索 超,劉曉霖,林 佳
基于不同類型全無(wú)機(jī)鈣鈦礦材料的太陽(yáng)能電池研究*
索 超,劉曉霖?,林 佳
(上海電力大學(xué) 數(shù)理學(xué)院,上海 201306)
隨著新型光伏電池的發(fā)展,鹵族鈣鈦礦太陽(yáng)能電池備受關(guān)注,其中全無(wú)機(jī)鈣鈦礦材料因其良好的熱穩(wěn)定性、高吸光系數(shù)、帶隙可調(diào)、制備工藝簡(jiǎn)單等優(yōu)點(diǎn),在光電和光伏器件領(lǐng)域具有良好的應(yīng)用前景,基于全無(wú)機(jī)鈣鈦礦太陽(yáng)能電池的最高效率達(dá)到了20.4%。本文總結(jié)了基于ABX3、A2BX6、A2B1+B3+X6以及類鈣鈦礦材料等全無(wú)機(jī)鈣鈦礦太陽(yáng)能電池的光電轉(zhuǎn)換效率及穩(wěn)定性的對(duì)比,并著重分析造成效率和穩(wěn)定性差異的影響因素及優(yōu)化改良方法,最后對(duì)全無(wú)機(jī)鈣鈦礦太陽(yáng)能電池材料面臨的挑戰(zhàn)進(jìn)行了展望。
全無(wú)機(jī)鈣鈦礦材料;鈣鈦礦太陽(yáng)能電池;相穩(wěn)定性;雙鈣鈦礦;類鈣鈦礦
鹵族鈣鈦礦太陽(yáng)能電池因其高吸光系數(shù)、高光電轉(zhuǎn)換效率、制備工藝簡(jiǎn)單等優(yōu)勢(shì),在太陽(yáng)能電池領(lǐng)域脫穎而出,光電轉(zhuǎn)換效率由最初的3.8%在短短十幾年中提高到現(xiàn)在的25.5%[1],和目前占光伏產(chǎn)業(yè)化市場(chǎng)約90%主導(dǎo)地位的晶硅太陽(yáng)能電池效率(單晶硅效率27.6%[1])相當(dāng),成為最具應(yīng)用潛力的高效新型太陽(yáng)能電池之一[2-3]。其中有機(jī)?無(wú)機(jī)混合鈣鈦礦材料ABX3中A位通常是甲胺離子CH3NH3+(MA+)、甲脒離子NH2-CH=NH2+(FA+)等有機(jī)官能團(tuán),其結(jié)構(gòu)不穩(wěn)定,對(duì)環(huán)境較為敏感,造成了器件的制備及封裝工藝條件更加苛刻[4-5]。為解決這一問(wèn)題,科研工作者利用全無(wú)機(jī)A位元素(例如Cs元素)替代有機(jī)陽(yáng)離子,既保證了載流子傳輸性與有機(jī)?無(wú)機(jī)雜化鈣鈦礦相似[6],在濕熱或光照條件下又不會(huì)產(chǎn)生揮發(fā)性分解產(chǎn)物[7],目前的最高效率已經(jīng)超過(guò)了20%[8],因此全無(wú)機(jī)鈣鈦礦材料逐漸成為目前的研究熱點(diǎn)之一。
全無(wú)機(jī)鈣鈦礦材料不僅具有較高的量子產(chǎn)率、高激子結(jié)合能、高耐缺陷性、發(fā)射波長(zhǎng)可調(diào)節(jié)、在帶隙附近有較大光吸收系數(shù)等優(yōu)點(diǎn),更重要的是具備優(yōu)異的熱穩(wěn)定性和與生物的兼容性,使得相關(guān)光電器件具備可穩(wěn)定長(zhǎng)期使用的基礎(chǔ)[9-10]。但相較于有機(jī)?無(wú)機(jī)鈣鈦礦太陽(yáng)能電池,全無(wú)機(jī)鈣鈦礦太陽(yáng)能電池在效率上有著明顯差距。本綜述從全無(wú)機(jī)鈣鈦礦太陽(yáng)能電池結(jié)構(gòu)入手,總結(jié)基于不同結(jié)構(gòu)全無(wú)機(jī)鈣鈦礦材料的太陽(yáng)能電池的光電轉(zhuǎn)換效率,并分析了影響材料穩(wěn)定性的因素,進(jìn)而尋求可能的優(yōu)化及改良方案。
目前鈣鈦礦太陽(yáng)能電池的結(jié)構(gòu)是以染料敏化太陽(yáng)能電池的結(jié)構(gòu)衍生而來(lái),主要分為介孔結(jié)構(gòu)和平面結(jié)構(gòu)兩大類,主要區(qū)別是電子傳輸層除了致密層外,是否包括介孔層作為骨架支撐結(jié)構(gòu),如圖1a所示。介孔結(jié)構(gòu)由于介孔層如二氧化鈦的存在,可以更有效地收集鈣鈦礦層所產(chǎn)生的光生電子,但平面結(jié)構(gòu)的制備方法簡(jiǎn)單,可以低溫制備,適用性強(qiáng),經(jīng)濟(jì)成本更低,因而應(yīng)用更為廣泛。目前常見(jiàn)的平面結(jié)構(gòu)包括正置n-i-p結(jié)構(gòu)[11]和反置p-i-n結(jié)構(gòu)[12](如圖1b和圖1c)。
各層材料的選擇對(duì)全無(wú)機(jī)鈣鈦礦太陽(yáng)能電池的性能至關(guān)重要,除能級(jí)匹配外,對(duì)于n-i-p型結(jié)構(gòu),電子傳輸層應(yīng)具有高光透過(guò)率,空穴傳輸層應(yīng)具有高穩(wěn)定性等優(yōu)點(diǎn)。圖1d列舉了目前全無(wú)機(jī)鈣鈦礦太陽(yáng)能電池各層較常用材料的能級(jí)結(jié)構(gòu)示意圖,圖中給出了各種材料的最高電子占據(jù)軌道(highest occupied molecular orbital, HOMO)能級(jí)和最低電子未占據(jù)軌道(lowest unoccupied molecular orbital, LUMO)能級(jí)。根據(jù)能級(jí)匹配原則,界面處的自由電子會(huì)流向更低LUMO能級(jí)的材料,而自由空穴會(huì)流向更高HOMO能級(jí)的材料。因此通過(guò)對(duì)各層材料進(jìn)行合適的選擇,可以有效改善開(kāi)路電壓等參數(shù)性能,獲得更高的光電轉(zhuǎn)換效率。
除此之外,考慮到鈣鈦礦材料具有獨(dú)特的雙極性性質(zhì),既可實(shí)現(xiàn)光電轉(zhuǎn)換,又可作為空穴電子的導(dǎo)體。因此在該基礎(chǔ)上可以進(jìn)一步簡(jiǎn)化制備工藝,降低成本,發(fā)展出無(wú)空穴傳輸層或無(wú)電子傳輸層的鈣鈦礦太陽(yáng)能電池。例如,LIANG等[13]基于介孔光伏電池結(jié)構(gòu),利用碳漿材料作為導(dǎo)電極,以CsPbBr3為吸光層制備FTO/c-TiO2/m-TiO2/CsPbBr3/碳電極無(wú)空穴傳輸層器件,最終光電轉(zhuǎn)換效率為6.7%。KE等[14]通過(guò)臭氧處理氧化氟化錫(fluorinated tin oxide, FTO)導(dǎo)電玻璃并且調(diào)控鈣鈦礦層組分,制備的無(wú)電子傳輸層器件也獲得13%的光電轉(zhuǎn)換效率。
不同結(jié)構(gòu)全無(wú)機(jī)鈣鈦礦材料主要指的是晶體結(jié)構(gòu)為ABX3、A2BX6(2-1-6)、A2B1+B3+X6(2-1-1-6)、類鈣鈦礦如A3B2X9(3-2-9)的鈣鈦礦材料,具體晶體結(jié)構(gòu)如圖2所示。ABX3型材料(圖2a)是傳統(tǒng)的三維正八面體結(jié)構(gòu)(A位于八面體間隙中,B位于八面體體心,X位于八面體各個(gè)頂點(diǎn)位置),具備高對(duì)稱性,結(jié)構(gòu)的理化性質(zhì)優(yōu)異。而A2BX6和A2B1+B3+X6結(jié)構(gòu)都屬于雙鈣鈦礦結(jié)構(gòu),A2BX6(圖2b)通過(guò)在B位交替形成一個(gè)空位和一個(gè)+4陽(yáng)離子維持電中性條件,但空位的形成會(huì)降低原有的三維鈣鈦礦結(jié)構(gòu)的維度,影響材料的光電性能;為了彌補(bǔ)A2BX6這一缺陷,A2B1+B3+X6(圖2c)通過(guò)一個(gè)+1價(jià)陽(yáng)離子和+3價(jià)陽(yáng)離子交替排列維持電中性條件,在一定條件下也能維持三維結(jié)構(gòu),但是由于離子半徑和鍵長(zhǎng)差異導(dǎo)致材料結(jié)構(gòu)畸變,進(jìn)而造成光電性能的改變。除此之外,A3B2X9結(jié)構(gòu)是類鈣鈦礦結(jié)構(gòu)(圖2d和圖2e),通常是零維或者二維層狀結(jié)構(gòu),因此諸多性能與ABX3型也有較大差別。下面分別介紹不同類型材料及其太陽(yáng)能電池性能。
圖2 不同鈣鈦礦材料晶體結(jié)構(gòu)
CsBX3(B = Pb2+, Sn2+; X = I?, Br?, Cl?)是目前全無(wú)機(jī)鈣鈦礦材料研究最為廣泛的結(jié)構(gòu)。CsBX3具有傳統(tǒng)3D的正八面體結(jié)構(gòu)(如圖2a所示)使得晶相結(jié)構(gòu)更加穩(wěn)定,并且不含有機(jī)官能團(tuán),表現(xiàn)出對(duì)光照、高溫、水分、氧氣更好的耐受性等優(yōu)點(diǎn),并且可以通過(guò)調(diào)控I、Br和Cl的摻雜比例,在一定程度上實(shí)現(xiàn)對(duì)鈣鈦礦材料吸收光譜的連續(xù)調(diào)整[15]。目前常見(jiàn)的CsBX3有CsPbI3、CsPbI2Br、CsPbIBr2、CsPbBr3、CsSnX3等。CsPbCl3應(yīng)用較少,主要是由于CsPbCl3的缺陷形成能低,導(dǎo)致晶體結(jié)構(gòu)中易產(chǎn)生大量缺陷,增加非輻射躍遷概率,特別是在藍(lán)紫光區(qū)域的光致發(fā)光量子產(chǎn)率(photoluminescence quantum yield, PLQY)低于10%,極大地限制了CsPbCl3晶體材料在短波區(qū)域的應(yīng)用[16]。如圖3所示,基于不同ABX3型鈣鈦礦材料的太陽(yáng)能電池效率的總結(jié),可見(jiàn)CsPbI3是目前效率最高的,也是研究較為廣泛的一種材料。
利用Goldschmidt容忍因子(tolerance factor,)準(zhǔn)則,如公式(1),計(jì)算CsPbI3晶體結(jié)構(gòu),發(fā)現(xiàn)由于Cs+半徑較小,使得CsPbI3鈣鈦礦晶體的容忍因子為0.807,在室溫、大氣環(huán)境下晶體結(jié)構(gòu)具有熱力學(xué)不穩(wěn)定的性質(zhì),正八面體極易受環(huán)境影響發(fā)生傾斜,導(dǎo)致黑色鈣鈦礦相結(jié)構(gòu)易受環(huán)境影響轉(zhuǎn)變?yōu)楣怆娦阅茌^差的黃色非鈣鈦礦相結(jié)構(gòu);另外,碘空位缺陷易造成界面能級(jí)匹配度變差。以上兩點(diǎn)在一定程度上限制了太陽(yáng)能電池光電轉(zhuǎn)換效率的提高,因此對(duì)于該材料的研究,主要集中在利用降維合成、組分工程、添加劑改性處理等幾種方式有效阻止其由鈣鈦礦相轉(zhuǎn)變?yōu)榉氢}鈦礦相、提高相穩(wěn)定性,以及降低全無(wú)機(jī)鈣鈦礦薄膜缺陷等方面。
降維合成策略可有效提高全無(wú)機(jī)鈣鈦礦穩(wěn)定性。例如SWARNKAR等[17]在以CsPbI3為吸光材料的基礎(chǔ)上制備了-CsPbI3量子點(diǎn)電池,光電轉(zhuǎn)換效率達(dá)到10.77%,在空氣中放置數(shù)月仍具有良好的穩(wěn)定性,利用降維合成策略還可以制備納米線,納米柱等表面能高的低維納米結(jié)構(gòu),使得晶相結(jié)構(gòu)更加穩(wěn)定。
以元素?fù)诫s和替代為主的組分工程也可以有效改善CsPbI3穩(wěn)定性、鈍化表面缺陷和提高載流子運(yùn)輸能力[18]。例如引入小半徑的Br?提高結(jié)構(gòu)的容忍因子,可以使四方相鈣鈦礦結(jié)構(gòu)轉(zhuǎn)變?yōu)榱⒎较嘟Y(jié)構(gòu),提高晶體熱穩(wěn)定性,但Br?的引入會(huì)使碘基鈣鈦礦材料的帶隙拓寬,溴的含量越多,帶隙也越寬。引入離子半徑更小的Cl?能影響鈣鈦礦薄膜形貌和晶格取向,使得鈣鈦礦的電學(xué)特性產(chǎn)生明顯的改變,而對(duì)于光學(xué)帶隙的影響很微小[19-20];并且由于Cl?和I?半徑的巨大差異,Cl?可被納入碘基鈣鈦礦晶格的最大含量受到極大限制[21-22]。孟慶波課題組通過(guò)兩步法制備表面致密均勻、高結(jié)晶性和大尺寸晶粒的CsPbI2Br鈣鈦礦薄膜,制成器件的光電轉(zhuǎn)換效率為13.27%,并表現(xiàn)出較好的環(huán)境穩(wěn)定性[23]。
添加劑可細(xì)化分為界面添加劑和晶體表面添加劑工程,即鈍化材料表面和界面的缺陷和陷阱態(tài),并且包覆保護(hù)材料免受外部環(huán)境(如水、氧等)的影響。例如趙一新課題組采用三甲基苯基氯化銨(trimethylphenylammonium chloride, PTACl)來(lái)鈍化CsPbI3鈣鈦礦的表面,經(jīng)高溫退火處理獲得高質(zhì)量薄膜,電池器件最終獲得目前最高的光電轉(zhuǎn)換效率,為19.03%[24]。WANG等利用碘化膽堿(choline iodide,CHI)改性劑處理鈣鈦礦表面,在很大程度上改善了鈣鈦礦層表面裂紋和針孔對(duì)薄膜性能的影響,增加了電荷載流子壽命,提高了CsPbI3光吸收層同其他功能層間的能級(jí)匹配程度,器件的最終光電轉(zhuǎn)換效率也達(dá)到了18.4%[25]。
針對(duì)碘空位對(duì)電池的影響,WANG等[26]通過(guò)在制備CsPbI3鈣鈦礦時(shí)使用HPbI3,有效降低了黑色相的結(jié)晶能壘。并且在CsPbI3鈣鈦礦表面用聚醚酯乙酰胺(polyetherester acetamide, PEAI)層修飾,發(fā)現(xiàn)PEAI在晶格表面形成了功能有機(jī)分子層而不是進(jìn)入鈣鈦礦晶格形成PEA2PbI4二維鈣鈦礦,可以有效鈍化表面的Cs+和I?空位以及其他缺陷,降低表面能,提高能級(jí)匹配度,進(jìn)而提高鈣鈦礦的效率及其相穩(wěn)定性。
另外,考慮到Pb的毒性,研究者們一直嘗試?yán)肧n替換Pb,可是從圖3可以看出基于Sn2+的效率始終很低。雖然Sn2+形成的ASnX3無(wú)機(jī)鈣鈦礦光電性能較好,但其穩(wěn)定性較差,Sn2+極易被氧化成 Sn4+,形成自摻雜形式的Sn空位,導(dǎo)致器件的性能較差。因此出現(xiàn)了利用Sn4+或者雙原子替代Pb的雙鈣鈦礦材料。
圖3 ABX3型無(wú)機(jī)鈣鈦礦材料在不同器件構(gòu)型的效率特性
A2BX6構(gòu)型的鈣鈦礦結(jié)構(gòu)也被稱為雙鈣鈦礦構(gòu)型或缺陷型鈣鈦礦,晶體結(jié)構(gòu)如圖2b所示。這種雙鈣鈦礦型材料通常被認(rèn)為通過(guò)移除一半的B位陽(yáng)離子得到。根據(jù)電中性原則,移除留下的為空位,剩余一半B位陽(yáng)離子應(yīng)處于+4價(jià)態(tài)。另一種情況是一半B位離子為+1價(jià)態(tài),則需在另一半B位摻雜+3價(jià)態(tài)元素確保電荷中性要求,由此產(chǎn)生了A2B1+B3+X6構(gòu)型(如圖2c)。不論A2BX6型,還是A2B1+B3+X6型,均是在無(wú)鉛環(huán)保理念條件下產(chǎn)出的。例如Cs2SnX6這類錫基缺陷型鈣鈦礦的最大優(yōu)勢(shì)在于,化合物的B位點(diǎn)是Sn4+而不是易氧化的Sn2+,這使其性質(zhì)上更加穩(wěn)定,器件對(duì)空氣和水分體現(xiàn)出更高的耐受性[45]。另外,對(duì)于新型無(wú)機(jī)雙鈣鈦礦材料,例如Cs2AgBiX6(X = Cl, Br),因其載流子復(fù)合壽命長(zhǎng)、毒性低、高穩(wěn)定性等優(yōu)點(diǎn),已被理論和實(shí)驗(yàn)證實(shí)是光伏應(yīng)用中的潛在候選材料[46-47]。
有科研工作者以A2BX6和A2B1+B3+X6(B = Sn; B1+= Na, Ag; B3+= Bi)構(gòu)型展開(kāi)了諸多新的研究探索,尋求其在光電轉(zhuǎn)換效率上的突破。表1列出部分基于雙鈣鈦礦結(jié)構(gòu)太陽(yáng)能電池器件的構(gòu)型及光電轉(zhuǎn)換效率。從表中可以看出,Cs2SnI6鈣鈦礦電池短路電流密度(short-circuit current density,SC)較其他材料有著突出優(yōu)勢(shì),這主要是由于Cs2SnI6的n型半導(dǎo)體性質(zhì)可以防止早期電荷重組,提供比液體電解質(zhì)更長(zhǎng)的電荷擴(kuò)散長(zhǎng)度。并且高填充因子(fill factor, FF)彌補(bǔ)了準(zhǔn)固態(tài)材料Cs2SnI6低開(kāi)路電壓(open-circuit voltage,OC)的影響,最終光電轉(zhuǎn)換效率(power conversion efficiency, PCE)為6.1%。而A2B1+B3+X6構(gòu)型材料SC普遍比較低,在很大程度上歸結(jié)于A2B1+B3+X6鈣鈦礦成膜質(zhì)量不佳,導(dǎo)致器件性能很難有所突破。由于A2BX6和A2B1+B3+X6這類雙鈣鈦礦結(jié)構(gòu)仍處于開(kāi)發(fā)的早期階段,薄膜質(zhì)量較差,急需進(jìn)一步改進(jìn)制備工藝,并且相轉(zhuǎn)變機(jī)理亦在探索中,因此基于雙鈣鈦礦型太陽(yáng)能電池的光電轉(zhuǎn)換效率普遍較低;另一個(gè)限制鹵化物雙鈣鈦礦太陽(yáng)能電池性能的主要因素是鈣鈦礦材料與其他功能層的能帶結(jié)構(gòu)不匹配、自身光學(xué)吸收波長(zhǎng)窗口較窄等問(wèn)題。
表1 A2BX6及A2B1+B3+X6型無(wú)機(jī)鈣鈦礦材料在不同器件構(gòu)型中的效率特性
因此,對(duì)于基于雙鈣鈦礦材料的太陽(yáng)能電池的設(shè)計(jì)重點(diǎn),主要集中在尋找有效的合成路線,完善制備工藝,利用帶隙工程、界面修飾等鈍化缺陷,以及尋找與雙鈣鈦礦材料能級(jí)匹配的電子傳輸層和空穴傳輸層新材料,改善能級(jí)匹配度,改進(jìn)太陽(yáng)能電池的結(jié)構(gòu)等,拓展與其他鈣鈦礦結(jié)構(gòu)形成多層串聯(lián)太陽(yáng)能電池等方面,均是雙鈣鈦礦太陽(yáng)能電池未來(lái)突破桎梏的契機(jī)。
類鈣鈦礦材料,或鈣鈦礦衍生物。可以理解為從頂層的鈣鈦礦中衍生出來(lái),其中A3B2X9構(gòu)型(如圖2d和圖2e)是最常見(jiàn)的類鈣鈦礦材料,其結(jié)構(gòu)為每三個(gè)ABX3去除一個(gè)B位陽(yáng)離子。在缺失一個(gè)B位陽(yáng)離子的情況下,要保證電中性原則,其他B位陽(yáng)離子必須處于+3氧化狀態(tài),因此B位陽(yáng)離子通常為Bi3+、Sb3+。由于Bi3+的核外電子排布與Pb2+一致(6s26p0),離子半徑差距小,電負(fù)性接近,因此基于Bi3+的鈣鈦礦材料的結(jié)構(gòu)很穩(wěn)定,而且在帶隙可調(diào)及溶液加工等方面,與鉛基鈣鈦礦相似,成為替代鉛基鈣鈦礦的重要候選材料[56]。
鑒于離子尺寸的因素,不同的X位鹵素元素會(huì)導(dǎo)致A3B2X9結(jié)構(gòu)的改變,呈現(xiàn)零維或者二維結(jié)構(gòu)。以Cs3Bi2X9(X = I, Br)為例,當(dāng)X = I時(shí),晶體結(jié)構(gòu)如圖2d所示,屬于六方晶系,空間群63/,其基本的組成單元是由兩個(gè)正八面體BiI6面面相接組成,由于其結(jié)構(gòu)單元[Bi2I9]3?彼此獨(dú)立,被稱為零維鈣鈦礦。零維鈣鈦礦相比于傳統(tǒng)鈣鈦礦降低了維數(shù),這使其具有更好的穩(wěn)定性來(lái)抵抗相變;當(dāng)X = Br時(shí),晶體結(jié)構(gòu)變?nèi)鐖D2e所示,屬于三方晶系,空間群31,正八面體B位原子共享三個(gè)頂點(diǎn)形成波紋層,也被稱為二維鈣鈦礦,其代表材料還有Cs3Sb2I9(31)、Rb3Sb2I9、Cs3Sb2Br9等。
BAI等[57]通過(guò)溶解?再結(jié)晶的方法制備了高質(zhì)量的零維Cs3Bi2I9納米薄片,并且進(jìn)一步利用碘化亞銅(cuprous iodide, CuI)、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴{2,2',7,7'-tetrakis [N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene, Spiro-OMeTAD}、聚三芳胺(polytriarylamine, PTAA)這三種不同的空穴輸運(yùn)材料(hole transport material, HTM)制備了基于Cs3Bi2I9的平面異質(zhì)結(jié)結(jié)構(gòu)太陽(yáng)能電池,光電轉(zhuǎn)換效率達(dá)到3.20%、1.77%、2.30%。這說(shuō)明了A3B2X9吸光材料在光伏領(lǐng)域運(yùn)用發(fā)展的可行性。除此之外,含Bi3+的其他無(wú)鉛材料也是廣泛研究的熱點(diǎn)之一。表2列舉了幾種典型的基于無(wú)鉛類鈣鈦礦材料的太陽(yáng)能電池的性能。
從表2中可以明顯看到,三價(jià)金屬基鈣鈦礦的太陽(yáng)能電池器件性能并不是很好。主要的原因是根據(jù)Shockley-Queisser極限,更寬的帶隙導(dǎo)致可實(shí)現(xiàn)效率大幅降低[67];其次,Bi基類鈣鈦礦形成孤立的BiI6八面體框架(零維),而不是傳統(tǒng)的三維角共享的PbI6八面體(三維)結(jié)構(gòu),導(dǎo)致較差的光電特性,如高激子結(jié)合能、低載流子遷移率、高陷阱態(tài)密度等,造成明顯的效率下降[68]。A3B2X9及其他典型無(wú)鉛型太陽(yáng)能電池顯著的缺點(diǎn)表現(xiàn)在開(kāi)路電壓OC上尤為突出。若想要獲得高的電池光電轉(zhuǎn)換效率,開(kāi)路電壓OC應(yīng)為0.9~1.1 V,而A3B2X9及其他類鈣鈦礦材料的電池開(kāi)路電壓比高效率的開(kāi)路電壓低了約0.2~0.4 V,這主要是由于A3B2X9類鈣鈦礦材料與用于ABX3構(gòu)型太陽(yáng)能電池中的傳統(tǒng)電荷傳輸層材料彼此之間的能級(jí)匹配度較低以及界面處的電子與空穴復(fù)合速率大等導(dǎo)致的。此外填充因子FF較低,也能在一定程度上反映出各層接觸電阻s較大,材料間匹配度較低的問(wèn)題。這些因素導(dǎo)致三價(jià)金屬基鈣鈦礦太陽(yáng)能電池效率與ABX3型、有機(jī)?無(wú)機(jī)鈣鈦礦太陽(yáng)能電池相比相差甚遠(yuǎn),很可能因效率問(wèn)題影響其后續(xù)的發(fā)展。
基于A3B2X9以及其他Bi基鈣鈦礦材料的無(wú)鉛鈣鈦礦太陽(yáng)能電池雖然光電轉(zhuǎn)換效率較低,但為后續(xù)無(wú)鉛型鈣鈦礦太陽(yáng)能電池的發(fā)展提供了寶貴的經(jīng)驗(yàn)。而上述這些問(wèn)題可以通過(guò)以下手段來(lái)提升基于類鈣鈦礦材料的太陽(yáng)能電池器件性能:(1)研究缺陷機(jī)理,利用材料工程進(jìn)行缺陷鈍化;(2)著重電池構(gòu)型設(shè)計(jì),尋求合適的能級(jí)匹配材料;(3)完善制備工藝、提高薄膜質(zhì)量等。
基于CsPbX3型的全無(wú)機(jī)鈣鈦礦太陽(yáng)能電池的光電轉(zhuǎn)換效率已經(jīng)超過(guò)了20%,說(shuō)明全無(wú)機(jī)鈣鈦礦太陽(yáng)能電池在效率上的發(fā)展前景廣闊。相較而言,基于雙鈣鈦礦材料以及類鈣鈦礦材料等無(wú)鉛型全無(wú)機(jī)鈣鈦礦材料的太陽(yáng)能電池在效率上還相差甚遠(yuǎn),但獨(dú)特的結(jié)構(gòu)使其具備更好的穩(wěn)定性,在要求環(huán)保無(wú)鉛、穩(wěn)定高效的光伏領(lǐng)域未來(lái)可期。目前基于全無(wú)機(jī)鈣鈦礦材料的太陽(yáng)能電池仍然存在著諸多的問(wèn)題,例如材料合成、薄膜制備以及器件組裝等方面仍然缺乏深入的研究,尤其是雙鈣鈦礦材料以及類鈣鈦礦材料的薄膜質(zhì)量不佳,嚴(yán)重影響電池的效率,此外各功能層材料的選擇仍較單一,很多是繼續(xù)沿用有機(jī)?無(wú)機(jī)鈣鈦礦材料的電荷傳輸層材料,導(dǎo)致能級(jí)失配較嚴(yán)重。對(duì)于后期的研究,可將重點(diǎn)放在以下幾個(gè)方向:提高材料的相穩(wěn)定性;提高基于無(wú)鉛型全無(wú)機(jī)鈣鈦礦材料的太陽(yáng)能電池的光電轉(zhuǎn)換效率,以及開(kāi)發(fā)具有高效特性的全無(wú)機(jī)電荷傳輸層,實(shí)現(xiàn)真正意義的全無(wú)機(jī)太陽(yáng)能電池。因此,深入研究材料內(nèi)部電荷傳輸與復(fù)合的工作機(jī)理、完善雙鈣鈦礦結(jié)構(gòu)、開(kāi)發(fā)與類鈣鈦礦材料能級(jí)相匹配的電荷傳輸材料等,將有助于提高太陽(yáng)能電池的性能和穩(wěn)定性。
[1] National Renewable Energy Laboratory (NREL). Best research-cell efficiency chart[EB/OL]. [2020-10-26] https://www.nrel.gov/pv/cell-efficiency.html.
[2] CHO K T, PAEK S, GRANCINI G, et al. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface[J]. Energy & environmental science, 2017, 10(2): 621-627. DOI: 10.1039/C6EE03182J.
[3] YANG W S, NOH J H, JEON N J, et al. High- performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237. DOI: 10.1126/science.aaa9272.
[4] XING J, ZHAO Y B, ASKERKA M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes[J]. Nature communications, 2018, 9(1): 3541. DOI: 10.1038/s41467-018-05909-8.
[5] EL-BALLOULI A O, BAKR O M, MOHAMMED O F, et al. Compositional, processing, and interfacial engineering of nanocrystal-and quantum-dot-based perovskite solar cells[J]. Chemistry of materials, 2019, 31(17): 6387-6411. DOI: 10.1021/acs.chemmater.9b01268.
[6] DASTIDAR S, LI S M, SMOLIN S Y, et al. Slow electron–hole recombination in lead iodide perovskites does not require a molecular dipole[J]. ACS energy letters, 2017, 2(10): 2239-2244. DOI: 10.1021/acsenergylett. 7b00606.
[7] AKBULATOV A F, LUCHKIN S Y, FROLOVA L A, et al. Probing the intrinsic thermal and photochemical stability of hybrid and inorganic lead halide perovskites[J]. The journal of physical chemistry letters, 2017, 8(6): 1211-1218. DOI: 10.1021/acs.jpclett.6b03026.
[8] YOON S M, MIN H, KIM J B, et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells[J]. Joule, 2020, 5(1): 183-196. DOI: 10.1016/j.joule.2020.11.020.
[9] LI X M, CAO F, YU D J, et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications[J]. Small, 2017, 13(9): 1603996. DOI: 10.1002/smll.201603996.
[10] ZHANG J R, HODES G, JIN Z W, et al. All-inorganic CsPbX3perovskite solar cells: progress and prospects[J]. Angewandte chemie-international edition, 2019, 58(44): 15596-15618. DOI: 10.1002/anie.201901081.
[11] LIU M Z, JOHNSTON M B, SNAITH H J, et al. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398. DOI: 10.1038/nature12509.
[12] HEO J H, HAN H J, KIM D, et al. Hysteresis-less inverted CH3NH3PbI3planar perovskite hybrid solar cells with 18.1% power conversion efficiency[J]. Energy & environmental science,2015, 8(5): 1602-1608. DOI: 10.1039% 2FC5EE00120J.
[13] LIANG J, WANG C X, WANG Y R, et al. All-Inorganic perovskite solar cells[J]. Journal of the American chemical society, 2016, 138(49): 15829-15832. DOI: 10.1021/jacs.6b10227.
[14] KE W J, FANG G J, WAN J W, et al. Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells[J]. Nature communications, 2015, 6(1): 6700. DOI: 10.1038/ncomms7700.
[15] EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & environmental science,2014, 7(3): 982-988. DOI: 10.1039/c3ee43822h.
[16] ZHAO Z Y, XU W, PAN G C, et al. Enhancing the exciton emission of CsPbCl3Perovskite Quantum Dots by Incorporation of Rb+ions[J]. Materials research bulletin, 2019, 112: 142-146. DOI: 10.1016/j.materresbull. 2018.12.004.
[17] SWARNKAR A, MARSHALL A R, SANEHIRA E M, et al. Quantum dot-induced phase stabilization of-CsPbI3perovskite for high-efficiency photovoltaics[J]. Science, 2016, 354(6308): 92-95. DOI: 10.1126/science.aag2700.
[18] LIU W Y, LIN Q L, LI H B, et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J]. Journal of the American chemical society, 2016, 138(45): 14954-14961. DOI: 10.1021/jacs.6b08085.
[19] LEE B, HWANG T, LEE S, et al. Microstructural evolution of hybrid perovskites promoted by chlorine and its impact on the performance of solar cell[J]. Scientific reports, 2019, 9(1): 4803. DOI: 10.1038/s41598-019- 41328-5.
[20] ZHANG C P, LI Z P, LIU J, et al. MAPbCl3-mediated decomposition process to tune Cl/PbI2distribution in MAPbI3films[J]. ACS energy letters, 2018, 3(8), 1801-1807. DOI: 10.1021/acsenergylett.8b00837.
[21] UNGER E L, BOWRING A R, TASSONE C J, et al. Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells[J]. Chemistry of materials, 2014, 26(24): 7158-7165. DOI: 10.1021/cm503828b.
[22] DONG Q F, YUAN Y B, SHAO Y C, et al. Abnormal crystal growth in CH3NH3PbI3?Clusing a multi-cycle solution coating process[J]. Energy & environmental science, 2015, 8(8): 2464-2470. DOI: 10.1039/C5EE01179E.
[23] YU B C, ZHANG H Y, WU J H, et al. Solvent-engineeringtoward CsPb(IBr1?)3films for high-performance inorganicperovskite solar cells[J]. Journal of materials chemistry A, 2018, 6(40): 19810-19816. DOI: 10.1039/C8TA07968D.
[24] WANG Y, LIU X M, ZHANG T Y, et al. The role of dimethylammonium Iodide in CsPbI3perovskite fabrication: additive or dopant?[J]. Angewandte chemie international edition, 2019, 58(46): 16691-16696. DOI: 10.1002/anie.201910800.
[25] WANG Y, DAR M I, ONO L K, et al. Thermodynamically stabilized-CsPbI3–based perovskite solar cells with efficiencies >18%[J]. Science, 2019, 365(6453): 591-595. DOI: 10.1126/science.aav8680.
[26] WANG Y, ZHANG T Y, KAN M, et al. Efficient-CsPbI3photovoltaics with surface terminated organic cations[J]. Joule, 2018, 2(10): 2065-2075. DOI: 10.1016/ j.joule.2018.06.013.
[27] WANG Y, ZHANG T Y, KAN M, et al. Bifunctional stabilization of all-inorganic-CsPbI3Perovskite for 17% Efficiency Photovoltaics[J]. Journal of the American chemical society, 2018, 140(39): 12345-12348. DOI: 10.1021/jacs.8b07927.
[28] WANG K, JIN Z W, LIANG L, et al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%[J]. Nature communications, 2018, 9(1): 4544. DOI: 10.1038/s41467-018-06915-6.
[29] WANG Q, JIN Z W, CHEN D, et al. μ-Graphene crosslinked CsPbI3quantum dots for high efficiency solar cells with much improved stability[J]. Advanced energy materials, 2018, 8(22): 1800007. DOI: 10.1002/aenm. 201800007.
[30] ZHANG Y Q, WU C C, WANG D, et al. High efficiency (16.37%) of cesium bromide—passivated all-inorganic CsPbI2Br perovskite solar cells[J]. Solar RRL, 2019, 3(11): 1900254. DOI: 10.1002/solr.201900254.
[31] YAN L, XUE Q F, LIU M Y, et al. Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%[J]. Advanced materials, 2018, 30(33): 1802509. DOI: 10.1002/adma.201802509.
[32] BAI D L, ZHANG J R, JIN Z W, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low- trap-density microcrystalline films for record efficiency CsPbI2Br solar cells[J]. ACS energy letters, 2018, 3(4): 970-978. DOI: 10.1021/acsenergylett.8b00270.
[33] ZENG Q S, ZHANG X Y, FENG X L, et al. Polymer- passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V[J]. Advanced materials, 2018, 30(9): 1705393. DOI: 10.1002/adma.201705393.
[34] JIANG Y Z, YUAN J, NI Y X, et al. Reduced- dimensional-CsPbX3perovskites for efficient and stable photovoltaics[J]. Joule, 2018, 2(7): 1356-1368. DOI: 10.1016/j.joule.2018.05.004.
[35] ZHANG Q N, ZHU W D, CHEN D Z, et al. Light processing enables efficient carbon-based, all-inorganic planar CsPbIBr2solar cells with high photovoltages[J]. ACS applied materials & interfaces, 2019, 11(3): 2997-3005. DOI: 10.1021/acsami.8b17839.
[36] LAU C F J, DENG X F, MA Q S, et al. CsPbIBr2perovskite solar cell by spray-assisted deposition[J]. ACS energy letters, 2016, 1(3): 573-577. DOI: 10.1021/ acsenergylett.6b00341.
[37] MA Q S, HUANG S J, WEN X M, et al. Hole transport layer free inorganic CsPbIBr2perovskite solar cell by dualsource thermal evaporation[J]. Advanced energy materials, 2016, 6(7): 1502202. DOI: 10.1002/aenm.201502202.
[38] WANG Z, LIU X D, LIN Y W, et al. Hot-substrate deposition of all-inorganic perovskite films for low- temperature processed high-efficiency solar cells[J]. Journal of materials chemistry A, 2019, 7(6): 2773-2779. DOI: 10.1039/C8TA09855G.
[39] YUAN H W, ZHAO Y Y, DUAN J L, et al. Enhanced charge extraction by setting intermediate energy levels in all-inorganic CsPbBr3perovskite solar cells[J]. Electrochimica acta, 2018, 279: 84-90. DOI: 10.1016/ j.electacta.2018.05.087.
[40] LEI J, GAO F, WANG H X, et al. Efficient planar CsPbBr3perovskite solar cells by dual-source vacuum evaporation[J]. Solar energy materials and solar cells, 2018, 187: 1-8. DOI: 10.1016/j.solmat.2018.07.009.
[41] WANG Y Y, TU J, LI T H, et al. Convenient preparation of CsSnI3quantum dots, excellent stability, and the highest performance of lead-free inorganic perovskite solar cells so far[J]. Journal of materials chemistry A, 2019, 7(13): 7683-7690. DOI: 10.1039/C8TA10901J.
[42] CAO D H, STOUMPOS C C, YOKOYAMA T, et al. Thin films and solar cells based on semiconducting two-dimensional ruddlesden–popper (CH3(CH2)3NH3)2(CH3NH3)?1SnI3n+1perovskites[J]. ACS energy letters, 2017, 2(5): 982-990. DOI: 10.1021/acsenergylett.7b00202.
[43] MARSHALL K P, WALKER M, WALTON R I, et al. Enhanced stability and efficiency in hole-transport-layer- free CsSnI3perovskite photovoltaics[J]. Nature energy, 2016, 1(12): 16178. DOI: 10.1038/nenergy.2016.178.
[44] MARSHALL K P, WALTON R I, HATTON R A. Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices[J]. Journal of materials chemistry A, 2015, 3(21): 11631-11640. DOI: 10.1039/C5TA02950C.
[45] MAUGHAN A E, GANOSE A M, BORDELON M M, et al. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6and Cs2TeI6[J]. Journal of the American chemical society, 2016, 138(27): 8453-8464. DOI: 10.1021/jacs.6b03207.
[46] CREUTZ S E, CRITES E N, DE SIENA M C, et al. Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: synthesis and anion exchange to access new materials[J]. Nano letters, 2018, 18(2): 1118-1123. DOI: 10.1021/acs.nanolett.7b04659.
[47] FILIP M R, HILLMAN S, HAGHIGHIRAD A A, et al. Band gaps of the lead-free halide double perovskites Cs2BiAgCl6and Cs2BiAgBr6from theory and experiment[J]. The journal of physical chemistry letters, 2016, 7(13): 2579-2585. DOI: 10.1021/acs.jpclett.6b01041.
[48] SHIN H, KIM B M, JANG T, et al. Surface state- mediated charge transfer of Cs2SnI6and its application in dye-sensitized solar cells[J]. Advanced energy materials, 2019, 9(3): 1803243. DOI: 10.1002/aenm.201803243.
[49] GREUL E, PETRUS M L, BINEK A, et al. Highly stable, phase pure Cs2AgBiBr6double perovskite thin films for optoelectronic applications[J]. Journal of materials chemistry A, 2017, 5(37): 19972-19981. DOI: 10.1039/C7TA06816F.
[50] PANTALER M, CHO K T, QUELOZ V I E, et al. Hysteresis-free lead-free double-perovskite solar cells by interface engineering[J]. ACS energy letters, 2018, 3(8): 1781-1786. DOI: 10.1021/acsenergylett.8b00871.
[51] WANG M, ZENG P, BAI S, et al. High-quality sequential-vapor-deposited Cs2AgBiBr6thin films for lead-free perovskite solar cells[J]. Solar RRL, 2018, 2(12): 1800217. DOI: 10.1002/solr.201800217.
[52] GAO W Y, RAN C X, XI J, et al. High-quality Cs2AgBiBr6double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency[J]. ChemPhysChem, 2018, 19(14): 1696-1700. DOI: 10.1002/cphc.201800346.
[53] IGBARI F, WANG R, WANG Z K, et al. Composition stoichiometry of Cs2AgBiBr6films for highly efficient lead-free perovskite solar cells[J]. Nano letters, 2019, 19(3): 2066-2073. DOI: 10.1021/acs.nanolett.9b00238.
[54] ZHANG C, GAO L G, TEO S, et al. Design of a novel and highly stable lead-free Cs2NaBiI6double perovskite for photovoltaic application[J]. Sustainable energy & fuels, 2018, 2(11): 2419-2428. DOI: 10.1039/C8SE00154E.
[55] CHEN M, JU M G, CARL A D, et al. Cesium titanium(IV) bromide thin films based stable lead-free perovskite solar cells[J]. Joule, 2018, 2(3): 558-570. DOI: 10.1016/j.joule.2018.01.009.
[56] VIGNESHWARAN M, OHTA T, IIKUBO S, et al. Facile synthesis and characterization of sulfur doped low bandgap bismuth based perovskites by soluble precursor route[J]. Chemistry of materials, 2016, 28(18): 6436- 6440. DOI: 10.1021/acs.chemmater.6b02315.
[57] BAI F, HU Y H, HU Y Q, et al. Lead-free, air-stable ultrathin Cs3Bi2I9perovskite nanosheets for solar cells[J]. Solar energy materials and solar cells, 2018, 184: 15-21. DOI: 10.1016/j.solmat.2018.04.032.
[58] PARK B W, PHILIPPE B, ZHANG X L, et al. Bismuth based hybrid perovskites A3Bi2I9(A: methylammonium or cesium) for solar cell application[J]. Advanced materials,2015, 27(43): 6806-6813. DOI: 10.1002/adma.201501978.
[59] SINGH A, BOOPATHI K M, MOHAPATRA A, et al. Photovoltaic performance of vapor-assisted solution- processed layer polymorph of Cs3Sb2I9[J]. ACS applied materials & interfaces, 2018, 10(3): 2566-2573. DOI: 10.1021/acsami.7b16349.
[60] WEBER S, RATH T, FELLNER K, et al. Influence of the iodide to bromide ratio on crystallographic and optoelectronic properties of rubidium antimony halide perovskites[J]. ACS applied energy materials, 2019, 2(1): 539-547. DOI: 10.1021/acsaem.8b01572.
[61] YU B B, LIAO M, YANG J X, et al. Alloy-induced phase transition and enhanced photovoltaic performance: the case of Cs3Bi2I9?Brperovskite solar cells[J]. Journal of materials chemistry A, 2019, 7(15): 8818-8825. DOI: 10.1039/C9TA01978B.
[62] GHOSH B, WU B, GUO X T, et al. Superior performance of silver bismuth iodide photovoltaics fabricated via dynamic hot-casting method under ambient conditions[J]. Advanced energy materials, 2018, 8(33): 1802051. DOI: 10.1002/aenm.201802051.
[63] TURKEVYCH I, KAZAOUI S, ITO E, et al. Photovoltaic rudorffites: lead-free silver bismuth halides alternative to hybrid lead halide perovskites[J]. ChemSusChem, 2017, 10(19): 3754-3759. DOI: 10.1002/cssc.201700980.
[64] KULKARNI A, JENA A K, IKEGAMI M, et al. Performance enhancement of AgBi2I7solar cells by modulating a solvent-mediated adduct and tuning remnantBiI3in one-step crystallization[J]. Chemical communications, 2019, 55(28): 4031-4034. DOI: 10.1039/C9CC00733D.
[65] ZHANG B S, LEI Y, QI R J, et al. Anroom temperature route to CuBiI4based bulk-heterojunction perovskite-like solar cells[J]. Science China materials, 2019, 62(4): 519-526. DOI: 10.1007/s40843-018-9355-0.
[66] SHIN J, KIM M, JUNG S, et al. Enhanced efficiency in lead-free bismuth iodide with post treatment based on a hole-conductor-free perovskite solar cell[J]. Nano research,2018, 11(12): 6283-6293. DOI: 10.1007/s12274-018-2151-4.
[67] GHOSH B, CHAKRABORTY S, WEI H, et al. Poor photovoltaic performance of Cs3Bi2I9: an insight through first-principles calculations[J]. The journal of physical chemistry C, 2017, 121(32): 17062-17067. DOI: 10.1021/ acs.jpcc.7b03501.
[68] HU H, DONG B H, ZHANG W. Low-toxic metal halide perovskites: opportunities and future challenges[J]. Journal of materials chemistry A, 2017, 5(23): 11436-11449. DOI: 10.1039/C7TA00269F.
Study on Solar Cells Based on Different All-Inorganic Perovskite Materials
SUO Chao, LIU Xiao-lin, LIN Jia
(College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China)
With the development of emerging photovoltaic cells, halide perovskite materials have been paid much attention. Among them, all-inorganic perovskites hold a great promise in the fields of optoelectronic and photovoltaic devices because of their good thermal stability, high absorption coefficient, adjustable band gap, and simple preparation process. The highest photoelectric conversion efficiency of all-inorganic perovskite solar cells has reached 20.4%. In this paper, the photoelectric conversion efficiency and stability of the solar cells were summarized based on all-inorganic perovskite materials such as ABX3, A2BX6, A2B1+B3+X6and perovskite-type. The key factors that affect the efficiency and stability, and the optimization methods were mainly analyzed. At last, challenges of the all-inorganic perovskite solar cell materials in the future were prospected.
all-inorganic perovskite; perovskite solar cell; phase stability; double perovskite; perovskite-type
TK01+9
A
10.3969/j.issn.2095-560X.2021.04.010
2095-560X(2021)04-0342-09
2020-12-17
2021-01-07
國(guó)家自然科學(xué)基金項(xiàng)目(61875119);上海市教育委員會(huì)“晨光計(jì)劃”項(xiàng)目(18CG63);上海市青年科技啟明星計(jì)劃項(xiàng)目(19QA1404000)
劉曉霖,E-mail:xlliu@shiep.edu.cn
索 超(1993-),男,碩士研究生,主要從事鈣鈦礦材料及電池器件性能方面的研究。
劉曉霖(1988-),女,博士,講師,碩士生導(dǎo)師,主要從事新型鹵化物鈣鈦礦材料的合成和理論研究。