zhì)沉積的影響及機(jī)制

        2.1各飲食組小鼠骨骼肌脂質(zhì)沉積情況骨骼肌油紅O染色及TG和FFA定量結(jié)果顯示,與ND+WT組相比,ND+-/-組小鼠骨骼肌脂質(zhì)沉積顯著增加(<0.01),但ND+adipo--/-組小鼠骨骼肌脂質(zhì)沉積無顯著變化(>0.05),見圖2A、C、D;與HFD+WT組相比,HFD+adipo--/-組小鼠骨骼肌脂質(zhì)沉積減少(<0.01),但HFD+-/-組小鼠骨骼肌脂質(zhì)沉積顯著增加(<0.01),見圖2B、E、F。

        Figure 2. Lipid deposition in skeletal muscles of the mice in each diet group. A: under normal diet (ND), lipid deposition in skeletal muscles was unchanged in adipo-Rarres2-/- mice but increased in Rarres2-/- mice (oil red O staining, scale bar=50 μm); B: under high-fat diet (HFD), lipid deposition in skeletal muscles decreased in adipo-Rarres2-/- mice but increased in Rarres2-/- mice (oil red O staining, scale bar=50 μm); C and D: under ND, only triglyceride (TG) content in skeletal muscles was increased in Rarres2-/- mice; E and F: under HFD, the levels of TG and free fatty acid (FFA) in skeletal muscles decreased in adipo-Rarres2-/- mice but increased in Rarres2-/- mice. Mean±SD. n=6. **P<0.01 vs ND+WT or HFD+WT group; ##P<0.01 vs ND+adipo-Rarres2-/- or HFD+adipo-Rarres2-/- group.

        2.2各飲食組小鼠糖耐量和胰島素耐量情況OGTT結(jié)果顯示,各ND組小鼠的糖耐量無顯著差異(>0.05),見圖3A;ITT結(jié)果顯示,與ND+WT組相比,ND+adipo--/-組小鼠ITT曲線下面積顯著減?。?0.05),即胰島素耐量增強(qiáng),見圖3B;與HFD+WT組相比,HFD+-/-組小鼠OGTT曲線下面積顯著減?。?0.01),ITT曲線下面積顯著增大(<0.05),即胰島素耐量減弱,而葡萄糖耐量增強(qiáng),見圖3C、D。

        Figure 3. Glucose and insulin tolerance of the mice in each diet group. A and B: under normal diet (ND), the area under the curve (AUC) of insulin tolerance test (ITT), but not that of oral glucose tolerance test (OGTT), decreased in adipo-Rarres2-/- mice; C and D: under high-fat diet (HFD), the AUC of OGTT decreased but that of ITT increased in Rarres2-/- mice. Mean±SD. n=6. *P<0.05, **P<0.01 vs WT group.

        2.3各飲食組小鼠骨骼肌糖脂代謝相關(guān)蛋白表達(dá)情況Western blot結(jié)果顯示,與ND+WT組相比,ND+adipo--/-組小鼠骨骼肌GLUT4蛋白水平顯著升高(<0.05),ND+-/-組骨骼肌PPARα和CPT1蛋白水平顯著降低(<0.05),見圖4A。與HFD+WT組相比,HFD+adipo--/-組小鼠骨骼肌GLUT4和CPT1蛋白水平顯著升高(<0.01),CD36蛋白水平顯著降低(<0.01),HFD+-/-組小鼠骨骼肌CPT1蛋白水平下降(<0.01),SCD1蛋白水平上升(<0.01);與HFD+adipo--/-組相比,HFD+-/-組小鼠骨骼肌CD36和SCD1蛋白水平顯著上升(<0.01),GLUT4、CPT1和PPARα蛋白水平顯著下降(<0.01),見圖4B。

        Figure 4. Expression levels of proteins related to glucose and lipid metabolism in skeletal muscles of the mice in each diet group were detected by Western blot. A: under normal diet (ND); B: under high-fat diet (HFD). Mean±SD. n=6. **P<0.01 vs ND+WT or HFD+WT group; ##P<0.01 vs ND+adipo-Rarres2-/- or HFD+adipo-Rarres2-/- group.

        3 Rarres2基因敲除對運(yùn)動的HFD小鼠骨骼肌脂質(zhì)沉積的影響及機(jī)制

        3.1各運(yùn)動組小鼠骨骼肌脂質(zhì)沉積情況HFD下,油紅O染色結(jié)果顯示,WT+Exe組小鼠骨骼肌脂質(zhì)沉積較WT組明顯減輕,而adipo--/-+Exe組小鼠中,運(yùn)動對骨骼肌脂質(zhì)沉積的抑制作用顯著減弱,見圖5A;骨骼肌TG定量與油紅O染色結(jié)果一致,骨骼肌FFA定量結(jié)果在組間無顯著差異,見圖5C、D;與WT+Exe組相比,-/-+Exe組小鼠中運(yùn)動對骨骼肌脂質(zhì)沉積的抑制作用減弱,表現(xiàn)為WT+Exe小鼠骨骼肌TG和FFA水平均顯著下降(<0.05),但-/-+Exe組小鼠僅骨骼肌TG水平下降(<0.05),見圖5B、E、F。

        Figure 5. Lipid deposition in skeletal muscles of the mice in each exercise (Exe) group. A and B: lipid deposition in skeletal muscles decreased in WT+Exe mice compared with WT mice, but this beneficial effect of Exe was attenuated in adipo-Rarres2-/- and Rarres2-/- mice (oil red O staining, scale bar=50 μm); C and D: Exe did not change the levels of triglyceride (TG) and free fatty acid (FFA) in adipo-Rarres2-/- mice; E and F: Exe decreased TG rather than FFA in Rarres2-/- mice. Mean±SD. n=6. *P<0.05, **P<0.01 vs WT group; #P<0.05 vsRarres2-/- group.

        3.2各運(yùn)動組小鼠糖耐量和胰島素耐量情況HFD下,運(yùn)動對小鼠OGTT結(jié)果無顯著影響(>0.05),見圖6A;與-/-組相比,-/-+Exe組小鼠的ITT曲線下面積顯著減?。?0.01),說明運(yùn)動使-/-小鼠的胰島素耐量增強(qiáng),見圖6B。

        Figure 6. The glucose tolerance and insulin tolerance of the mice in each exercise (Exe) group. A: Exe exerted no effect on the area under the curve (AUC) of oral glucose tolerance test (OGTT) in Rarres2-/- mice; B: Exe decreased the AUC of insulin tolerance test (ITT) in Rarres2-/- mice. Mean±SD. n=6. *P<0.05, **P<0.01 vs WT group; ##P<0.01 vsRarres2-/- group.

        3.3各運(yùn)動組小鼠骨骼肌糖脂代謝相關(guān)蛋白表達(dá)情況HFD下,運(yùn)動下調(diào)WT+Exe組小鼠骨骼肌CD36表達(dá)(<0.01),上調(diào)骨骼肌PPARα(<0.05)、CPT1(<0.01)和GLUT4(<0.05)的蛋白表達(dá);但運(yùn)動僅顯著上調(diào)adipo--/-+Exe組小鼠骨骼肌CPT1和PPARα的蛋白表達(dá)(<0.01),見圖7A。與-/-組相比,-/-+Exe組小鼠骨骼肌CPT1和GLUT4蛋白表達(dá)上調(diào),SCD1表達(dá)下調(diào)(<0.05),見圖7B。

        Figure 7. Expression levels of proteins relate to glucose and lipid metabolism in skeletal muscles of the mice in each exercise group were detected by Western blot. A: resluts in WT and Adipo-Rarres2-/- mice; B: resluts in WT and Rarres2-/- mice. Mean±SD. n=6. *P<0.05, **P<0.01 vs WT group; #P<0.05 vs adipo-Rarres2-/- or Rarres2-/- group.

        討論

        1 chemerin在糖脂代謝和骨骼肌脂質(zhì)沉積中作用

        編碼chemerin的基因敲除可影響小鼠的糖脂代謝和炎癥等,例如脂肪特異性基因敲除可通過調(diào)控脂質(zhì)代謝、炎癥和氧化應(yīng)激相關(guān)代謝途徑改善HFD小鼠的糖脂代謝[16],皮下脂肪組織特異性敲除可使小鼠脂肪組織巨噬細(xì)胞浸潤減少,葡萄糖耐量改善,IR得到緩解[17]。然而,當(dāng)chemerin水平被降低到很低或缺失水平時(shí),則糖脂代謝等出現(xiàn)了相反的結(jié)果。例如HFD下全身性基因敲除小鼠與對照組相比,體重和脂肪組織重量顯著增加,出現(xiàn)肝臟脂質(zhì)蓄積和胰島β細(xì)胞功能障礙,并出現(xiàn)明顯的IR[17-19]。

        本研究的結(jié)果顯示,脂肪特異性基因敲除減輕了12周HFD喂養(yǎng)小鼠的骨骼肌脂質(zhì)沉積,而全身性基因敲除卻加重HFD小鼠的骨骼肌脂質(zhì)沉積,甚至在普通飲食下小鼠骨骼肌就出現(xiàn)脂質(zhì)沉積。脂肪基因敲除與全身性基因敲除小鼠在體脂率、糖脂代謝和骨骼肌脂質(zhì)沉積中有相反表現(xiàn),是因?yàn)閏hemerin參與脂肪和胰島等組織正常生理過程的調(diào)控,chemerin或其受體——chemerin趨化因子樣受體1(chemerin chemokine-like receptor 1, CMKLR1)水平缺失會加重糖脂代謝紊亂和骨骼肌脂質(zhì)沉積;而HFD所致肥胖、糖尿病等肥胖相關(guān)疾病中,chemerin水平異常升高,降低異常升高的chemerin水平如運(yùn)動或脂肪基因敲除,則能改善糖脂代謝并減少骨骼肌脂質(zhì)沉積。

        2 chemerin影響骨骼肌脂質(zhì)沉積的作用機(jī)制

        骨骼肌脂質(zhì)穩(wěn)態(tài)需要脂肪轉(zhuǎn)運(yùn)、氧化和合成過程的動態(tài)平衡,骨骼肌脂質(zhì)沉積的發(fā)生是其中一條或多條路徑出現(xiàn)異常的亢進(jìn)或減弱,而這一過程受多種調(diào)控糖脂代謝的分子或酶影響。PPARα是脂肪酸感受器,它的激活可以促進(jìn)脂肪酸氧化,減輕組織脂質(zhì)蓄積[20]。脂肪酸氧化包括脂肪酸轉(zhuǎn)運(yùn)進(jìn)入骨骼肌細(xì)胞、轉(zhuǎn)運(yùn)到線粒體內(nèi)進(jìn)行氧化等過程。CD36是脂肪酸轉(zhuǎn)運(yùn)關(guān)鍵代謝酶,主導(dǎo)長鏈脂肪酸的跨膜轉(zhuǎn)運(yùn)[21],肥胖和2型糖尿病患者骨骼肌CD36水平升高[22]。CPT1是脂肪酸轉(zhuǎn)運(yùn)進(jìn)入線粒體進(jìn)行β氧化的關(guān)鍵限速酶[23],IR會導(dǎo)致骨骼肌CPT1表達(dá)下降[24]。本研究中,ND+-/-組和HFD+-/-組小鼠出現(xiàn)骨骼肌脂質(zhì)沉積(HFD下更嚴(yán)重)的同時(shí),小鼠骨骼肌PPARα和CPT1的蛋白水平下降,CD36的蛋白水平上升;而HFD+adipo--/-組小鼠在骨骼肌脂質(zhì)沉積減輕的同時(shí),骨骼肌CD36蛋白水平下調(diào),CPT1和GLUT4蛋白水平上調(diào),提示chemerin缺失可使骨骼肌PPARα、CPT1和CD36異常,進(jìn)而導(dǎo)致脂肪酸轉(zhuǎn)運(yùn)增加和氧化受限,這可能是全身性基因敲除小鼠在兩種飲食條件下骨骼肌脂質(zhì)沉積加重的原因;而降低異常增加的chemerin水平可抑制HFD下骨骼肌脂質(zhì)沉積,該作用與其改善脂肪酸轉(zhuǎn)運(yùn)和氧化有關(guān)。脂肪合成增加也是造成骨骼肌脂質(zhì)沉積加劇的原因之一。SCD1是脂肪合成的關(guān)鍵限速酶[25]。HFD+-/-組小鼠SCD1蛋白水平顯著上升,提示脂肪合成增加也可能是HFD下全身性基因敲除小鼠骨骼肌脂質(zhì)沉積加重的機(jī)制之一。

        此外,GLUT4是骨骼肌葡萄糖轉(zhuǎn)運(yùn)的關(guān)鍵酶,GLUT4水平降低是導(dǎo)致機(jī)體IR發(fā)生發(fā)展的主要原因。本研究顯示,全身性基因敲除在加重小鼠骨骼肌脂質(zhì)沉積的同時(shí),機(jī)體胰島素敏感性下降,骨骼肌GLUT4蛋白水平下調(diào);而脂肪特異性基因敲除在抑制HFD下小鼠骨骼肌的脂質(zhì)沉積同時(shí),機(jī)體胰島素敏感性顯著改善,血糖血脂水平降低,提示chemerin影響骨骼肌脂質(zhì)沉積和IR的作用也與其調(diào)控GLUT4水平有關(guān)。

        3 chemerin影響運(yùn)動對HFD小鼠骨骼肌脂質(zhì)沉積的抑制作用及其機(jī)制

        有氧運(yùn)動可以降低肥胖及肥胖相關(guān)疾病患者和大鼠血清、肝臟、骨骼肌和脂肪組織的chemerin水平,同時(shí)改善胰島素敏感性,減輕機(jī)體炎癥[13-14]。本研究顯示,6周有氧運(yùn)動可顯著抑制HFD下的WT+Exe組和-/-+Exe組小鼠骨骼肌脂質(zhì)沉積,改善胰島素敏感性和葡萄糖耐量。運(yùn)動降低了WT小鼠骨骼肌TG和FFA水平,但運(yùn)動僅改善了-/-+Exe小鼠骨骼肌TG水平,提示運(yùn)動效應(yīng)在-/-+Exe組小鼠減弱;而運(yùn)動對adipo--/-+Exe組小鼠骨骼肌脂質(zhì)沉積的影響與WT小鼠相比無顯著差異。分析運(yùn)動不影響adipo--/-小鼠骨骼肌脂質(zhì)沉積的原因,其一可能是因?yàn)橹咎禺愋曰蚯贸呀?jīng)使小鼠骨骼肌脂質(zhì)沉積情況恢復(fù)到正常范圍,有氧運(yùn)動對正常的骨骼肌脂質(zhì)沒有顯著影響;其二,可能是運(yùn)動的強(qiáng)度和負(fù)荷還不足夠,不足以彰顯運(yùn)動的效應(yīng)。

        本研究中,WT+Exe和-/-+Exe組小鼠骨骼肌脂質(zhì)沉積減少和胰島素敏感性改善的同時(shí),骨骼肌CPT1和GLUT4上調(diào),SCD1下調(diào)??紤]到基因敲除影響運(yùn)動對HFD小鼠骨骼肌脂質(zhì)沉積的作用可能與其對上述骨骼肌糖脂代謝相關(guān)蛋白的調(diào)控差異有關(guān),包括改變糖脂代謝相關(guān)蛋白數(shù)量的差異以及改變程度的不同。為此,我們比較了運(yùn)動效應(yīng)在adipo--/-+Exe、-/-+Exe和WT+Exe組小鼠間的差異。與WT+Exe組比較,-/-+Exe組小鼠中運(yùn)動對骨骼肌CD36和PPARα蛋白水平的改善作用被抑制,提示PPARα受抑制及其下游CD36失調(diào)可能是全身性基因敲除導(dǎo)致運(yùn)動對小鼠骨骼肌脂質(zhì)沉積抑制效應(yīng)減弱的機(jī)制;與WT+Exe組比較,adipo--/-+Exe組小鼠中運(yùn)動對骨骼肌CD36的抑制作用和對GLUT4的促進(jìn)作用消失,提示脂肪特異性基因敲除減弱了運(yùn)動對HFD小鼠骨骼肌脂肪轉(zhuǎn)運(yùn)和葡萄糖轉(zhuǎn)運(yùn)的改善作用可能是其骨骼肌脂質(zhì)沉積無顯著改善的潛在原因。

        綜上所述,編碼chemerin的基因敲除不僅影響HFD小鼠骨骼肌脂質(zhì)沉積,而且還減弱運(yùn)動對HFD小鼠骨骼肌脂質(zhì)沉積的抑制作用;該作用與基因敲除改變骨骼肌糖脂代謝相關(guān)蛋白(如CPT1、CD36、SCD1和GLUT4)水平有關(guān)。

        [1] Consitt LA, Bell JA, Houmard JA. Intramuscular lipid metabolism, insulin action, and obesity[J]. IUBMB Life, 2009, 61(1):47-55.

        [2]劉露, 扈臘英, 王貴芳, 等. 不同造模方式誘導(dǎo)的糖尿病小鼠肝腎組織中脂質(zhì)異位沉積情況的研究[J]. 中國病理生理雜志, 2023, 39(2):276-286.

        Chen L, Hu LY, Wang GF, et al. Comparative study on lipid deposition in liver and kidney tissues of diabetic mice induced by different modeling methods[J]. Chin J Pathophysiol, 2023, 39(2):276-286.

        [3]郭婉蓉, 陳宗蘭, 曹歡易, 等. GLP-1受體激動劑艾塞那肽緩解/小鼠骨骼肌脂質(zhì)沉積的作用不依賴于體重的下降[J]. 中國病理生理雜志, 2020, 36(11):1921-1927.

        Guo WR, Chen ZL, Cao HY, et al. Alleviating effect of exenatide on ectopic lipid accumulation in skeletal muscle of/mice is independent on reducing body weight[J]. Chin J Pathophysiol, 2020, 36(11):1921-1927.

        [4] Goodpaster BH, Wolf D. Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes[J]. Pediatr Diabetes, 2004, 5(4):219-226.

        [5] Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes[J]. N Engl J Med, 2004, 350(7):664-671.

        [6] Bae H, Hong KY, Lee CK, et al. Angiopoietin-2-integrin α5β1 signaling enhances vascular fatty acid transport and prevents ectopic lipid-induced insulin resistance[J]. Nat Commun, 2020, 11(1):2980.

        [7] Park SS, Seo YK. Excess accumulation of lipid impairs insulin sensitivity in skeletal muscle[J]. Int J Mol Sci, 2020, 21(6):1949.

        [8] Holloway GP, Han XX, Jain SS, et al. Chronic muscle stimulation improves insulin sensitivity while increasing subcellular lipid droplets and reducing selected diacylglycerol and ceramide species in obese Zucker rats[J]. Diabetologia, 2014, 57(4):832-840.

        [9] Zylla S, Pietzner M, Kühn JP, et al. Serum chemerin is associated with inflammatory and metabolic parameters-results of a population-based study[J]. Obesity (Silver Spring), 2017, 25(2):468-475.

        [10] Helfer G, Wu QF. Chemerin: a multifaceted adipokine involved in metabolic disorders[J]. J Endocrinol, 2018, 238(2):79-94.

        [11] Ernst MC, Issa M, Goralski KB, et al. Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes[J]. Endocrinology, 2010, 151(5):1998-2007.

        [12] Maghsoudi Z, Kelishadi R, Hosseinzadeh-Attar MJ. The comparison of chemerin, adiponectin and lipid profile indices in obese and non-obese adolescents[J]. Diabetes Metab Syndr, 2016, 10(2 Suppl 1):43-46.

        [13] Chakaroun R, Raschpichler M, Kl?ting N, et al. Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity[J]. Metabolism, 2012, 61(5):706-714.

        [14] 林小晶. chemerin在運(yùn)動改善小鼠糖脂代謝紊亂中的作用及機(jī)制[D]. 上海: 上海體育學(xué)院, 2020:52-78.

        Lin XJ. The effect and mechanism of chemerin on exercise-induced improvement of glucose and lipid metabolism in mice[D]. Shanghai: Shanghai University of Sport, 2020:52-78.

        [15] 尹利軍. chemerin參與有氧運(yùn)動調(diào)控雄性小鼠糖脂代謝的新機(jī)制[D]. 上海: 上海體育學(xué)院, 2022:15-24.

        Yin LJ. Novel mechanism behind the effect of chemerin on aerobic exercise-induced impact on glycolipid metabolism in male mice[D]. Shanghai: Shanghai University of Sport, 2022:15-24.

        [16] Yang YN, JiaY, Lin XJ, et al. Adipo-specific chemerin knockout alters the metabolomic profile of adipose tissue under normal and high-fat diet conditions: application of an untargeted liquid chromatography-tandem mass spectrometry metabolomics method[J]. Biomed Chromatogr, 2021, 35(12):e5220.

        [17] Huang CL, Xiao LL, Xu M, et al. Chemerin deficiency regulates adipogenesis is depot different through TIMP1[J]. Genes Dis, 2021, 8(5):698-708.

        [18] Zhang Y, Shen WJ, Qiu S, et al. Chemerin regulates formation and function of brown adipose tissue: Ablation results in increased insulin resistance with high fat challenge and aging[J]. FASEB J, 2021, 35(7):e21687.

        [19] Takahashi M, Okimura Y, Iguchi G, et al. Chemerin regulates β-cell function in mice[J]. Sci Rep, 2011, 1:123.

        [20] Ferri N, Corsini A, Sirtori C, et al. PPAR-α agonists are still on the rise: an update on clinical and experimental findings[J]. Expert Opin Investig Drugs, 2017, 26(5):593-602.

        [21] Zhao L, Varghese Z, Moorhead JF, et al. CD36 and lipid metabolism in the evolution of atherosclerosis[J]. Br Med Bull, 2018, 126(1):101-112.

        [22] Aguer C, Foretz M, Lantier L, et al. Increased FAT/CD36 cycling and lipid accumulation in myotubes derived from obese type 2 diabetic patients[J]. PLoS One, 2011, 6(12):e28981.

        [23] Summermatter S, Troxler H, Santos G, et al. Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity[J]. Biochem Biophys Res Commun, 2011, 408(1):180-185.

        [24] Tan L, Song A, Ren L, et al. Effect of pioglitazone on skeletal muscle lipid deposition in the insulin resistance rat model induced by high fructose diet under AMPK signaling pathway[J]. Saudi J Biol Sci, 2020, 27(5):1317-1323.

        [25] Dobrzyn A, Ntambi JM. The role of stearoyl-CoA desaturase in body weight regulation[J]. Trends Cardiovasc Med, 2004, 14(2):77-81.

        Effects of chemerin on diet- and exercise-regulated lipid deposition in skeletal muscles of mice

        WANG Wenjing, ZHANG Rongrong, QU Jing, YIN Lijun, WANG Xiaohui△

        (,,200438,)

        To explore the role of chemerin, encoded by retinoic acid receptor responder 2 () gene, in the regulation of skeletal muscle lipid deposition by diet and exercise interventions in mice.Eight-week-old wild-type (WT) mice, adipose-specificgene knockout (adipo--/-) mice and globalgene knockout (-/-) mice were randomly divided into normal diet (ND) and high-fat diet (HFD) groups, namely ND+WT group, ND+adipo--/-group, ND+-/-group, HFD+WT group, HFD+adipo--/-group, and HFD+-/-group, with 6 mice in each group. The mice in HFD groups were divided into 3 groups with 6-week moderate-intensity running (=6), namely WT+exercise (Exe) group, adipo--/-+Exe group, and-/-+Exe group. Skeletal muscle lipid deposition was analyzed by oil red O staining and quantified by triglyceride (TG) and free fatty acid (FFA) detection. Insulin tolerance and oral glucose tolerance tests were performed to evaluate insulin sensitivity. The protein levels of fatty acid translocase (FAT/CD36), carnitine palmitoyltransferase 1 (CPT1), peroxisome proliferator-activated receptor α (PPARα), stearoyl-coenzyme A desaturase 1 (SCD1) and glucose transporter protein 4 (GLUT4) in skeletal muscles were detected by Western blot.(1) In both ND+-/-and HFD+-/-groups, skeletal muscle lipid deposition was aggravated (<0.01) and the insulin sensitivity decreased (<0.05). By contrast, skeletal muscle lipid deposition was significantly attenuated in HFD+adipo--/-group (<0.01). (2) The protein levels of CPT1 and GLUT4 in skeletal muscles decreased in ND+-/-and HFD+-/-groups (<0.05), and the SCD1 level increased in HFD+-/-group (<0.01). The protein levels of CPT1 and GLUT4 in skeletal muscles increased, and the CD36 protein level decreased in HFD+adipo--/-group (<0.01). (3) The inhibitory effect of exercise on skeletal muscle lipid deposition was weakened in adipo--/-+Exe and-/-+Exe groups compared with WT+Exe group, and the effect was more significantly weakened in-/-+Exe group.Knockout of chemerin-encodinggene not only influences skeletal muscle lipid deposition in HFD mice, but also reduces exercise-induced attenuation of lipid deposition in the skeletal muscle of HFD mice. These effects are associated with the changes in glucose and lipid metabolism-related proteins.

        chemerin; high-fat diet; exercise; skeletal muscle; lipids; insulin resistance

        1000-4718(2023)07-1233-11

        2023-04-07

        2023-06-14

        18602131042; E-mail: wangpan96@126.com

        R363.2; R589.2; R455

        A

        10.3969/j.issn.1000-4718.2023.07.010

        [基金項(xiàng)目]國家自然科學(xué)基金資助項(xiàng)目(No. 31872801)

        (責(zé)任編輯:盧萍,羅森)

        猜你喜歡
        糖脂骨骼肌脂質(zhì)
        膽汁酸代謝與T2DM糖脂代謝紊亂的研究概述
        復(fù)方一枝蒿提取物固體脂質(zhì)納米粒的制備
        中成藥(2018年9期)2018-10-09 07:18:36
        糖脂康平顆粒對糖脂代謝紊亂大鼠血糖血脂的作用
        中成藥(2018年2期)2018-05-09 07:19:35
        白楊素固體脂質(zhì)納米粒的制備及其藥動學(xué)行為
        中成藥(2018年1期)2018-02-02 07:19:53
        馬錢子堿固體脂質(zhì)納米粒在小鼠體內(nèi)的組織分布
        中成藥(2017年4期)2017-05-17 06:09:26
        8-羥鳥嘌呤可促進(jìn)小鼠骨骼肌成肌細(xì)胞的增殖和分化
        骨骼肌細(xì)胞自噬介導(dǎo)的耐力運(yùn)動應(yīng)激與適應(yīng)
        骨骼肌缺血再灌注損傷的機(jī)制及防治進(jìn)展
        孕婦妊娠中期糖脂代謝紊亂對不良妊娠結(jié)局的影響
        川陳皮素固體脂質(zhì)納米粒的制備
        中成藥(2014年9期)2014-02-28 22:28:50
        av无码国产在线看免费网站| 强d乱码中文字幕熟女1000部| 国产日产免费在线视频| 黑丝美腿国产在线观看| 亚洲欧美日本人成在线观看| 精品国产一区二区三广区| 男女射精视频在线观看网站| 暖暖 免费 高清 日本 在线| 久久亚洲精品无码va白人极品| 好日子在线观看视频大全免费动漫| 欧美大黑帍在线播放| 亚洲中久无码永久在线观看同 | 国产熟女一区二区三区不卡| 久久久久成人精品无码中文字幕| 国产成人精品日本亚洲| 亚洲精品久久久久高潮| 啪啪视频一区二区三区入囗| 少妇裸淫交视频免费看| 国产一区二区三区免费精品视频| 欧美人与动性xxxxx杂性| 久久久受www免费人成| 欧美性受xxxx黑人xyx性爽| 中文岛国精品亚洲一区| 亚洲av综合色区在线观看| 99久久婷婷国产精品综合网站| 国产成人亚洲一区二区| 草草影院发布页| 日韩av无码中文无码电影| 欧美性猛交内射兽交老熟妇| 日韩中文字幕网站| 日本一区二区三级免费| 18禁止看的免费污网站| 国产成人精品日本亚洲11| 成人综合亚洲欧美一区h| 超短裙老师在线观看一区二区| 男女搞基视频免费网站| 色综合久久久久综合体桃花网| 国产真实老熟女无套内射| 成人激情四射网| 欧洲国产精品无码专区影院| 日本国产精品高清在线|