亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        儲(chǔ)藏過(guò)程中稻米品質(zhì)的變化

        2023-07-21 17:33:04陳虎賈旭東趙飛劉建
        北方水稻 2023年3期
        關(guān)鍵詞:稻米品質(zhì)

        陳虎 賈旭東 趙飛 劉建

        摘? 要:稻米品質(zhì)不僅受水稻品種遺傳特性和栽培條件影響,還會(huì)在儲(chǔ)藏過(guò)程中發(fā)生變化。稻米的部分品質(zhì)指標(biāo)受儲(chǔ)藏溫度或儲(chǔ)藏時(shí)間影響較大。稻米在儲(chǔ)藏過(guò)程中,淀粉和蛋白質(zhì)在含量方面的變化很小,但在成分及微觀結(jié)構(gòu)方面變化明顯,從而影響蒸煮品質(zhì);揮發(fā)性物質(zhì)的變化可能使稻米品質(zhì)變劣,也可能使稻米具有獨(dú)特的風(fēng)味。綜述了稻米的部分外觀品質(zhì)指標(biāo)、蒸煮品質(zhì)指標(biāo)以及化學(xué)物質(zhì)在不同儲(chǔ)藏條件下發(fā)生的變化,以期為相關(guān)研究提供助力。

        關(guān)鍵詞:儲(chǔ)藏條件;稻米品質(zhì);指標(biāo)變化

        Changes in Rice Quality During Storage

        CHEN Hu , JIA Xu-dong , ZHAO Fei* , LIU Jian*

        (Tianjin Agricultural University, College of Agronomy & Resource and Environment, Tianjin 300384, China)

        Abstract: Rice quality is not only affected by genetic characteristics of rice varieties and cultivation conditions, but also changes during storage. Some quality indexes of rice were affected by storage temperature or storage time. During rice storage, the content of starch and protein changed little, but the composition and microstructure changed obviously, which affected the cooking quality. The changes of volatile substances may make the quality of rice deteriorate, and may also make the rice have a unique flavor. In this paper, some appearance quality indexes, cooking quality indexes and the changes of chemical substances in rice under different storage conditions were reviewed in order to provide support for related research.

        Key words: Storage conditions; Rice quality; Index change

        水稻是主要的糧食作物,全世界半數(shù)以上的人口以稻米為主食——在中國(guó)這個(gè)比例更高。近年來(lái),隨著國(guó)民生活水平的提高,人們對(duì)稻米品質(zhì)的要求不斷提高。稻米品質(zhì)不僅受水稻品種遺傳特性和栽培條件影響,還會(huì)在儲(chǔ)藏過(guò)程中發(fā)生變化。稻谷儲(chǔ)藏是水稻收獲后延長(zhǎng)保質(zhì)期和展現(xiàn)商業(yè)價(jià)值的重要步驟,在儲(chǔ)藏期間稻谷的化學(xué)和物理性質(zhì)會(huì)發(fā)生許多變化[1]。相比新鮮稻米,儲(chǔ)藏過(guò)的稻米具有更好的制粉品質(zhì)[2],并且往往會(huì)產(chǎn)生獨(dú)特的風(fēng)味而受人喜愛(ài)[3]。良好的稻谷儲(chǔ)存系統(tǒng),對(duì)維持谷物供應(yīng)及谷物品質(zhì)至關(guān)重要[4]。

        儲(chǔ)藏過(guò)程中稻谷老化的機(jī)制很復(fù)雜,可能受多種內(nèi)源酶的影響,淀粉、蛋白質(zhì)和脂類的含量及結(jié)構(gòu)發(fā)生改變,從而導(dǎo)致稻米質(zhì)量發(fā)生變化[2,5]。淀粉晶層結(jié)構(gòu)、鏈長(zhǎng)分布的變化,影響了稻米熱力學(xué)特性,從而使蒸煮難易程度發(fā)生變化。稻米在儲(chǔ)藏期間,外觀和質(zhì)地會(huì)受到影響,外觀指標(biāo)如亮度、白度、a*和b*值等受儲(chǔ)藏溫度影響較大[6,7],而質(zhì)地指標(biāo)如硬度和內(nèi)聚性等主要受儲(chǔ)藏時(shí)間影響較大[3]。儲(chǔ)藏過(guò)的稻米整體表現(xiàn)為顏色發(fā)暗、亮度減少,其米飯質(zhì)地表現(xiàn)為硬度增加、粘度降低,米飯適口性下降。

        1? 稻米外觀品質(zhì)的變化

        稻米在儲(chǔ)藏期間經(jīng)常發(fā)暗,Ziegler等的研究表明,儲(chǔ)藏溫度的升高和時(shí)間的延長(zhǎng)會(huì)使黑米和紅米谷物亮度(L)值隨著a*和b*值的增加而減少[6]。Park等發(fā)現(xiàn)精米因儲(chǔ)藏變?yōu)辄S色,在低溫(4 ℃)條件下儲(chǔ)藏時(shí)b值和白度值變化很?。辉谳^高溫度(20 ℃以上)條件下儲(chǔ)藏,1個(gè)月內(nèi)b值迅速增加,白度值則迅速減少[7]。有學(xué)者認(rèn)為,稻米白度下降和黃度增加與美拉德非酶褐變有關(guān),通過(guò)美拉德反應(yīng)使糖苷鍵和肽鍵斷裂而形成羰基和氨基化合物[8]。

        種皮顏色深淺與植物色素濃度有關(guān),稻米在儲(chǔ)藏過(guò)程中植物色素濃度會(huì)發(fā)生改變,種皮顏色的深淺也相應(yīng)產(chǎn)生變化,如花青素和多酚氧化降解往往使紅米變成深紅色[9]。與顏色有關(guān)的抗氧化化合物受儲(chǔ)藏溫度影響較大,高溫儲(chǔ)藏使花青素濃度顯著降低[10]。Yamuangmorn等發(fā)現(xiàn),紫米儲(chǔ)藏1個(gè)月后,花色苷含量在迅速下降后又逐漸升高,并且隨著儲(chǔ)藏時(shí)間增加,紫米抗氧化能力逐漸增加[11]。有學(xué)者認(rèn)為,稻米在儲(chǔ)藏期間顏色的改變,可能是因?yàn)槊咕秩?、水分和溫度使籽粒?nèi)部發(fā)生改變[12]。

        2? 稻米蒸煮品質(zhì)的變化

        稻米儲(chǔ)藏期間糊化特性可能發(fā)生顯著變化。峰值粘度會(huì)隨著儲(chǔ)藏溫度的升高和持續(xù)時(shí)間的延長(zhǎng)而增加[12],并且不管儲(chǔ)藏溫度如何變化,崩解值均降低,回生值均增加[7]。儲(chǔ)藏期間稻米蒸煮品質(zhì)的變化主要?dú)w因于淀粉和其他物質(zhì)的相互作用。淀粉和蛋白質(zhì)通過(guò)氫鍵相互作用[13],形成不溶于水、耐高溫的抗消化淀粉,降低了消化率[14-16]。儲(chǔ)藏時(shí)間越長(zhǎng),可溶性淀粉越少[17]。稻米吸水率隨著儲(chǔ)藏時(shí)間的延長(zhǎng)而增大,亦會(huì)使淀粉凝膠化加強(qiáng),使得稻米不易于蒸煮,最終增加了蒸煮時(shí)間[18]。儲(chǔ)藏使淀粉結(jié)晶區(qū)加強(qiáng),從而使淀粉崩解值、峰值粘度降低,抗溶脹性增加[19]。

        張玉榮等研究發(fā)現(xiàn),隨著儲(chǔ)藏年限延長(zhǎng),秈、粳稻加工成的蒸谷米吸水率、體積膨脹率呈上升趨勢(shì),與儲(chǔ)藏1 a的稻谷相比,儲(chǔ)藏4 a的秈、粳稻加工成的蒸谷米吸水率分別增加49.1%和35.9%,體積膨脹率分別增加70.6%和66.6%[20]。Guo等研究影響稻米糊化特性的關(guān)鍵蛋白發(fā)現(xiàn),醇溶蛋白增加了最終粘度,球蛋白降低了峰值粘度、崩解值和最終粘度,同時(shí)增加了糊化起始時(shí)間,谷蛋白增加了峰值粘度、崩解值、峰值時(shí)間以及最終粘度,并把這一系列的改變歸因于稻米老化后不同蛋白與淀粉的聯(lián)結(jié)度不同[21]。劉桃英等將米粉與大米蛋白混合,發(fā)現(xiàn)隨著蛋白量的增加,淀粉溶脹性和溶解性均下降,峰值粘度(PV)降低,糊化溫度和回生值(SB)升高,淀粉糊化受到抑制并降低了蒸煮后米飯的粘度[22]。儲(chǔ)藏促進(jìn)了稻米脂肪酸的分解與蛋白質(zhì)的氧化,所生成的產(chǎn)物均與淀粉表面結(jié)合形成復(fù)合物,抑制淀粉膨脹,使蒸煮后的米飯硬度上升、粘度下降[23-25]。

        一般認(rèn)為,粘度較大、硬度較低的米飯具有較好的適口性。直鏈淀粉含量低的稻米蒸煮成的米飯柔軟粘稠,而直鏈淀粉含量高的稻米蒸煮成的米飯則較硬較蓬松。與儲(chǔ)藏過(guò)的稻米相比,剛收獲的稻米蒸煮成的米飯粘度較大。稻米經(jīng)過(guò)儲(chǔ)藏老化,米飯硬度上升、粘度下降。Wiset等在15 ℃和20 ℃下儲(chǔ)藏稻米,發(fā)現(xiàn)米飯硬度、粘結(jié)性和咀嚼性提高而粘附性降低,并且較高的儲(chǔ)藏溫度會(huì)提高這些趨勢(shì)[26]。陸益鋇等用不同包裝方式在高溫高濕條件下貯藏大米樣品,隨著貯藏時(shí)間變長(zhǎng),米飯硬度上升、彈性及黏著度下降,彈性在貯藏的第14天到第21天期間下降較明顯,黏著度在貯藏的前7 d下降最為迅速[17]。張玉榮等將儲(chǔ)藏年限為1~4 a的粳、秈稻谷加工成蒸谷米并對(duì)所制米飯的質(zhì)構(gòu)特性等指標(biāo)進(jìn)行測(cè)定分析,發(fā)現(xiàn)隨儲(chǔ)藏年限的增加,粳型蒸谷米的硬度顯著上升、黏著性顯著下降,咀嚼性上升,其他指標(biāo)均無(wú)顯著差異[20],這可能是由于蒸谷米加工過(guò)程中,籽粒內(nèi)部水分吸收充足,淀粉與其他物質(zhì)已形成較為穩(wěn)定的結(jié)構(gòu),從而使其品質(zhì)受儲(chǔ)藏年限影響較小。

        米飯硬度增加,是由于稻米在儲(chǔ)藏過(guò)程中脂肪分解產(chǎn)生的游離脂肪酸包藏在直鏈淀粉的螺旋結(jié)構(gòu)中,使稻米糊化所需的水分難以通過(guò),導(dǎo)致淀粉粒的強(qiáng)度增加[27];米飯彈性下降,歸因于稻米在儲(chǔ)藏期間水分含量較低,蒸煮加熱吸水過(guò)程中米粒腹背部產(chǎn)生水分差,體積偏差引起米粒龜裂,淀粉粒從龜裂處流失,米飯失去彈性[28,29];米飯黏著度下降,是由于在儲(chǔ)藏過(guò)程中大米細(xì)胞壁變得堅(jiān)固,米飯蒸煮變困難、品質(zhì)變差[30]。

        3? 稻米化學(xué)物質(zhì)的變化

        3.1? 淀粉

        淀粉是稻米中主要的碳水化合物,是影響品質(zhì)的重要因素。淀粉的含量、種類、鏈長(zhǎng)和形態(tài)結(jié)構(gòu)影響著稻米的蒸煮品質(zhì)。直鏈淀粉的含量決定了加工和烹飪的難易程度,因?yàn)樗c保持淀粉結(jié)構(gòu)的能力有關(guān)[31-33]。由于脂質(zhì)的存在,直鏈淀粉既可以作為稀釋劑,又可以作為溶脹抑制劑[34]。淀粉顆粒的大小、支鏈淀粉長(zhǎng)鏈比率與糊化溫度有較大相關(guān)性[35]。淀粉結(jié)構(gòu)變化、顆粒分布決定了稻米的熱性質(zhì)和親水力[36]。

        稻米在儲(chǔ)藏老化過(guò)程中,淀粉和蛋白質(zhì)含量的變化很小,但其成分以及微觀結(jié)構(gòu)變化明顯[34,37,38]。由于儲(chǔ)藏過(guò)程中淀粉脫分支酶的作用,儲(chǔ)藏后稻米不溶性直鏈淀粉含量增加,支鏈淀粉含量減少[39]。有研究證明隨著儲(chǔ)藏時(shí)間延長(zhǎng)直鏈淀粉含量下降,并將其歸因于淀粉酶的作用[40]。隨著儲(chǔ)藏時(shí)間的延長(zhǎng),淀粉顆粒尺寸變小,并逐漸崩解成較小顆粒,邊緣棱角變得模糊不清[23,41],這是由于儲(chǔ)藏過(guò)程中蛋白質(zhì)的存在限制了淀粉分子氫鍵的形成[42]。Huang等的研究表明,不同儲(chǔ)藏條件下,內(nèi)源淀粉酶會(huì)對(duì)淀粉長(zhǎng)、短鏈的比例產(chǎn)生影響[43]。稻米在21 ℃和38 ℃條件下儲(chǔ)藏9個(gè)月后,由于酶促作用,短鏈淀粉的相對(duì)百分比會(huì)增加[44,45]。在粳稻加速陳化的試驗(yàn)中,淀粉分子的結(jié)構(gòu)伴隨著部分官能團(tuán)的缺失和引入發(fā)生了變化,隨著儲(chǔ)藏時(shí)間的延長(zhǎng),不同品種大米的淀粉有序度均有所升高,淀粉抗消化能力增強(qiáng),并且結(jié)晶區(qū)結(jié)構(gòu)特征減弱、非結(jié)晶區(qū)結(jié)構(gòu)特征增強(qiáng)[45]。

        3.2? 蛋白質(zhì)

        稻米蛋白質(zhì)主要分為清蛋白、球蛋白、醇溶蛋白和谷蛋白。有研究認(rèn)為,對(duì)稻米老化貢獻(xiàn)度最大的是清蛋白,其次是球蛋白和醇溶蛋白,最后是谷蛋白[21]。與新米相比,儲(chǔ)藏過(guò)的稻米蛋白質(zhì)的含量變化較小,不同蛋白質(zhì)組分含量受儲(chǔ)藏條件的影響不同[46,47],清蛋白和球蛋白含量受儲(chǔ)藏時(shí)間和溫度影響較大[48];醇溶蛋白和谷蛋白微觀結(jié)構(gòu)的變化較大[34],例如游離巰基含量顯著降低,二硫鍵含量和蛋白質(zhì)表面疏水性增高[49]。趙卿宇等的研究表明,隨著儲(chǔ)藏時(shí)間延長(zhǎng),大米蛋白持水性和起泡性呈下降趨勢(shì),持油性呈上升趨勢(shì),并且高溫條件下變化更明顯[50]。在高溫高濕的儲(chǔ)藏條件下,醇溶蛋白和谷蛋白的氨基酸(Lys、Arg、His、Tyr等)側(cè)鏈易受自由基影響發(fā)生氧化產(chǎn)生二硫鍵和羰基[41,51,52],導(dǎo)致觀察到大分子量的蛋白質(zhì)積累[53]。谷蛋白α-螺旋含量在儲(chǔ)藏過(guò)程中表現(xiàn)為先降低后升高的趨勢(shì),無(wú)規(guī)則卷曲表現(xiàn)為先升高后降低,蛋白的功能性質(zhì)隨著儲(chǔ)藏時(shí)間的延長(zhǎng)而下降[54]。儲(chǔ)藏前期α-螺旋轉(zhuǎn)變?yōu)棣?折疊和β-轉(zhuǎn)角從而導(dǎo)致蛋白質(zhì)分子結(jié)構(gòu)變得疏松,這可能是由于淀粉的存在削弱了肽鏈之間的氫鍵[23],或是蛋白質(zhì)的氧化解開(kāi)了α-螺旋[5]。

        3.3? 脂類

        稻米的脂肪含量越高,稻米適口性和香氣越好[55]。稻米中脂肪的化學(xué)性質(zhì)活躍,受氧氣和脂肪酶的作用,易酸敗、水解和氧化變質(zhì),產(chǎn)生脂肪酸、醛類和酮類化合物[56]。代謝組學(xué)認(rèn)為,儲(chǔ)藏會(huì)導(dǎo)致稻米代謝產(chǎn)物的含量發(fā)生變化,從而可能影響稻米的品質(zhì)[57]。糙米在儲(chǔ)藏過(guò)程中的主要代謝途徑有亞油酸代謝、脂肪酸生物合成、類固醇生物合成[58],棕櫚油酸、膽固醇、亞油酸和月桂酸是以上3種代謝途徑的主要代謝物[59],是儲(chǔ)藏過(guò)程中影響稻米品質(zhì)的重要成分[60]。

        隨著儲(chǔ)藏時(shí)間延長(zhǎng)稻米脂肪酸值增加,并且較高的儲(chǔ)藏溫度會(huì)加快脂質(zhì)的分解,增加脂肪酸度[61]。Park等在較高溫度(30 ℃和40 ℃)下儲(chǔ)藏的精米脂肪酸度較高,在較低溫度(4 ℃和20 ℃)下儲(chǔ)藏則脂肪酸度較低[7]。脂質(zhì)水解產(chǎn)生游離脂肪酸和氧化產(chǎn)生過(guò)氧化羥基型脂肪酸,可能與儲(chǔ)藏過(guò)程中脂質(zhì)分布發(fā)生變化有關(guān)[3]。周等認(rèn)為,當(dāng)細(xì)胞膜受損時(shí)會(huì)釋放脂肪酶使脂質(zhì)水解[34],脂類的降解在碾米過(guò)程中破壞糊粉層時(shí)就已經(jīng)開(kāi)始了[62]。Scariot等發(fā)現(xiàn),在精米儲(chǔ)藏過(guò)程中較高的干燥空氣溫度更容易使脂質(zhì)降解產(chǎn)生脂肪酸[63],這可能是由于較高的干燥空氣溫度使細(xì)胞膜破裂受損。

        3.4? 揮發(fā)性物質(zhì)

        前人已確定了主要的香氣化合物,主要包括飽和和不飽和醛、醇和環(huán)狀化合物,其中己醛、1-辛稀-3-醇和2-戊基呋喃是稻米陳化的標(biāo)志。在香米中,2-乙酰基-1-吡咯啉(2AP)是類似于爆米花味道的化合物,已被證實(shí)為最重要的香氣化合物[64-66];己醛、辛醛、壬醛、1-戊醇和1-辛醇等也被認(rèn)為是重要的香氣成分[67,68]。Griglione等研究發(fā)現(xiàn),25個(gè)水稻品種除Venere外,其他品種在儲(chǔ)藏過(guò)程中庚醛、辛酸、2-乙基-1-己醇含量均增加,并確定2-(E)-辛烯醛為所有水稻品種陳化通用標(biāo)記,2-戊基呋喃、1-辛烯-3-醇和癸-(2E)-烯醛為特定品種的陳化標(biāo)記[69]。無(wú)論儲(chǔ)藏溫度如何,脂類氧化產(chǎn)生的揮發(fā)物都會(huì)隨著時(shí)間的增加而增加。高溫儲(chǔ)藏會(huì)加快揮發(fā)性物質(zhì)的產(chǎn)生,而低溫儲(chǔ)藏可以減緩揮發(fā)性物質(zhì)的增加速率,即使低溫儲(chǔ)藏一段時(shí)間后轉(zhuǎn)到高溫條件也有延緩的效果[70]。Zhao等發(fā)現(xiàn),儲(chǔ)藏期間己醛、辛酸、2-(E)-辛烯醛和葵醛的濃度增加,儲(chǔ)藏75 d后不同溫度下香氣活性物質(zhì)濃度均發(fā)生顯著變化,并且高溫儲(chǔ)藏會(huì)促進(jìn)變化趨勢(shì)[71]。劉強(qiáng)等在高溫40 ℃、相對(duì)濕度70%條件下短期儲(chǔ)藏糙米,應(yīng)用氣相離子遷移譜(GC-IMS)檢測(cè)乙醇、戊醇、辛酸、2-丙酮等揮發(fā)性物質(zhì),發(fā)現(xiàn)乙酸丙酯對(duì)應(yīng)的離子遷移信號(hào)可以作為高溫儲(chǔ)藏的重要標(biāo)識(shí)物質(zhì)[72]。蟲(chóng)害侵染也會(huì)對(duì)稻米脂肪酸代謝產(chǎn)生影響,隨著侵染時(shí)間延長(zhǎng),揮發(fā)性物質(zhì)由增加轉(zhuǎn)為整體下降[73]。

        4? 總結(jié)與展望

        稻米儲(chǔ)藏期間,受儲(chǔ)藏溫度、濕度和儲(chǔ)藏時(shí)間,以及胚乳中酶和外源細(xì)菌的影響,多種化學(xué)元素發(fā)生變化,如醇溶蛋白和谷蛋白的降低、羰基化合物的形成,以及淀粉精細(xì)結(jié)構(gòu)的變化、不飽和脂肪酸的減少等。這些變化使細(xì)胞更耐熱更不易破壞,水分進(jìn)出困難,水熱過(guò)程中淀粉浸出能力降低,影響了淀粉顆粒的水合化以及膨脹性,從而使稻米蒸煮困難,蒸煮后的米飯硬度上升、粘度下降。

        目前對(duì)稻米儲(chǔ)藏期間單一化學(xué)物質(zhì)的變化研究較多,但對(duì)儲(chǔ)藏期間多種化學(xué)物質(zhì)之間的相互作用研究較少。已有關(guān)于食品加工的研究證明,淀粉-脂質(zhì)復(fù)合物和淀粉-脂質(zhì)-蛋白復(fù)合物的存在,會(huì)影響食品的食味品質(zhì)及熱學(xué)性質(zhì)。雖然已有少量學(xué)者提出稻米儲(chǔ)藏期間淀粉復(fù)合物的產(chǎn)生會(huì)影響稻米品質(zhì),但對(duì)其結(jié)構(gòu)、特性以及形成機(jī)理的研究仍較少。

        多數(shù)研究認(rèn)為稻谷在儲(chǔ)藏過(guò)程中品質(zhì)會(huì)變劣,但也有研究認(rèn)為稻谷可以通過(guò)儲(chǔ)藏獲得獨(dú)特的風(fēng)味,因此或可利用適宜的儲(chǔ)藏條件使稻谷品質(zhì)變得更優(yōu)。另外,儲(chǔ)藏期間對(duì)稻谷和環(huán)境的實(shí)時(shí)檢測(cè),有利于進(jìn)一步研究?jī)?chǔ)藏過(guò)程中稻谷的風(fēng)味變化,從而通過(guò)適當(dāng)?shù)膬?chǔ)藏使稻谷獲得更高的商業(yè)價(jià)值。

        參考文獻(xiàn):

        [1] Chrastil J. Chemical and physicochemical changes of rice during storage at different temperatures[J]. Journal of Cereal Science, 1990, 11(1): 71-85.

        [2] Tong C, Gao HY, Luo SJ, et al. Impact of Postharvest Operations on Rice Grain Quality: A Review[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(3): 626-640.

        [3] Saikrishna A, Dutta S, Subramanian V, et al. Ageing of rice: A review[J]. Journal of Cereal Science, 2018, 81: 161-170.

        [4] Moses JA, Jayas DS, Alagusundaram K. Climate Change and its Implications on Stored Food Grains[J]. Agricultural Research, 2015, 4(1): 21-30.

        [5] Sun WZ, Zhou FB, Sun DW, et al. Effect of Oxidation on the Emulsifying Properties of Myofibrillar Proteins[J]. Food and Bioprocess Technology, 2013, 6(7): 1703-1712.

        [6] Ziegler V, Ferreira CD, Hoffmann JF, et al. Cooking quality properties and free and bound phenolics content of brown, black, and red rice grains stored at different temperatures for six months[J]. Food Chemistry, 2018, 242: 427-434.

        [7] Park CE, Kim YS, Park KJ, et al. Changes in physicochemical characteristics of rice during storage at different temperatures[J]. Journal of Stored Products Research, 2012, 48: 25-29.

        [8] Sirisoontaralak P, Noomhorm A. Changes in physicochemical and sensory-properties of irradiated rice during storage[J]. Journal of Stored Products Research, 2007, 43(3): 282-289.

        [9] Hayashi S, Yanase E. A study on the color deepening in red rice during storage[J]. Food Chemistry, 2016, 199: 457-462.

        [10] Zhou ZK, Chen XS, Zhang M, et al. Phenolics, flavonoids, proanthocyanidin and antioxidant activity of brown rice with different pericarp colors following storage[J]. Journal of Stored Products Research, 2014, 59: 120-125.

        [11] Yamuangmorn S, Jumrus S, Jamjod S, et al. Stabilizing Grain Yield and Nutrition Quality in Purple Rice Varieties by Management of Planting Elevation and Storage Conditions[J]. Agronomy, 2021, 11(1): 83.

        [12] Haydon KN, Siebenmorgen TJ. Impacts of Delayed Drying on Discoloration and Functionality of Rice[J]. Cereal Chemistry, 2017, 94(4): 683-692.

        [13] Butardo VM, Sreenivasulu N, Juliano BO. Improving Rice Grain Quality: State-of-the-Art and Future Prospects[A]. In: Sreenivasulu N(eds.). Rice Grain Quality: Methods and Protocols[M]. Clifton: Humana Press, 2019: 19-55.

        [14] Amagliani L, O'Regan J, Kelly AL, et al. The composition, extraction, functionality and applications of rice proteins: A review[J]. Trends in Food Science & Technology, 2017, 64: 1-12.

        [15] Chi CD, Li XX, Zhang YP, et al. Understanding the mechanism of starch digestion mitigation by rice protein and its enzymatic hydrolysates[J]. Food Hydrocolloids, 2018, 84: 473-480.

        [16] 張玉榮,劉敬婉,周顯青,等.CO2氣調(diào)解除后大米蒸煮特性、質(zhì)構(gòu)特性及食味品質(zhì)的變化研究[J].糧食與飼料工業(yè),2015(9):12-16.

        [17] 陸益鋇,朱樂(lè)天,呂春霞,等.包裝方式對(duì)大米品質(zhì)的影響[J].食品與發(fā)酵工業(yè),2021,47(14):88-93.

        [18] 周顯青,祝方清,張玉榮,等.不同儲(chǔ)藏年限稻谷的蒸煮特性及其米飯的食味和質(zhì)構(gòu)特性分析[J].河南工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,41(1):96-103.

        [19] Zhou ZK, Robards K, Helliwell S, et al. Effect of rice storage on pasting properties of rice flour[J]. Food Research International, 2003, 36(6): 625-634.

        [20] 張玉榮,周顯青,彭超.不同儲(chǔ)藏年限稻谷的品質(zhì)及蒸谷米加工適應(yīng)性分析[J].食品科學(xué),2021,42(9):39-45.

        [21] Guo YB, Cai WR, Tu K, et al. Key Proteins Causing Changes in Pasting Properties of Rice During Aging[J]. Cereal Chemistry, 2015, 92(4): 384-388.

        [22] 劉桃英,劉成梅,付桂明,等.大米蛋白對(duì)大米粉糊化性質(zhì)的影響[J].食品工業(yè)科技,2013,34(2):97-99.

        [23] Shi JY, Zhang T, Wang TT, et al. Effects of interaction between rice glutelin and starch on starch gelatinization in a simulated storage system[J]. Journal of Stored Products Research, 2020, 88(3): 101660.

        [24] Tulyathan V, Leeharatanaluk B. CHANGES IN QUALITY OF RICE (ORYZA SATIVA L.) CV. KHAO DAWK MALI 105 DURING STORAGE[J]. Journal of Food Biochemistry, 2007, 31(3): 415-425.

        [25] 賈溫倩,張威,舒在習(xí).不同儲(chǔ)藏條件對(duì)稻米蒸煮特性及揮發(fā)性成分的影響[J].食品科技,2019,44(12):183-192.

        [26] Wiset L, Laoprasert P, Borompichaichartkul C, et al. Effects of in-bin aeration storage on physicochemical properties and quality of glutinous rice cultivar RD 6[J]. Australian Journal of Crop Science, 2011, 5(6): 635-640.

        [27] 夏吉慶,鄭先哲,劉成海.儲(chǔ)藏方式對(duì)稻米黏度和脂肪酸含量的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2008,24(11):260-263.

        [28] 郭亞麗,李芳,洪媛,等.大米理化成分與米飯品質(zhì)的相關(guān)性研究[J].武漢輕工大學(xué)學(xué)報(bào),2015,34(3):1-6.

        [29] 宋偉,陳瑞,劉璐.不同儲(chǔ)藏條件下糙米質(zhì)構(gòu)和蒸煮品質(zhì)的規(guī)律變化及相關(guān)性研究[J].中國(guó)食物與營(yíng)養(yǎng),2011,17(3):36-40.

        [30] Perdon AA, Siebenmorgen TJ, Buescher RW, et al. Starch Retrogradation and Texture of Cooked Milled Rice During Storage[J]. Journal of Food Science, 1999, 64(5): 828-832.

        [31] 竇志.灌漿期開(kāi)放式增溫對(duì)水稻籽粒灌漿和品質(zhì)的影響及氮素粒肥的調(diào)控效應(yīng)[D].南京:南京農(nóng)業(yè)大學(xué),2017.

        [32] Zhang CQ, Zhou LH, Zhu ZB, et al. Characterization of Grain Quality and Starch Fine Structure of Two Japonica Rice (Oryza Sativa) Cultivars with Good Sensory Properties at Different Temperatures during the Filling Stage.[J]. Journal of Agricultural and Food Chemistry, 2016, 64(20): 4048-4057.

        [33] Wei CX, Qin FL, Zhou WD, et al. Comparison of the crystalline properties and structural changes of starches from high-amylose transgenic rice and its wild type during heating[J]. Food Chemistry, 2011, 128(3): 645-652.

        [34] Zhou Z, Robards K, Helliwell S, et al. Ageing of Stored Rice: Changes in Chemical and Physical Attributes[J]. Journal of Cereal Science, 2002, 35(1): 65-78.

        [35] Lu DL, Shen X, Cai XM, et al. Effects of heat stress during grain filling on the structure and thermal properties of waxy maize starch[J]. Food Chemistry, 2014, 143: 313-318.

        [36] Gu XT, Huang TQ, Ding MQ, et al. Effects of short-term heat stress at the grain formation stage on physicochemical properties of waxy maize starch[J]. Journal of the Science of Food and Agriculture, 2018, 98(3): 1008-1015.

        [37] 趙娟紅,林親錄,孫術(shù)國(guó),等.稻谷老化機(jī)制研究進(jìn)展[J].食品工業(yè)科技,2017,38(23):326-329.

        [38] 施利利,張欣,丁得亮,等.陳化稻米的主要品質(zhì)指標(biāo)的變化研究[J].食品科技,2014,39(10):166-169.

        [39] 費(fèi)月新,曹玉潔,吳敏,等.稻米儲(chǔ)藏品質(zhì)劣變機(jī)制研究進(jìn)展與展望[J].中國(guó)稻米,2018,24(5):22-26.

        [40] Ziegler V, Ferreira CD, Goebel JTS, et al. Changes in properties of starch isolated from whole rice grains with brown, black, and red pericarp after storage at different temperatures[J]. Food Chemistry, 2017, 216: 194-200.

        [41] 權(quán)萌萌,鞠興榮,石嘉懌,等.脂肪氧合酶催化亞油酸氧化對(duì)稻米醇溶蛋白的影響[J].糧食與飼料工業(yè),2016(4):27-30,36.

        [42] Niu LY, Wu LY, Xiao JH. Inhibition of gelatinized rice starch retrogradation by rice bran protein hydrolysates[J]. Carbohydrate Polymers, 2017, 175: 311-319.

        [43] Huang YC, Lai HM. Characteristics of the starch fine structure and pasting properties of waxy rice during storage[J]. Food Chemistry, 2014, 152: 432-439.

        [44] Patindol J, Wang YJ, Jane JL. Structure-Functionality Changes in Starch Following Rough Rice Storage[J]. Starch - Starke, 2005, 57(5): 197-207.

        [45] 張玉榮,梁彥偉,劉敬婉.高溫高濕儲(chǔ)藏條件對(duì)粳稻淀粉微觀結(jié)構(gòu)及揮發(fā)性物質(zhì)的影響[J].河南工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,39(6):8-15,35.

        [46] 張玉榮,周顯青,劉敬婉.加速陳化對(duì)粳稻的營(yíng)養(yǎng)組分及儲(chǔ)藏、加工品質(zhì)的影響[J].河南工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,38(5):37-44.

        [47] 張?zhí)?不同施肥處理糙米貯藏過(guò)程中蛋白質(zhì)和淀粉的變化對(duì)質(zhì)構(gòu)特性的影響[D].沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2020.

        [48] 李凡.秈粳雜交稻稻谷貯藏過(guò)程品質(zhì)變化及貯藏特性的研究[D].杭州:浙江大學(xué),2019.

        [49] Zhao QY, Lin JH, Wang C, et al. Protein structural properties and proteomic analysis of rice during storage at different temperatures[J]. Food Chemistry, 2021, 361: 130028.

        [50] 趙卿宇,林佳慧,沈群.儲(chǔ)藏溫度對(duì)大米蛋白功能特性的影響[J].食品科學(xué),2021,42(13):200-207.

        [51] Wu WTL. Botox Facial Slimming/Facial Sculpting: The Role of Botulinum Toxin-A in the Treatment of Hypertrophic Masseteric Muscle and Parotid Enlargement to Narrow the Lower Facial Width[J]. Facial Plastic Surgery Clinics of North America, 2010, 18(1): 133-140.

        [52] Thomas JA, Mallis RJ. Aging and oxidation of reactive protein sulfhydryls[J]. Experimental Gerontology, 2001, 36(9): 1519-1526.

        [53] Thanathornvarakul N, Anuntagool J, Tananuwong K. Aging of low and high amylose rice at elevated temperature: Mechanism and predictive modeling[J]. Journal of Cereal Science, 2016, 70: 155-163.

        [54] 石嘉懌,張?zhí)?,梁富?qiáng),等.大米谷蛋白儲(chǔ)藏過(guò)程中結(jié)構(gòu)與功能性質(zhì)變化的研究[J].食品工業(yè)科技, 2021,42(6):29-34,42.

        [55] Ahmed W, Butt MS, Sharif MK, et al. Effect of Storage on Cooking Quality Attributes and Fortificants Stability in Edible-Coated Iron-Folate Fortified Basmati Rice[J]. Journal of Food Processing and Preservation, 2016, 40(5): 925-933.

        [56] Lee JI, Kim DW, Jang GJ, et al. Effects of different storage conditions on the metabolite and microbial profiles of white rice (Oryza sativa L.)[J]. Food Science and Biotechnology, 2019, 28(3): 623-631.

        [57] Wang CY, Feng YC, Zhang S, et al. Effects of storage on brown rice (Oryza sativa L.) metabolites, analyzed using gas chromatography and mass spectrometry[J]. Food Science & Nutrition, 2020, 8(6): 2882-2894.

        [58] Yan SJ, Huang WJ, Gao JD, et al. Comparative metabolomic analysis of seed metabolites associated with seed storability in rice (Oryza sativa L.) during natural aging[J]. Plant Physiology and Biochemistry, 2018, 127: 590-598.

        [59] Yoon MR, Lee SC, Kang MY. The lipid composition of rice cultivars with different eating qualities[J]. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55(2): 291-295.

        [60] Wang CY, Feng YC, Fu TX, et al. Effect of storage on metabolites of brown rice[J]. Journal of the Science of Food and Agriculture, 2020, 100(12): 4364-4377.

        [61] Genkawa T, Uchino T, Inoue A, et al. Development of a low-moisture-content storage system for brown rice: Storability at decreased moisture contents[J]. Biosystems Engineering, 2008, 99(4): 515-522.

        [62] Wu XJ, Li F, Wu W. Effects of rice bran rancidity on the oxidation and structural characteristics of rice bran protein[J]. LWT - Food Science and Technology, 2020, 120(C): 108943.

        [63] Scariot MA, Karlinski L, Dionello RG, et al. Effect of drying air temperature and storage on industrial and chemical quality of rice grains[J]. Journal of Stored Products Research, 2020, 89: 101717.

        [64] Laguerre M, Mestres C, Davrieux F, et al. Rapid discrimination of scented rice by solid-phase microextraction, mass spectrometry, and multivariate analysis used as a mass sensor[J]. Journal of Agricultural and Food Chemistry, 2007, 55(4): 1077-1083.

        [65] Liberto E, Cagliero C, Sgorbini B, et al. Enantiomer identification in the flavour and fragrance fields by “interactive” combination of linear retention indices from enantioselective gas chromatography and mass spectrometry[J]. Journal of Chromatography A, 2008, 1195(1-2): 117-126.

        [66] Champagne ET. Rice Aroma and Flavor: A Literature Review[J]. Cereal Chemistry, 2008, 85(4): 445-454.

        [67] Mahattanatawee K, Rouseff RL. Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC-Olfactometry and GC-PFPD[J]. Food Chemistry, 2014, 154: 1-6.

        [68] Maraval I, Mestres C, Pernin K, et al. Odor-active compounds in cooked rice cultivars from Camargue (France) analyzed by GC-O and GC-MS[J]. Journal of Agricultural and Food Chemistry, 2008, 56(13): 5291-5298.

        [69] Griglione A, Liberto E, Cordero C, et al. High-quality Italian rice cultivars: Chemical indices of ageing and aroma quality[J]. Food Chemistry, 2015, 172: 305-313.

        [70] Kaewtathip T, Charoenrein, S. Changes in volatile aroma compounds of pineapple (Ananas comosus) during freezing and thawing[J]. International Journal of Food Science & Technology, 2012, 47(5): 985-990.

        [71] Zhao QY, Xue Y, Shen Q. Changes in the major aroma-active compounds and taste components of Jasmine rice during storage[J]. Food Research International, 2020, 133: 109160.

        [72] 劉強(qiáng),劉紀(jì)偉,田恬,等.高溫脅迫下糙米短期儲(chǔ)藏氣味指紋圖譜變化規(guī)律的動(dòng)態(tài)分析[J].中國(guó)農(nóng)業(yè)科學(xué),2021,54(2):379-391.

        [73] 單常堯.儲(chǔ)糧害蟲(chóng)危害的糙米揮發(fā)性化合物變化研究[D].鄭州:河南工業(yè)大學(xué),2020.

        基金項(xiàng)目:小站稻綠色高效栽培技術(shù)的研究應(yīng)用(21YFSNSN00100)。

        收稿日期:2022-06-27

        作者簡(jiǎn)介:陳虎(1998-),男,研究生。

        *通訊作者:趙飛(1979-),男,博士,副教授。

        劉建(1970-),男,博士,副研究員。

        猜你喜歡
        稻米品質(zhì)
        分析水稻栽培技術(shù)措施對(duì)稻米品質(zhì)的影響
        水稻栽培技術(shù)措施對(duì)稻米品質(zhì)的影響
        水稻栽培技術(shù)措施對(duì)稻米品質(zhì)的影響分析
        不同配方施肥對(duì)水稻產(chǎn)量及稻米品質(zhì)的影響分析
        水稻栽培技術(shù)措施對(duì)稻米品質(zhì)的影響
        稻鴨共作對(duì)稻米品質(zhì)影響的試驗(yàn)研究
        早熟晚粳稻揚(yáng)粳282特征特性及栽培技術(shù)
        淺析水稻栽培技術(shù)措施對(duì)稻米品質(zhì)的影響
        土壤水分對(duì)水稻籽粒相對(duì)充實(shí)度的影響及其與產(chǎn)量的關(guān)系
        北方粳稻區(qū)利用航天誘變進(jìn)行水稻新品種選育研究
        亚洲饱满人妻视频| 免费a级毛片无码免费视频首页| 激情伊人五月天久久综合| 久久国产精久久精产国| 午夜福利影院不卡影院| 一道本加勒比在线观看| 69国产成人精品午夜福中文| 亚洲午夜精品久久久久久人妖| 国产爆乳无码一区二区在线| 女同中文字幕在线观看| 国产亚洲av无码av男人的天堂| 无遮无挡爽爽免费毛片| 国产福利片无码区在线观看| 性色av一区二区三区密臀av| 麻豆文化传媒精品一区观看| 亚洲中文字幕无码一久久区 | 亚洲日本精品国产一区二区三区| 久久亚洲中文字幕精品熟| 亚洲欧美日韩精品久久| 免费现黄频在线观看国产| 日本一区二区三区中文字幕视频| 国产一区二区三区十八区| 在办公室被c到呻吟的动态图 | 国内免费高清在线观看| 国产精品久久久av久久久| 激情文学人妻中文字幕| 日本一区二区视频在线| 挺进朋友人妻雪白的身体韩国电影 | 伊人久久精品无码二区麻豆| 天堂av中文在线官网| 亚洲无av高清一区不卡| 国产免费三级av在线| 男女性高爱潮免费网站| 国产高清a| 亚洲国产成人va在线观看天堂| 欧美人与动性xxxxx杂性| 亚洲 欧美 激情 小说 另类| 中文字幕精品亚洲无线码二区| 中文字幕影片免费人妻少妇| 日韩亚洲欧美中文在线| 2021国产精品久久|