王皓杰,武三栓,張科杰,孫文,黃仁忠,余敏,謝迎春
冷噴涂IN718涂層組織及性能研究
王皓杰1,2,武三栓3,張科杰2,孫文2,黃仁忠2,余敏1,謝迎春2
(1.西南交通大學(xué) 材料科學(xué)與工程學(xué)院,成都 610063;2.廣東省科學(xué)院新材料研究所a.現(xiàn)代材料表面工程技術(shù)國家工程實驗室b.廣東省現(xiàn)代表面工程技術(shù)重點實驗室,廣州 510650;3.中國航發(fā)南方工業(yè)有限公司,湖南 株洲 412002)
針對Ti6Al4V耐磨性能較差的問題,利用高壓冷噴涂技術(shù)在Ti6Al4V基體表面以不同的工藝參數(shù)制備了IN718涂層,為在Ti6Al4V基體表面制備高性能IN718涂層提供基礎(chǔ)理論依據(jù)。采用光學(xué)顯微鏡和掃描電子顯微鏡對涂層組織、斷口形貌進(jìn)行觀察分析,以便更好地了解不同的工藝參數(shù)和工作氣體類型(He/N2)對IN718涂層組織形貌、力學(xué)性能和摩擦磨損性能的影響。以N2為推進(jìn)氣體制備的IN718涂層,其結(jié)合強度為115 MPa,硬度為557HV0.3,孔隙率約為0.24%,涂層磨損率為5.34×10–4mm3/(N·m);以He為推進(jìn)氣體制備的IN718涂層,其結(jié)合強度可高達(dá)256 MPa,是以N2為推進(jìn)氣體制備涂層的2倍多,硬度為602HV0.3,明顯高于以N2為推進(jìn)氣體制備的涂層,涂層孔隙率和缺陷明顯減少,孔隙率測試結(jié)果約為0.1%,涂層更加耐磨,磨損率為3.51×10–4mm3/(N·m)。相較于以N2為推進(jìn)氣體制備的IN718涂層,以He為工作氣體制備的IN718涂層的組織更致密、涂層孔隙率更小,硬度和結(jié)合強度更高,耐磨性能更好,所以采用He可以制備出性能更加優(yōu)異的IN718涂層。
冷噴涂;工作氣體;IN718涂層;組織結(jié)構(gòu);力學(xué)性能
IN718合金(Ni53?Cr18.7?Fe18.3)是一種鈮改性沉淀硬化鎳鐵合金,它在高溫服役環(huán)境下具有較高的強度,較好的耐磨性和抗蠕變性[1]。冷噴涂(Cold Spray, CS)作為一種新興的增材制造技術(shù),自20世紀(jì)80年代發(fā)現(xiàn)以來,獲得了快速發(fā)展,其高速固態(tài)沉積制備的沉積體具有組織致密、力學(xué)性能優(yōu)異等特點,已應(yīng)用于航空、汽車、船舶和化工等領(lǐng)域[2-6],利用冷噴涂技術(shù)制備的IN718涂層也受到了研究人員的廣泛關(guān)注[7-10]。Bagherifard等[11-12]研究了選擇性激光熔化(SLM)和冷噴涂技術(shù)制備的IN718塊材的特點,他們的研究結(jié)果表明,冷噴涂IN718材料的力學(xué)性能優(yōu)異,與塊狀材料相當(dāng);相對于SLM制備的IN718塊材,采用冷噴涂技術(shù)制備的IN718塊材不但抗拉強度和疲勞強度更加優(yōu)異,而且具有更高的加工效率。Singh等[13]研究了冷噴涂IN718涂層厚度對結(jié)合強度和殘余應(yīng)力的影響,研究表明,隨著IN718涂層厚度的增加,涂層內(nèi)部的殘余應(yīng)力和界面結(jié)合強度都有減小的趨勢。Levasseur等[14]和Wong等[15]研究指出,燒結(jié)和熱處理可顯著提高冷噴涂 IN718 涂層的力學(xué)性能。Ma等[16]以N2和He為工作氣體,在IN718基體上制備出結(jié)合強度高達(dá)400 MPa的IN718涂層。Sun等[17]對N2制備的IN718涂層進(jìn)行了高溫摩擦磨損實驗,研究發(fā)現(xiàn),溫度對涂層的耐磨性能有較大的影響,涂層耐磨性能隨著環(huán)境溫度的升高而提高,在600 ℃下,涂層的耐磨性能相對最好。
Ti6Al4V具有密度低、比強度高和耐蝕性優(yōu)異等特點,被廣泛應(yīng)用于航空航天、能源化工和海洋等領(lǐng)域[18]。由于Ti6Al4V的硬度較低、耐磨性較差,因此限制了其在相關(guān)領(lǐng)域的廣泛應(yīng)用。利用冷噴涂技術(shù)在Ti6Al4V表面制備一層致密IN718涂層,有望將IN718與Ti6Al4V材料的優(yōu)勢復(fù)合,大幅度提升Ti6Al4V零部件的耐磨性能,延長其使用壽命,擴(kuò)大Ti6Al4V材料的應(yīng)用范圍。當(dāng)前,針對冷噴涂IN718涂層的研究主要集中在IN718涂層的組織結(jié)構(gòu)和力學(xué)性能等方面。由于在Ti6Al4V表面冷噴涂制備IN718涂層十分困難,所以相關(guān)的研究極其缺乏,國內(nèi)尚未見報道。文中在Ti6Al4V基體表面,利用冷噴涂技術(shù),以不同工藝條件制備IN718涂層,探究載氣種類對Ti6Al4V表面IN718涂層的組織、力學(xué)性能和摩擦磨損性能的影響,擬為Ti6Al4V表面冷噴涂制備高性能IN718涂層技術(shù)的發(fā)展提供基礎(chǔ)理論依據(jù)。
選用Ti6Al4V基板為基體材料,其尺寸為100 mm× 100 mm×3 mm。以工業(yè)IN718粉末為噴涂粉末,該粉末呈球化形態(tài),形貌如圖1所示。IN718粉末的粒徑為10~45 μm,平均粒徑為23 μm,如圖2所示。
圖1 噴涂用IN718粉末的SEM圖像
圖2 IN718粉末粒徑分布
在噴涂前,為了提高IN718涂層和Ti6Al4V基體的結(jié)合強度,對Ti6Al4V基體表面進(jìn)行了噴砂處理,并將噴涂IN718粉末的原材料置于真空干燥箱中,在100 ℃條件下烘干1 h,以減少水分對粉末的影響,同時增加粉末的流動性。采用高壓冷噴涂系統(tǒng)PCS(日本Plasma Giken公司)制備IN718涂層[19]。文中分別采用氮氣和氦氣為工作氣體。由于He的成本較高,所以He的壓力選擇3 MPa,低于N2的壓力參數(shù),具體的噴涂參數(shù)如表1所示。分別將以N2和He為工作氣體制備的涂層命名為IN718–N2涂層和IN718–He涂層[20-21]。
表1 冷噴涂工藝參數(shù)
Tab.1 Cold spray process parameters
采用光學(xué)顯微鏡(OM,VHX–900,Key–ence,日本)對涂層的截面組織進(jìn)行觀察,并采用場發(fā)射掃描電子顯微鏡(SEM,GeminiSEM300,ZEISS,德國)對涂層的斷口和磨損形貌進(jìn)行觀察。采用Image J圖像分析方法測量涂層的孔隙率,采用OM金相圖測量孔隙占比,將其平均值作為涂層的孔隙率[22]。
采用FM–700試驗機(Future–Tech)測試涂層的顯微硬度,試驗力為2.94 N,停留時間為15 s,至少測量5個點,將其平均值作為涂層的硬度。在結(jié)合強度的測試中,鑒于采用傳統(tǒng)環(huán)氧樹脂膠黏劑將試樣與未涂覆的棒材黏接的測試方法無法滿足測試需求,這里采用特定夾具在拉伸試驗機CMT4204(上海捷滬儀器儀表有限公司)上測試IN718涂層在Ti6Al4V基體上的結(jié)合強度,如圖3所示。采用特定夾具直接將試樣拉斷,測試步驟分為3步,涂層的結(jié)合強度的計算見式(1)。
式中:為測試涂層斷裂失效的最大受力;為斷面直徑。
采用MS–T3000摩擦磨損儀(蘭州中科凱特科工貿(mào)有限公司)進(jìn)行摩擦磨損實驗,實驗示意圖如圖4所示。對磨球采用GCr15球,試驗載荷為10 N,滑動速度為300 r/min,滑動半徑為7.5 mm,滑動時間為30 min。在摩擦磨損后,使用DEKTAK XT三維表面輪廓儀(布魯克科技有限公司)測量涂層的磨損輪廓和磨損體積,計算涂層的磨損率。磨損率()的計算見式(2)。
圖3 拉伸試樣和拉伸實驗示意圖
圖4 摩擦實驗示意圖
式中:Δ為磨損體積,通過三維摩擦磨損儀測量磨痕的平均磨損體積所得;為摩擦總路程;為所加載荷。
圖5a、b分別顯示了以N2和He為推進(jìn)氣體噴涂的單個IN718顆粒的沉積形貌??梢悦黠@看出,在N2條件下噴涂的單個IN718顆粒的沉積嵌入深度較淺;在He條件下噴涂的IN718顆粒的嵌入深度較深,塑性變形更加明顯。這主要是由于在He條件下粉末顆粒獲得了更大的沉積速度,使得粉末顆粒撞擊基體和顆粒沉積時具有更大的動能,導(dǎo)致粉末顆粒出現(xiàn)更大的變形,因而嵌入更深。在較高的碰撞速度下,沉積顆粒的機械咬合增強,并且在變形顆粒周圍有更多且明顯的金屬射流,這可能形成了更多的冶金結(jié)合區(qū)域,從而促進(jìn)了涂層與基體之間及涂層內(nèi)部之間的黏附結(jié)合。去除了以N2和He為推進(jìn)氣體噴涂的單個IN718粉末顆粒后留下的凹坑如圖5c、d所示,可以明顯看出,以He為推進(jìn)氣體沉積得到的凹坑比以N2為推進(jìn)氣體沉積得到的凹坑更深、韌窩更多。表明在He條件下沉積的顆粒與基體之間形成了更多的冶金結(jié)合,導(dǎo)致涂層的孔隙率更低、缺陷更少、結(jié)合強度更高。
圖5 在不同載氣條件下沉積的單個IN718顆粒
IN718的塑性變形能力較差,采用冷噴涂技術(shù)制備致密的高性能IN718涂層極其困難[23]。這里采用冷噴涂技術(shù)以N2和He為載氣,在Ti6Al4V表面制備IN718涂層[24]。如圖6a所示,在N2(5 MPa,900 ℃)條件下制備的IN718–N2涂層,涂層與基體結(jié)合良好,涂層致密,內(nèi)部無明顯的空洞和缺陷,但存在少量微小孔隙。Image J孔隙率測試結(jié)果顯示,IN718–N2涂層的孔隙率約為0.24%。如圖6b所示,在He(3 MPa,900 ℃)條件下制備的IN718–He涂層相較于IN718–N2涂層更加致密,孔隙尺寸和數(shù)量均得到優(yōu)化,其孔隙率小于0.1%。由于He的相對分子質(zhì)量為2,明顯小于N2的相對分子質(zhì)量(14),導(dǎo)致粉末顆粒在He(3 MPa)條件下的沉積速度比在N2(5 MPa)條件下的更高,更高的碰撞速度可以促進(jìn)IN718材料的塑性變形,有利于IN718顆粒的塑性流變,使得制備的涂層更加致密[14]。
圖6 使用不同載氣制備的冷噴涂IN718涂層的微觀組織
顯微硬度是涂層微觀結(jié)構(gòu)硬度的宏觀表現(xiàn),在不同條件下制備的IN718涂層的硬度測試結(jié)果如圖7所示。利用冷噴涂技術(shù)分別以N2和He為工作氣體,在Ti6Al4V基體表面制備的IN718–He涂層和IN718–N2涂層的平均顯微硬度分別為(602±23)HV0.3和(557±37)HV0.3。可以看出,在He條件下制備的IN718涂層的硬度明顯高于在N2條件下制備的IN718涂層的硬度。這主要與2種載氣條件下制備涂層的致密度和孔隙率差異有關(guān)(見圖6)。同時,通過對Ti6Al4V基體和IN718合金塊體進(jìn)行硬度測試發(fā)現(xiàn),以N2和He為工作氣體制備的IN718涂層其硬度遠(yuǎn)高于Ti6Al4V基體[(358±12)HV0.3]和IN718合金塊體[(229±1)HV0.3],這主要與涂層在制備過程中IN718粉末顆粒高速撞擊基體,表面發(fā)生強烈的塑性變形所產(chǎn)生的加工硬化作用有關(guān)[25]。
圖7 不同載氣制備IN718涂層硬度
結(jié)合強度作為涂層的關(guān)鍵性能指標(biāo),決定了冷噴涂涂層的應(yīng)用范圍和服役性能。在不同載氣條件下制備的IN718涂層的結(jié)合強度如圖8所示[26-27]。這里以N2和He為工作氣體,利用冷噴涂技術(shù)在Ti6Al4V基體表面成功地制備了結(jié)合強度高于100 MPa的IN718涂層,以N2為工作氣體制備的IN718–N2涂層的平均結(jié)合強度為(115±22)MPa;以He為工作氣體制備的IN718–He涂層的平均結(jié)合強度高達(dá)(256±11)MPa,與N2條件下制備的IN718涂層的結(jié)合強度相比,有了大幅提升。
為了更好地了解斷裂機制,采用SEM對拉伸試樣斷口形貌進(jìn)行觀察。IN718–N2涂層的拉伸斷面形貌如圖9a所示,斷面的韌窩結(jié)構(gòu)分布較少,冶金結(jié)合區(qū)域小而分散,斷口沿變形顆粒呈現(xiàn)出典型的解理斷裂,并且存在明顯的孔洞和裂紋缺陷,在拉伸測試時涂層內(nèi)部的孔洞和缺陷加速了涂層的斷裂失效。如圖9b所示,IN718–He涂層的拉伸斷面存在大量的韌窩結(jié)構(gòu),韌窩分布廣且明顯,表明涂層內(nèi)部顆粒之間以冶金結(jié)合為主,與IN718–N2涂層相比,涂層內(nèi)部無缺陷和空洞。這也與圖8所示IN718–He涂層的結(jié)合強度遠(yuǎn)遠(yuǎn)高于IN718–N2涂層的結(jié)合強度的測試結(jié)果相符[28]。
圖8 采用不同載氣制備的IN718涂層的結(jié)合強度
圖9 冷噴涂IN718涂層拉伸斷口形貌SEM圖像
冷噴涂IN718涂層的摩擦因數(shù)隨時間的演變曲線如圖10所示。IN718–He涂層和IN718–N2涂層的穩(wěn)定摩擦因數(shù)分別為0.475和0.469,兩者隨時間的變化趨勢類似,IN718–He涂層的摩擦因數(shù)略微高于IN718–N2涂層的。對比磨痕結(jié)果可知,試樣摩擦因數(shù)的變化規(guī)律與磨損特征演變規(guī)律對應(yīng),在磨損過程中生成的大量磨屑不易被排出,磨損表面出現(xiàn)了犁溝和剝落等復(fù)雜的損傷形式,導(dǎo)致摩擦因數(shù)不穩(wěn)定波動[29-30]。
圖10 不同載氣制備的冷噴涂IN718涂層的摩擦因數(shù)曲線
在IN718涂層磨損實驗后測得的三維輪廓局部形貌如圖11所示。如圖11a所示,IN718–N2涂層磨痕的平均深度為67 μm,磨痕深度分布較均勻。如圖11b所示,IN718–He涂層磨痕的平均深度為43 μm??梢姡訦e為工作氣體制備的IN718–He涂層的磨痕明顯比以N2為工作氣體制備的IN718–N2涂層的磨痕淺,這主要因以He為工作氣體制備的IN718涂層更加致密且硬度更高。
IN718涂層的磨損特征如圖12所示,經(jīng)觀察可知,IN718–N2涂層的磨痕寬度為1.08 mm,深度為68.5 μm,計算得到其磨損率為5.34×10–5mm3/(N·m);IN718–He涂層的磨痕寬度為1.14 mm,磨痕深度為49.7 μm,計算得到磨損率為3.51×10–5mm3/(N·m)。由此可見,采用He制備的IN718–He涂層比采用N2制備的IN718–N2涂層的磨痕更淺、磨損率更低、耐磨性更好。
IN718–N2涂層的磨痕形貌如圖13a、b所示,磨痕表面殘留有少量殘屑和一些小島狀的凸起,但部分地方也存在光滑層,殘屑和小島狀的凸起都使得摩擦過程中的摩擦因數(shù)增大,并且不穩(wěn)定波動(見圖10)。IN718–He涂層的磨痕形貌如圖13c、d所示,磨痕表面存在明顯的劃痕和凹槽,以及一些磨損后的殘屑、小島狀的凸起和光滑層,相較于IN718–N2涂層,IN718–He涂層磨痕的表面殘屑和光滑層更少,但是小島狀的凸起更多、凹槽更深。這可能是由于IN718–He涂層的結(jié)合強度和硬度更高,在摩擦過程中涂層不易脫落,導(dǎo)致在磨損過程中比IN718–N2涂層的摩擦因數(shù)更大[21]。
圖11 磨痕三維輪廓形貌
圖12 冷噴涂IN718涂層的磨損特征
圖13 IN718涂層磨痕SEM形貌
1)利用冷噴涂技術(shù)在Ti6Al4V表面制備了IN718涂層,其硬度明顯高于Ti6Al4V基體和IN718塊材。以He為載氣制備的IN718涂層相較于以N2為載氣制備的IN718涂層,其組織更加致密、硬度更高。
2)利用冷噴涂技術(shù)以He為工作氣體在Ti6Al4V表面制備IN718涂層的結(jié)合強度約為(256±11)MPa,以N2為載氣制備IN718涂層的結(jié)合強度約為(115±22)MPa。涂層的拉伸斷面形貌表明,IN718–He涂層的斷口具有較多的韌窩組織,呈現(xiàn)出明顯的冶金結(jié)合特征。
3)以He為工作氣體制備的IN718–He涂層的磨損率為3.51×10–4mm3/(N·m),以N2為工作氣體制備的IN718–N2涂層的磨損率為5.34×10–4mm3/(N·m),可見IN718–He涂層的磨損性能明顯優(yōu)于IN718–N2涂層的磨損性能。
[1] HOSSEINI E, POPOVICH V A. A Review of Mechanical Properties of Additively Manufactured Inconel 718[J]. Additive Manufacturing, 2019, 30: 100877.
[2] 李文亞, 李長久. 冷噴涂特性[J]. 中國表面工程, 2002(1): 12-16.
LI Wen-ya, LI Chang-jiu. Characteristics of Cold Spray Process[J]. China Surface Engineering, 2002(1): 12-16.
[3] 李文亞, 李長久, 馬文花, 等. 參數(shù)對冷噴涂沉積特性的影響[C]// 全國熱噴涂技術(shù)研討會, 2002: 130-139.
LI Wen-ya, LI Chang-jiu, MA Wen-hua, et al. Effect of Parameters on Deposition Characteristics of Cold Spray-ing[C]// National Symposium on Thermal Spraying Tech-n-ology, 2002: 130-139.
[4] YIN Shuo, CAVALIERE P, ALDWELL B, et al. Cold Spray Additive Manufacturing and Repair: Fundamentals and Applications[J]. Additive Manufacturing, 2018, 21: 628-650.
[5] RAOELISON R N, VERDY C, LIAO H. Cold Gas Dynamic Spray Additive Manufacturing Today: Deposit Possibilities, Technological Solutions and Viable Applic-ations[J]. Materials & Design, 2017, 133: 266-287.
[6] 黃春杰, 殷碩, 李文亞, 等. 冷噴涂技術(shù)及其系統(tǒng)的研究現(xiàn)狀與展望[J]. 表面技術(shù), 2021, 50(7): 1-23.
HUANG Chun-jie, YIN Shuo, LI Wen-ya, et al. Cold Spray Technology and Its System: Research Status and Prospect[J]. Surface Technology, 2021, 50(7): 1-23.
[7] SUN Wen, TAN A W Y, BHOWMIK A, et al. Deposition Characteristics of Cold Sprayed Inconel 718 Particles on Inconel 718 Substrates with Different Surface Condit-ons[J]. Materials Science and Engineering: A, 2018, 720: 75-84.
[8] SUN Wen, TAN A W Y, BHOWMIK A, et al. Evaluation of Cold Sprayed Graphene Nanoplates–Inconel 718 Composite Coatings[J]. Surface and Coatings Technology, 2019, 378: 25065.
[9] WONG W, IRISSOU E, VO P, et al. Cold Spray Forming of Inconel 718[J]. Therm Spray Technology, 2013(22): 413-421.
[10] 李文亞, 曹聰聰, 楊夏煒, 等. 冷噴涂復(fù)合加工制造技術(shù)及其應(yīng)用[J]. 材料工程, 2019, 47(11): 53-63.
LI Wen-ya, CAO Cong-cong, YANG Xia-wei, et al. Cold Spraying Hybrid Processing Technology and Its Applic-tion[J]. Journal of Materials Engineering, 2019, 47(11): 53-63.
[11] BAGHERIFARD S, MONTI S, ZUCCOLI M V, et al. Cold Spray Deposition for Additive Manufacturing of Freeform Structural Components Compared to Selective Laser Melting[J]. Materials Science and Engineering: A, 2018, 721: 339-350.
[12] BAGHERIFARD S, ROSCIOLI G, ZUCCOLI M V, et al. Cold Spray Deposition of Freestanding Inconel Samples and Comparative Analysis with Selective Laser Melt-ing[J]. Journal of Thermal Spray Technology, 2017, 26(7): 1517-1526.
[13] SINGH R, SCHRUEFER S, WILSON S, et al. Influence of Coating Thickness on Residual Stress and Adhesion- Strength of Cold-Sprayed Inconel 718 Coatings[J]. Surface and Coatings Technology, 2018, 350: 64-73.
[14] LEVASSEUR D, YUE S, BROCHU M. Pressureless Sintering of Cold Sprayed Inconel 718 Deposit[J]. Materials Science and Engineering: A, 2012, 556: 343-350.
[15] WONG W, IRISSOU E, et al. Microstructure of Einetic Spray Coatings: A Review[J]. Therm Spray Technology, 2013, 22(2/3): 413-421.
[16] MA Wen-hua, XIE Ying-chun, CHEN Chao-yue, et al. Microstructural and Mechanical Properties of High- Performance Inconel 718 Alloy by Cold Spraying[J]. Journal of Alloys and Compounds, 2019, 792: 456-467.
[17] SUN Wen, TAN A W Y, KING D J Y, et al. Tribological Behavior of Cold Sprayed Inconel 718 Coatings at Room and Elevated Temperatures[J]. Surface and Coatings Technology, 2020, 385: 125386.
[18] 張曉偉, 劉國政, 易俊超, 等. Ti6Al4V合金表面激光熔覆原位合成TiN/Ti–Al–Nb基復(fù)合涂層[J]. 表面技術(shù), 2020, 49(10): 61-68.
ZHANG Xiao-wei, LIU Guo-zheng, YI Jun-chao, et al. TiN/Ti-Al-Nb Composite Coatings Prepared by In-Situ Synthesis Assisted Laser Cladding Process on Ti6Al4V Titanium Alloy Surface[J]. Surface Technology, 2020, 49(10): 61-68.
[19] 李京龍, 李長久. 等離子噴涂熔滴的瞬時碰撞壓力研究[J]. 西安交通大學(xué)學(xué)報, 1999, 33(12): 30-34.
LI Jing-long, LI Chang-jiu. Droplet Transient Impact Pressure in Plasma Spraying[J]. Journal of Xi'an Jiaotong University, 1999, 33(12): 30-34.
[20] 李文亞, 張冬冬, 黃春杰, 等. 冷噴涂技術(shù)在增材制造和修復(fù)再制造領(lǐng)域的應(yīng)用研究現(xiàn)狀[J]. 焊接, 2016(4): 2-8.
LI Wen-ya, ZHANG Dong-dong, HUANG Chun-jie, et al. State of the Art of Cold Spraying Additive Manufacturing and Remanufacturing[J]. Welding & Joining, 2016(4): 2-8.
[21] 李文亞, 樊檸松, 殷碩. 冷噴涂過程中氣固兩相流動行為及噴涂工藝優(yōu)化研究新進(jìn)展[J]. 中國表面工程, 2020, 33(4): 82-101.
LI Wen-ya, FAN Ning-song, YIN Shuo. State-of-the-Art of Gas-Solid Two-Phase Flow Behavior during Cold Spray and Process Parameters Optimization[J]. China Surface Engineering, 2020, 33(4): 82-101.
[22] 李長久. 中國冷噴涂研究進(jìn)展[J]. 中國表面工程, 2009, 22(4): 5-14.
LI Chang-jiu. The State-of-Art of Research and Develo-pment on Cold Spraying in China[J]. China Surface Engineering, 2009, 22(4): 5-14.
[23] 李長久. 一種孔隙率及孔隙形貌可控的熱障涂層及其制備方法: 中國, 201610825239.1[P]. 2018-04-01.
LI Chang-jiu. A Thermal Barrier Coating with Control-lable Porosity and Pore Morphology and Its Preparation Method: China, 201610825239.1[P]. 2018-04-01.
[24] SUN Wen, BHOWMIK A, TAN A W Y, et al. Strategy of Incorporating Ni-Based Braze Alloy in Cold Sprayed Inconel 718 Coating[J]. Surface and Coatings Techno-logy, 2019, 358: 1006-1012.
[25] KIM D H, KIM J H, SA J W, et al. Stress Rupture Characteristics of Inconel 718 Alloy for Ramjet Combus-tor[J]. Materials Science and Engineering: A, 2008, 483/ 484: 262-265.
[26] ZHANG Shi-hong, ZHANG Hai-yan, CHENG Ming. Tensile Deformation and Fracture Characteristics of Delta- Processed Inconel 718 Alloy at Elevated Temperature[J]. Materials Science and Engineering: A, 2011, 528(19/20): 6253-6258.
[27] RAFIEI M, MIRZADEH H, MALEKAN M. Micro- Mechanisms and Precipitation Kinetics of Delta () Phase in Inconel 718 Superalloy during Aging[J]. Journal of Alloys and Compounds, 2019, 795: 207-212.
[28] 紀(jì)崗昌, 王豫躍, 李長久, 等. HVOF噴涂Cr_3C_2–NiCr涂層的磨粒磨損性能[J]. 焊接學(xué)報, 2000(3): 89-92.
JI Gang-chang, WANG Yu-yue, LI Chang-jiu, et al. Abrasive Wear Properties of HVOF Sprayed Cr_3C_2-NICR Coating[J]. Transactions of the China Welding Institution, 2000(3): 89-92.
[29] MOU Wen-ping, ZHU Shao-wei. Vibration, Tool Wear and Surface Roughness Characteristics in Turning of Inconel 718 Alloy with Ceramic Insert under LN2Machining[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(7): 369.
[30] HUANG Ren-zhong, SONE M, MA Wen-hua, et al. The Effects of Heat Treatment on the Mechanical Properties of Cold-Sprayed Coatings[J]. Surface and Coatings Technology, 2015, 261: 278-288.
Microstructure and Properties of Cold Sprayed IN718 Coating
1,2,3,2,2,2,1,2
(1. School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610063, China; 2. a. National Engineering Laboratory for Modern Materials Surface Engineering Technology b. The Key Lab of Guangdong for Modern Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China; 3. Air China South Industry Co., Ltd., Hunan Zhuzhou 412002, China)
Cold spray technology is an emerging additive manufacturing technology. Its low temperature and high speed characteristics enable powder particles to be deposited on the surface of the substrate in a solid form, effectively avoiding the oxidation of the coating and the thermal stress damage to the substrate. The sediment has a compact structure and excellent mechanical properties. The work aims to prepare IN718 coating by high pressure cold spray technology on the surface of Ti6Al4V substrate with different process parameters to solve the problem of poor wear resistance of Ti6Al4V, thus providing a basic theoretical basis for the preparation of high-performance IN718 coating on the surface of Ti6Al4V substrate.
100 mm×100 mm×3 mm Ti6Al4V substrate was taken as the base material and polished with sandpaper, and cleaned. Industrial IN718 powder was taken as raw material, with main components of Ni, Cr, Nb and Mo. In the cold spray process, N2(5 MPa, 950 ℃) and He (3 MPa, 950 ℃) were used as carrier gases, the distance between the gun nozzle and the substrate was 30 mm, and the delivery rate was 100 g/min. Optical microscope (VHX-900) and field emission scanning electron microscope (GeminiSEM300) were used to observe the fracture morphology, wear morphology and cross-sectional structure of the coating. The microhardness tester (FM-700) was used to test the microhardness of the coating and the substrate, the friction and wear tester (MS-T3000) was applied to test the friction and wear, and the three-dimensional surface profiler (DEKTAK XT) was adopted to measure the wear profile and volume of the coating. Then, the friction and wear rate was calculated.
The effects of different process parameters and working gas types (He/N2) on the microstructure, mechanical properties and friction and wear properties of IN718 coating were studied. The IN718 coating prepared with N2as the propellant gas had a bonding strength of 115 MPa, a hardness of 557HV0.3, a porosity of about 0.24%, and a coating wear rate of 5.34×10–4mm3/(N·m). The bonding strength of the IN718 coating prepared with He as the propellant gas was as high as 256 MPa, which was more than twice that of the coating prepared with N2as the propelling gas, and the hardness was 602HV0.3, which was significantly higher than that of the coating prepared with N2as the propellant gas. The porosity and defects of the coating were significantly reduced, the porosity test result was about 0.1%, the coating was also more wear-resistant, and the wear rate was 3.51×10–4mm3/(N·m). Compared with the IN718 coating prepared with N2as the propellant gas, the IN718 coating prepared with He as the working gas has denser structure, lower coating porosity, higher hardness and bonding strength and better wear resistance. Therefore, He can be used to prepare IN718 coating with better performance.
Under the optimal parameters, cold spray technology can be used to prepare dense coatings with high interfacial bonding. Using He as the carrier gas to increase the deposition rate of powder particles is the main reason for improving the wear resistance of the coating. High hardness, low porosity and defects effectively reduce the occurrence of friction shedding.
cold spray; working gas; IN718 coating; microstructure; mechanical properties
TG174.442
A
1001-3660(2022)10-0361-09
10.16490/j.cnki.issn.1001-3660.2022.10.039
2021?09?03;
2021?12?23
2021-09-03;
2021-12-23
廣東省特支計劃(2019BT02C629);廣州市重點領(lǐng)域研發(fā)計劃(202007020008);國家自然科學(xué)基金(52001078)
Guangdong Province Special Expenditure Plan (2019BT02C629); Guangzhou Science and Technology Program (202007020008); Natural Science Foundation of China (52001078)
王皓杰(1996—),男,碩士,主要研究方向冷噴涂技術(shù)。
WANG Hao-jie (1996-), Male, Master, Research focus: cold spraying technology.
黃仁忠(1977—),男,博士,教授級高級工程師,主要研究方向為冷噴涂技術(shù)。
HUANG Ren-zhong (1977-), Male, Doctor, Professor-level senior engineer , Research focus: cold spraying technology.
余敏(1984—),女,博士,副教授,主要研究方向為冷噴涂及激光熔覆。
YU Min (1984-), Female, Doctor, Associate professor, Research focus: cold spray and laser cladding technology.
王皓杰, 武三栓, 張科杰, 等.冷噴涂IN718涂層組織及性能研究[J]. 表面技術(shù), 2022, 51(10): 361-369.
WANG Hao-jie, WU San-shuan, ZHANG Ke-jie, et al. Microstructure and Properties of Cold Sprayed IN718 Coating[J]. Surface Technology, 2022, 51(10): 361-369.
責(zé)任編輯:彭颋