李曉鵬 胡寶光
【摘要】 乳酸作為腫瘤細(xì)胞的重要代謝產(chǎn)物,在腫瘤的發(fā)生、發(fā)展及腫瘤免疫中發(fā)揮了重要作用。近些年來(lái),腫瘤免疫代謝成為研究熱門課題,乳酸作為重要的腫瘤代謝產(chǎn)物,乳酸與腫瘤相關(guān)免疫細(xì)胞研究隨之也成為研究熱門課題。隨著腫瘤免疫治療的深入,NK細(xì)胞已然成為了下一個(gè)免疫治療的目標(biāo)對(duì)象之一,進(jìn)一步了解NK細(xì)胞在腫瘤免疫中的作用顯得尤為重要,乳酸對(duì)于NK細(xì)胞的影響也是一個(gè)潛在的免疫治療方向。故本文綜述了乳酸在腫瘤微環(huán)境(TME)中對(duì)腫瘤細(xì)胞及NK細(xì)胞的影響。
【關(guān)鍵詞】 乳酸 NK細(xì)胞 腫瘤免疫 免疫逃避 腫瘤微環(huán)境
Effect of Lactic Acid on Tumor Cells and NK Cells in Tumor Microenvironment/LI Xiaopeng, HU Baoguang. //Medical Innovation of China, 2023, 20(09): -166
[Abstract] As an important metabolite of tumor cells, lactic acid plays an important role in tumor genesis, development and tumor immunity. In recent years, tumor immune metabolism has become a hot research topic. As an important tumor metabolite, lactic acid and tumor related immune cell research has also become a hot topic of research. With the development of tumor immunotherapy, NK cells have become one of the next targets of immunotherapy. It is particularly important to further understand the role of NK cells in tumor immunity. The effect of lactic acid on NK cells is also a potential direction of immunotherapy. Therefore, this article reviews the effects of lactic acid on tumor cells and NK cells in tumor microenvironment (TME).
[Key words] Lactic acid NK cells Tumor immunity Immune evasion Tumor microenvironment
First-author's address: Binzhou Medical University Hospital, Binzhou 256600, China
doi:10.3969/j.issn.1674-4985.2023.09.038
腫瘤代謝中,腫瘤細(xì)胞通過(guò)瓦博格效應(yīng)(Warburg effect)產(chǎn)生大量乳酸,腫瘤微環(huán)境(TME)中的乳酸濃度可高達(dá)10~30 mM,而正常生理?xiàng)l件下的乳酸濃度為1.5~3.0 mM[1]。作為微環(huán)境的重要組成部分,乳酸的作用是多種多樣的,可以在不同的情況下發(fā)揮不同的作用,進(jìn)而影響TME內(nèi)的多種細(xì)胞活動(dòng)[2],包括促進(jìn)病毒感染、腫瘤生長(zhǎng)、急慢性炎癥、敗血癥和免疫抑制等[3]。研究表明,腫瘤細(xì)胞向細(xì)胞外分泌乳酸產(chǎn)生“乳酸差”,繼而形成“內(nèi)堿外酸”的pH穩(wěn)態(tài),促進(jìn)腫瘤的生長(zhǎng)與遷徙。不僅如此,最近也有研究表明,乳酸還可以通過(guò)乳酸化修飾機(jī)制影響腫瘤細(xì)胞本身的蛋白分子表達(dá),進(jìn)而影響腫瘤細(xì)胞及TME中其他細(xì)胞的功能,如自然免疫細(xì)胞和適應(yīng)性免疫細(xì)胞[4]。研究已經(jīng)明確,腫瘤免疫是針對(duì)腫瘤細(xì)胞殺傷為主的細(xì)胞免疫,其中的NK細(xì)胞發(fā)揮了重要的作用[5]。由于相關(guān)研究不足,乳酸與NK細(xì)胞之間的聯(lián)系尚不清楚。本文將就TME中乳酸與NK細(xì)胞的相互影響在腫瘤免疫中的研究進(jìn)展進(jìn)行綜述。
1 乳酸與腫瘤
1.1 乳酸與腫瘤發(fā)生、發(fā)展 腫瘤微環(huán)境中的乳酸對(duì)腫瘤的發(fā)生發(fā)展起到了重要的作用。乳酸是G蛋白偶聯(lián)受體(GPR81)的內(nèi)源性配體,細(xì)胞分泌的乳酸可作為信號(hào)傳導(dǎo)分子可能通過(guò)自分泌和旁分泌兩個(gè)過(guò)程發(fā)揮作用[6]。同時(shí),乳酸作為細(xì)胞代謝產(chǎn)物,與腫瘤細(xì)胞之間相互作用。Lambert等[7]的研究表明,腫瘤細(xì)胞源性乳酸可激活哺乳動(dòng)物Rapamy-CIN復(fù)合物1,進(jìn)而抑制TFEB及其下游靶基因編碼液泡質(zhì)子泵D2組分(MTORC1)的ATP6V0D2的表達(dá),他們發(fā)現(xiàn)ATP6V0D2基因缺陷小鼠比正常小鼠生長(zhǎng)更快,而且分泌更多的血管內(nèi)皮生長(zhǎng)因子(VEGF),從而促進(jìn)腫瘤的生長(zhǎng)。此外,他們還發(fā)現(xiàn)ATP6V0D2的高表達(dá)與肺癌患者的術(shù)后生存率有關(guān)。Chen等[8]的研究提示,乳酸激活的巨噬細(xì)胞可通過(guò)激活GPR132基因促進(jìn)乳腺癌細(xì)胞黏附、遷移和侵襲。根據(jù)Nikoobakht等[9]的研究,顱咽管瘤、星形細(xì)胞瘤及其轉(zhuǎn)移灶均比正常組織擁有更高的乳酸濃度,這可能提示乳酸濃度的增加可能與惡性程度和較高等級(jí)有關(guān)。相關(guān)研究發(fā)現(xiàn),乳酸濃度與患者預(yù)后密切相關(guān)。如前所述,Chen等[8]研究還發(fā)現(xiàn)GPR132的低表達(dá)與乳腺癌患者更好的生存率相關(guān),從而表明乳酸濃度與乳腺癌的預(yù)后有關(guān),Nikoobakht等[9]研究提示乳酸濃度的增加可能是顱咽管瘤、星形細(xì)胞瘤等腫瘤惡性程度和較高等級(jí)的標(biāo)志。同時(shí),Walenta等[10]的研究發(fā)現(xiàn)在子宮頸癌中高乳酸水平可能與腫瘤轉(zhuǎn)移、復(fù)發(fā)及限制患者的生存有關(guān)。
1.2 乳酸與腫瘤免疫 在TME中,乳酸可與多種腫瘤相關(guān)免疫細(xì)胞相互影響。Wang等[1]綜述了乳酸可能對(duì)腫瘤微環(huán)境中的免疫細(xì)胞的影響:首先,乳酸會(huì)影響并損害單核細(xì)胞向樹(shù)突狀細(xì)胞(DCs)的分化,從而降低其抗原提呈功能。然后,乳酸會(huì)抑制免疫效應(yīng)細(xì)胞的抗腫瘤活性,包括NK細(xì)胞和細(xì)胞毒性T細(xì)胞。最后,乳酸可促進(jìn)M2巨噬細(xì)胞樣腫瘤相關(guān)巨噬細(xì)胞、N2中性粒細(xì)胞樣腫瘤相關(guān)中性粒細(xì)胞、髓源性抑制細(xì)胞和調(diào)節(jié)性T細(xì)胞等免疫抑制細(xì)胞的浸潤(rùn),從而有效抑制抗腫瘤免疫應(yīng)答,促進(jìn)腫瘤免疫。乳酸可通過(guò)減弱免疫細(xì)胞殺傷和增強(qiáng)免疫抑制兩方面發(fā)揮作用。乳酸減弱免疫細(xì)胞殺傷方面,Ping等[11]的研究發(fā)現(xiàn),缺氧可降低miR-34a
的表達(dá),從而導(dǎo)致失去了miR-34a對(duì)乳酸脫氫酶(LDHA)的調(diào)控,從而增加了胃癌腫瘤微環(huán)境中乳酸水平,從而導(dǎo)致輔助性T細(xì)胞1(Th1)和細(xì)胞毒性T淋巴細(xì)胞的減少,進(jìn)而損害了胃癌微環(huán)境中免疫應(yīng)答功能。黑色素瘤中LDHA相關(guān)的乳酸積累也可抑制T細(xì)胞和NK細(xì)胞對(duì)腫瘤的監(jiān)視[12]。乳酸改變了樹(shù)突狀細(xì)胞(也稱DC細(xì)胞)的抗原表型和功能活性,并且單獨(dú)可與腫瘤細(xì)胞因子M-CSF和IL-6組合產(chǎn)生特殊的腫瘤相關(guān)DC細(xì)胞表型,進(jìn)而出現(xiàn)CD1a的低表達(dá)和IL-12的低分泌[13]。乳酸增強(qiáng)免疫抑制方面:乳酸可以促進(jìn)Treg細(xì)胞的增殖及功能,Watson等[14]的研究表明,通過(guò)人為缺失Treg細(xì)胞中乳酸轉(zhuǎn)運(yùn)蛋白MCT1,導(dǎo)致腫瘤生長(zhǎng)緩慢,對(duì)免疫療法的反應(yīng)增強(qiáng),表明乳酸攝取對(duì)于外周Treg細(xì)胞的功能是不可缺少的。Yang等[15]提出,放療增強(qiáng)了胰腺癌的Warburg效應(yīng)和乳酸生成,其作用可能是乳酸信號(hào)通過(guò)GPR81/雷帕霉素(mTOR)/缺氧誘導(dǎo)因子(HIF)-1α/STAT3通路激活髓源性抑制細(xì)胞(MDSCs),抑制免疫效應(yīng)細(xì)胞的作用,從而有利于腫瘤的生長(zhǎng)。Deng等[16]的研究發(fā)現(xiàn)乳酸進(jìn)入肝細(xì)胞癌TME后,中性粒細(xì)胞向N2表型極化,且腫瘤微環(huán)境中的乳酸還可通過(guò)MCT1/NF-κB/COX-2通路誘導(dǎo)中性粒細(xì)胞PD-L1表達(dá),從而抑制抗腫瘤免疫的細(xì)胞毒性。乳酸對(duì)于NK細(xì)胞的影響將在下一章節(jié)重點(diǎn)論述。
1.3 乳酸影響腫瘤的其他方面 除了上述方面,乳酸目前被認(rèn)為是一種多效性信號(hào)分子,能夠調(diào)節(jié)免疫炎癥反應(yīng)、血管生成和纖維化等方面[17]。乳酸既能影響傳統(tǒng)的血管形成,也可促進(jìn)血管擬態(tài)(一種由腫瘤細(xì)胞EMT轉(zhuǎn)換為內(nèi)皮細(xì)胞,繼而形成類似血管結(jié)構(gòu),允許血液通過(guò))的形成[18]。Liu等[19]的研究發(fā)現(xiàn)沉默HBXIP基因可降低了膀胱癌細(xì)胞的葡萄糖攝取和乳酸生成,繼而影響到了血管擬態(tài)的形成,之后他們用葡萄糖和乳酸刺激與HBXIP沉默的膀胱癌細(xì)胞共培養(yǎng)的人臍靜脈內(nèi)皮細(xì)胞(HUVECs),HUVECs的細(xì)胞活力、遷移和管形成等能力得到了逆轉(zhuǎn),實(shí)驗(yàn)證明葡萄糖刺激證實(shí)HBXIP通過(guò)調(diào)節(jié)腫瘤細(xì)胞的葡萄糖攝取進(jìn)一步促進(jìn)糖酵解,而乳酸刺激證明糖酵解進(jìn)一步促進(jìn)血管生成。De Saedeleer等[20]的研究表明,乳酸驅(qū)動(dòng)的HIF-1α在巨噬細(xì)胞中的穩(wěn)定與腫瘤血管生成和生長(zhǎng)有關(guān)。
2 TME中的乳酸對(duì)NK細(xì)胞的影響
2.1 乳酸影響NK細(xì)胞的活性及細(xì)胞死亡 乳酸在TME中的積累主要是由于腫瘤細(xì)胞及腫瘤相關(guān)成纖維細(xì)胞產(chǎn)生與腫瘤細(xì)胞利用的差值所致,腫瘤細(xì)胞主要利用葡萄糖進(jìn)行糖酵解代謝,而NK細(xì)胞的主要能量來(lái)源是TME中的葡萄糖,這種由缺氧和癌基因等多種因素誘導(dǎo)的癌細(xì)胞加速糖酵解可能是NK細(xì)胞活性的一個(gè)不利環(huán)境,因?yàn)樗粌H導(dǎo)致乳酸積累,而且降低了TME中葡萄糖的可利用性,從而使NK細(xì)胞的活性下降[21]。純化的人NK細(xì)胞在乳酸存在下培養(yǎng)72 h,對(duì)K562細(xì)胞進(jìn)行溶細(xì)胞活性測(cè)定,發(fā)現(xiàn)其細(xì)胞毒活性明顯降低,Husain等[22]的研究表明,TME局部pH從6.8降低到6.0會(huì)導(dǎo)致NK細(xì)胞活性的顯著降低,細(xì)胞外環(huán)境中高水平的乳酸可降低MTORC信號(hào)活性,不利于NKT細(xì)胞的存活,但有利于CD4+T細(xì)胞的存活。此外,NKT細(xì)胞減少IL-4和IL-17的產(chǎn)生,但不減少γ干擾素(IFN-γ)的產(chǎn)生,這提示了IFN-γ的表達(dá)更能抵抗高乳酸引起的細(xì)胞應(yīng)激[23]。由于腫瘤細(xì)胞的快速生長(zhǎng),高乳酸常是伴隨著缺氧等條件產(chǎn)生的,繼而產(chǎn)生各種因素導(dǎo)致的細(xì)胞死亡,Long等[24]的研究提示下調(diào)MCT4會(huì)使pH值升高和細(xì)胞外乳酸濃度降低,且對(duì)NK細(xì)胞的關(guān)鍵作用可能是通過(guò)誘導(dǎo)自噬作為一種代償性代謝機(jī)制發(fā)揮的作用。乳酸濃度大于20 mM可導(dǎo)致NK細(xì)胞凋亡,這可能是乳酸濃度較高的腫瘤中T細(xì)胞和NK細(xì)胞比例較小的原因之一[12]。乳酸也可通過(guò)調(diào)節(jié)細(xì)胞內(nèi)外PH來(lái)調(diào)節(jié)NK細(xì)胞的活性及細(xì)胞死亡,Harmon等[25]的研究表明,結(jié)直腸肝轉(zhuǎn)移腫瘤可產(chǎn)生乳酸,從而降低腫瘤微環(huán)境的pH值,導(dǎo)致向腫瘤遷移的肝內(nèi)NK細(xì)胞不能調(diào)節(jié)細(xì)胞內(nèi)pH值,導(dǎo)致其線粒體應(yīng)激及凋亡。
2.2 乳酸在TME中調(diào)節(jié)NK細(xì)胞表面分子及其配體的表達(dá) NK細(xì)胞表面存在著大量的免疫分子,按照生物學(xué)分類可分為:人類白細(xì)胞抗原(HLA)類特異性受體和非HLA類特異性受體,按照功能可分為激活性受體和抑制性受體兩個(gè)類別[26]。激活性的受體包括:KIRs、NKG2D、NKo30、NKp44、NKp46、2B4、NKG2C、DNAM-1、NTBA等,抑制性的受體包括:KIRs、CTLA-4、TIGIT、PD-1、TIM-3、LAG-3、NKG2A、CD96等[27],在腫瘤細(xì)胞表面相應(yīng)有著對(duì)應(yīng)的配體。對(duì)于腫瘤,NK和記憶性NK(NKM)細(xì)胞的功能失調(diào)不僅導(dǎo)致腫瘤細(xì)胞的增殖,而且導(dǎo)致腫瘤轉(zhuǎn)移灶的形成。研究結(jié)果表明,NK細(xì)胞對(duì)NK受體配體(如NKG2D)表達(dá)的腫瘤細(xì)胞所產(chǎn)生的重復(fù)作用可能導(dǎo)致NK細(xì)胞功能紊亂,從而導(dǎo)致NK細(xì)胞不能發(fā)揮相應(yīng)的效應(yīng)反應(yīng)[28]。Husain等[29]的研究表明,當(dāng)乳酸水平較高時(shí),乳酸可通過(guò)下調(diào)NK細(xì)胞表面NKp46、CD107,從而下調(diào)穿孔素/顆粒酶B的表達(dá),使NK細(xì)胞失活繼而產(chǎn)生免疫抑制的作用。Long等[24]的研究提示,在乳腺癌中通過(guò)阻斷單羧酸轉(zhuǎn)運(yùn)蛋白-4(MCT4)從而減少乳酸的交換而降低pH值,進(jìn)而促進(jìn)NKG2D和H60的表達(dá),最終提高NK細(xì)胞抑制腫瘤生長(zhǎng)的能力。Brand等[12]研究表明,病理生理濃度的乳酸可以阻止活化T細(xì)胞核因子(NFAT)在T和NK細(xì)胞中的上調(diào),導(dǎo)致IFN-γ的產(chǎn)生減少,從而抑制T細(xì)胞和NK細(xì)胞的激活,從而產(chǎn)生免疫抑制的效果。在膠質(zhì)母細(xì)胞瘤細(xì)胞中分泌酶活性的人乳酸脫氫酶5
(LDH-5)(該同工酶催化丙酮酸轉(zhuǎn)化為乳酸的效率最高)可誘導(dǎo)髓系細(xì)胞上NKG2D配體的表達(dá),尤其是健康單核細(xì)胞中的MICB和ULBP-1 mRNA,顛覆抗腫瘤免疫反應(yīng)[30]。綜上,乳酸在TME中可調(diào)節(jié)NK細(xì)胞表面分子及其配體,從而發(fā)揮調(diào)節(jié)腫瘤免疫的作用。
3 展望
TME中的乳酸一直被認(rèn)為是代謝廢物,但是最近的研究表明乳酸在免疫微環(huán)境中起到了極其重要的作用。腫瘤細(xì)胞和腫瘤組織中的癌相關(guān)成纖維細(xì)胞(CAF)的糖酵解產(chǎn)生乳酸可以通過(guò)MCT4輸出到細(xì)胞外環(huán)境,細(xì)胞外乳酸可通過(guò)MCT1被需氧腫瘤細(xì)胞吸收,并通過(guò)Krebs循環(huán)和氧化磷酸化產(chǎn)生腺苷三磷酸(ATP)[31]。正如上文中綜述的那樣,乳酸在促進(jìn)腫瘤的發(fā)生、發(fā)展有著不可替代的作用,并且在腫瘤免疫中乳酸的作用更是極其重要。乳酸促進(jìn)腫瘤相關(guān)免疫細(xì)胞的免疫逃避方面的功能是近幾年的研究熱點(diǎn),NK細(xì)胞作為腫瘤免疫中重要的一環(huán),隨著免疫治療的蓬勃發(fā)展,NK細(xì)胞成為了繼T細(xì)胞免疫治療的另一“寵兒”,Xie等[32]的綜述指出,與CAR-T細(xì)胞相比,CAR-NK細(xì)胞可以提供一些顯著的優(yōu)勢(shì),包括:(1)安全性更高,如在自體環(huán)境中缺乏或極少發(fā)生細(xì)胞因子釋放綜合征和神經(jīng)毒性,在異體環(huán)境中少有存在移植物抗宿主??;(2)多種機(jī)制可激活細(xì)胞毒性活性;(3)工程細(xì)胞嵌合的高可行性。腫瘤微環(huán)境中的乳酸與NK細(xì)胞之間的研究在近幾年更是免疫代謝中的熱門課題,在不久的將來(lái)乳酸調(diào)節(jié)NK細(xì)胞相關(guān)的靶點(diǎn)可能成為免疫治療的一強(qiáng)有力的工具。
參考文獻(xiàn)
[1] WANG J X,CHOI S,NIU X,et al.Lactic acid and an acidic tumor microenvironment suppress anticancer immunity[J].Int J Mol Sci,2020,21(21):8363.
[2] IPPOLITO L,MORANDI A,GIANNONI E,et al.Lactate: a metabolic driver in the tumour landscape[J].Trends Biochem Sci,2019,44(2):153-166.
[3] LUO Y,LI L,CHEN X,et al.Effects of lactate in immunosuppression and inflammation: progress and prospects[J].Int Rev Immunol,2022,41(1):19-29.
[4] ZHANG D,TANG Z,HUANG H,et al.Metabolic regulation of gene expression by histone lactylation[J].Nature,2019,574(7779):575-580.
[5] GAO Y, ZHOU H, LIU G, et al. Tumor microenvironment: lactic acid promotes tumor development[J]. Journal of Immunology Research, 2022,2022:1-8.
[6] BROWN T P,GANAPATHY V.Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and Warburg phenomenon[J].Pharmacol Ther,2020,206:107451.
[7] LAMBERT A W,PATTABIRAMAN D R,WEINBERG R A.
Emerging biological principles of metastasis[J].Cell,2017,168(4):670-691.
[8] CHEN P,ZUO H,XIONG H,et al.Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis[J].Proc Natl Acad Sci U S A,2017,114(3):580-585.
[9] NIKOOBAKHT M,SHAMSHIRIPOUR P,AZIMI N Z,et al.
Elevated lactate and total protein levels in stereotactic brain biopsy specimen; potential biomarkers of malignancy and poor prognosis[J].Arch Iran Med,2019,22(3):125-131.
[10] WALENTA S,WETTERLING M,LEHRKE M,et al.High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers[J].Cancer Res,2000,60(4):916-921.
[11] PING W,SENYAN H,LI G,et al.Increased lactate in gastric cancer tumor-infiltrating lymphocytes is related to impaired T cell function due to miR-34a deregulated lactate dehydrogenase A[J].Cell Physiol Biochem,2018,49(2):828-836.
[12] BRAND A,SINGER K,KOEHL G E,et al.LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells[J].Cell Metab,2016,24(5):657-671.
[13] GOTTFRIED E,KUNZ-SCHUGHART L A,EBNER S,et al.
Tumor-derived lactic acid modulates dendritic cell activation and antigen expression[J].Blood,2006,107(5):2013-2021.
[14] WATSON M J,VIGNALI P,MULLETT S J, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid[J]. Nature, 2021,591(7851): 645-651.
[15] YANG X,LU Y,HANG J,et al.Lactate-modulated immunosuppression of myeloid-derived suppressor cells contributes to the radioresistance of pancreatic cancer[J].Cancer Immunol Res,2020,8(11):1440-1451.
[16] DENG H,KAN A,LYU N,et al.Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating PD-L1 expression on neutrophil in hepatocellular carcinoma[J/OL].J Immunother Cancer,2021,9(6):e002305.https://doi.org/10.1136/jitc-2020-002305.
[17] CERTO M,LLIBRE A,LEE W,et al.Understanding lactate sensing and signalling[J].Trends Endocrinol Metab,2022,33(10):722-735.
[18] WEI X,CHEN Y,JIANG X,et al.Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments[J].Mol Cancer,2021,20(1):7.
[19] LIU X,LI H,CHE N,et al.HBXIP accelerates glycolysis and promotes cancer angiogenesis via AKT/mTOR pathway in bladder cancer[J].Exp Mol Pathol,2021,121:104665.
[20] DE SAEDELEER C J,COPETTI T,PORPORATO P E,et al.
Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells[J/OL].PLoS One,2012,7(10):e46571.https://www.ncbi.nlm.nih.gov/pubmed/23082126.
[21] TERREN I,ORRANTIA A,VITALLE J,et al.NK cell metabolism and tumor microenvironment[J].Front Immunol,2019,10:2278.
[22] HUSAIN Z,SETH P,SUKHATME V P.Tumor-derived lactate and myeloid-derived suppressor cells: linking metabolism to cancer immunology[J/OL].Oncoimmunology,2013,2(11):e26383.https://www.ncbi.nlm.nih.gov/pubmed/24404426.
[23] KUMAR A,PYARAM K,YAROSZ E L,et al.Enhanced oxidative phosphorylation in NKT cells is essential for their survival and function[J].Proc Natl Acad Sci U S A,2019,116(15):7439-7448.
[24] LONG Y,GAO Z,HU X,et al.Downregulation of MCT4 for lactate exchange promotes the cytotoxicity of NK cells in breast carcinoma[J].Cancer Med,2018,7(9):4690-4700.
[25] HARMON C,ROBINSON M W,HAND F,et al.Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis[J].Cancer Immunol Res,2019,7(2):335-346.
[26] QUATRINI L,DELLA C M,SIVORI S,et al.Human NK cells, their receptors and function[J].Eur J Immunol,2021,51(7):1566-1579.
[27] PINEIRO F J,LUDDY K A,HARMON C,et al.Hepatic tumor microenvironments and effects on NK cell phenotype and function[J].Int J Mol Sci,2019,20(17):4131.
[28] WU S Y,F(xiàn)U T,JIANG Y Z,et al.Natural killer cells in cancer biology and therapy[J].Mol Cancer,2020,19(1):120.
[29] HUSAIN Z,HUANG Y,SETH P,et al.Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells[J].J Immunol,2013,191(3):1486-1495.
[30] CRANE C A,AUSTGEN K,HABERTHUR K,et al.Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients[J].Proc Natl Acad Sci U S A,2014,111(35):12823-12828.
[31] HAYES C,DONOHOE C L,DAVERN M,et al.The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment[J].Cancer Lett,2021,500:75-86.
[32] XIE G,DONG H,LIANG Y,et al.CAR-NK cells: a promising cellular immunotherapy for cancer[J].EBioMedicine,2020,59:102975.
(收稿日期:2023-01-04) (本文編輯:占匯娟)